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Abstract: A new Disturbance Observer Based (DOB) controller design procedure is here
obtained via a reinterpretation of the disturbance estimation scheme, present in the Extended
State Observer (ESO) based Active Disturbance Rejection (ADR) control scheme. If the
reinterpreted disturbance estimation process is explicitly used, now, in combination with an
ADR controller, the overall total disturbance effects are substantially diminished in the feedback
loop, beyond that achievable by ESO-based ADR control alone. The context is that of nonlinear
differentially flat systems, simplified to Kronecker chains of integrations. A Permanent Magnet
Synchronous Motor (PMSM) example is examined and its performance is assessed from an
experimental setting.
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1. INTRODUCTION

Disturbance Observer Based control is a mature area
of control engineering with numerous developments and
application examples (see Li et al. (2014),Ohishi et al.
(1987)), which has been extended to nonlinear, single-
input and multi-variable, systems (see Chen (2004) and
Chen et al. (2016)). The approach is highly reminiscent
of ADR control schemes but definite connections have
remained elusive (Wang et al. (2018)). In this article, in
the context of simplified, perturbed, input-to-flat output
models of differentially flat systems, we establish a definite
connection of ADRC with DOB control scheme. The DOB
scheme is naturally hidden in the ADR control scheme
at the level of the disturbance estimation part of the
ESO observer used in ADR control. Furthermore, we take
advantage of this connection, to propose a control scheme
with enhanced disturbance attenuation features.

In section II of this article, ADR control is revisited in the
context of simplified, perturbed, input-output flat systems
and Reduced Order Extended State Observer (ROESO)
based ADR control. The isolation, in the frequency domain
setting, of the disturbance estimation part of the ROESO
leads, directly, to the traditional DOB scheme, in which
all the customary elements are clearly present: namely,
inverse nominal plant, simultaneous low pass filtering of
the plant inverse and of the input, subtraction at the
input level of the estimated disturbance, obtained from
the two simultaneously filtered versions of the input signal.
In the literature, the controller design part of the DOB
control scheme has always been left as an independent

design problem (Wang et al. (2019)). In section III, taking
advantage of the disturbance attenuation features of the
ROESO based ADR control, a combination of the natu-
rally identified DOB scheme, and an additional ADR con-
troller is proposed. The net result is that the ADR control
scheme now further attenuates the residual disturbance
remaining from the cancellation effort exercised by the
explicit DOB estimation scheme. This feature, is clearly
verified, in Section IV, via a simulation example which
compares the Integral Square Error (ISE) performance of
the output tracking error trajectory, for an ADR control
scheme alone, with that of the combined DOB and ROESO
based ADR control scheme. Section V describes the use of
the proposed ROESO based ADR control and DOB com-
bination for a PMSM system example. Section VI contains
the experimental results including the performance evalu-
ation of the proposed DOB-ADRC scheme in comparison
with the ADRC control scheme alone. The conclusions and
suggestions for further work are summarized in Section
VII.

2. ACTIVE DISTURBANCE REJECTION CONTROL

Active Disturbance Rejection Control is a robust control
scheme, whose main features entitle: 1) Controller design
on the basis of a simplified perturbed system which groups
all exogenous and endogenous perturbations into a single
total disturbance term. 2) On-line approximate estima-
tion, via an extended state observer, of the total distur-
bance affecting the plant and 3) approximate disturbance
cancellation, via a feedback control action which explicitly
includes the disturbance estimate. In this section we use,
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instead of an ESO, a Reduced Order Extended State
Observer (ROESO). This simplifies, somewhat, the devel-
opments and establishes an equivalence between ROESO
based ADRC, Average Sliding Mode Control and, for
second order systems, with PID control using a “dirty
derivative” term (see Sira-Ramı́rez et al. (2019)).

2.1 Reduced Order Extended State Observer based ADRC

Consider the following third-order, perturbed, pure inte-
gration system.

y(3) = βυ + ξ (t) , (1)
where β is a known scalar gain and ξ(t) is a total pertur-
bation input. The signal, ξ(t), can contain exogenous and
endogenous disturbances, effects of un-modeled dynamics
and, possibly, parameter uncertainties. Only the input, υ,
and the output, y, are measurable. Defining υ = u/β and
substituing it in (1) we have:

y(3) = u+ ξ (t) , (2)

Suppose it is desired to follow a given smooth trajectory,
y∗, and by defining u∗ as the nominal control input,

computed as y∗
(3)

; the output tracking error ey = y − y∗
is seen to satisfy:

e(3)y = βeu + ξ (t) (3)

where eu = u − u∗. In state-space representation, the
system can be written as:

ėy1 = ey2 (4)

ėy2 = ey3 (5)

ėy3 = βeu + ξ (t) (6)

ey1 = ey (7)

Assume for a moment that ey2 is measurable, the ROESO
is given by:

˙̂ey2 = êy3 + λ2 (ey2 − êy2) (8)

˙̂ey3 = βeu + z + λ1 (ey2 − êy2) (9)

ż = λ0 (ey2 − êy2) (10)

ey2 = ėy1 = ėy (11)

where (̂·) are the estimations of the phase-variables and, z
is the total disturbance estimation term. In practice, this
scheme is not implementable due to the lack knowkledge
of the flat output time derivatives; for this purpose, define
the following variables:

ζ̂2 = êy2 − λ2ey1 , ζ̂3 = êy3 − λ1ey1 , η̂ = z − λ0ey1 (12)

Then, an implementable ROESO observer is written in
terms of the new variables,

˙̂
ζ2 = ζ̂3 − λ2ζ̂2 +

(
λ1 − λ22

)
ey (13)

˙̂
ζ3 = βeu + η̂ − λ1ζ̂2 + (λ0 − λ1λ2) ey (14)

˙̂η = −λ0ζ̂2 − λ0λ2ey. (15)

This observer yields the original phase-variables estimates
of the tracking errors:

êy2 = ζ̂2 + λ2ey; êy3 = ζ̂3 + λ1ey; z = η̂ + λ0ey (16)

The estimation errors of the tracking error phase variables,
satisfy the following relations,

ẽy2 = ζ2 − ζ̂2 = ey2 − êy2 (17)

ẽy3 = ζ3 − ζ̂3 = ey3 − êy3 (18)

ẽξ = η − η̂ = ξ − z (19)

where:

ζ2 = ey2 − λ2ey, ζ3 = ey3 − λ1ey, η = ξ − λ0ey. (20)

Thus, one obtains the tracking error state and the distur-
bance estimation errors dynamics. Taking into account the
relationships above, we get:

d

dt
ẽy2 = ẽy3 − λ2ẽy2 (21)

d

dt
ẽy3 = ẽξ − λ1ẽy2 (22)

d

dt
ẽξ = ξ̇ − λ0ẽy2 (23)

It follows that the ROESO estimation error dynamics is
governed by:

ẽ(3)y2 + λ2 ¨̃ey2 + λ1 ˙̃ey2 + λ0ẽy2 = ξ̇ (24)

A proper choice of the design parameters would guaran-
tee exponential asymptotic stability in the unperturbed
system case. Select the design parameters, {λ2, λ1, λ0}, in
such a manner that they constitute a Hurwitz set. In the
frequency domain, the transfer functions of the state and
disturbance estimation errors are:

ẽy2 (s) =

[
s

s3 + λ2s2 + λ1s+ λ0

]
ξ (s) (25)

ẽy3 (s) = (s+ λ2) ey2 =

[
s (s+ λ2)

s3 + λ2s2 + λ1s+ λ0

]
ξ (s) (26)

ẽξ (s) =sey3 + λ1ey2 =

[
s
(
s2 + λ2s+ λ1

)
s3 + λ2s2 + λ1s+ λ0

]
ξ (s) (27)

Using the estimations of the phase-variables and the total
disturbance term, the proposed reduced-order extended
state observer-based ADRC controller is written as,

eu =

(
1

β

)
(−γ2êy3 − γ1êy2 − γ0ey − z) (28)

With a corresponding characteristic polynomial,

s3 + γ2s
2 + γ1s+ γ0 (29)

Again, a proper choice of parameters is made which guar-
anties asymptotic exponential stability of the unperturbed
system. We select the design parameters {γ2, γ1, γ0} so
that they form a Hurwitz set. This is achieved by a term by
term identification of the third-order characteristic poly-
nomial with a known third-order Hurwitz polynomial of
the form: (s2 + 2ζωns+ ω2

n)(s+ p), ζ, ωn, p > 0.

Notice that:

êy3 = ̂̈ey = ëy − ẽy3 , êy2 = ̂̇ey = ėy − ẽy2 , z = ξ − ẽξ (30)

In the frequency domain, the closed loop system is de-
scribed by:(
s3+γ2s

2+γ1s+γ0
)
ey(s)=γ2ẽy3(s)+γ1ẽy2(s)+ẽξ(s) (31)

=

[
s3 + (λ2 + γ2) s2 + (λ1 + λ2γ2 + γ1) s

s3 + λ2s2 + λ1s+ λ0

]
ξ (s) (32)

Hence, the load sensitivity function for the closed-loop
system, is expressed as:

ey(s)=

[
s
(
s2+(λ2+γ2) s+(λ1+λ2γ2+γ1)

)
(s3+λ2s2+λ1s+λ0)(s3+γ2s2+γ1s+γ0)

]
ξ(s) (33)

After some algebra, it is not difficult to see that the closed-
loop transfer function relating, ξ(s), and, ey(s), induced by
the ROESO based ADRC controller, is of the form:
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ey(s)=

[
s
(
s2+κ5s+κ4

)
s6+κ5s5+κ4s4+κ3s3+κ2s2+κ1s+κ0

]
ξ(s) , (34)

where the transfer function coefficients κ5, · · · , κ0, are
obtained, in terms of the observer and controller design
parameters, as,

λ2 + γ2 =κ5
λ1 + λ2γ2 + γ1 =κ4

λ0 + λ1γ2 + λ2γ1 + γ0 =κ3
λ0γ2 + λ1γ1 + λ2γ0 =κ2

λ0γ1 + λ1γ0+ =κ1
λ0γ0 =κ0

The corresponding transfer function of the ROESO based
ADR controller is found to be:

C (s) =
1

β

[
κ3s

3 + κ2s
2 + κ1s+ κ0

s (s2 + κ5s+ κ4)

]
(35)

3. ADRC BASED DOB DESIGN

Consider the output reference trajectory tracking problem,
in a third order perturbed flat plant as in (3)

e(3)y = βeu + ξ (t)

A ROESO based ADRC control scheme leads to the
following estimation errors transfer functions, excited by
the perturbation input,

ẽy2 (s) =

[
s

s3 + λ2s2 + λ1s+ λ0

]
ξ (s) (36)

ẽξ (s) = ξ (s)− z(s) =

[
s
(
s2 + λ2s+ λ1

)
s3 + λ2s2 + λ1s+ λ0

]
ξ (s)

(37)

From (37), the total disturbance estimation term can be
represented as,

z(s) = ξ(s)− ẽξ(s) =

[
λ0

s3 + λ2s2 + λ1s+ λ0

]
ξ (s) (38)

Taking into account the Laplace transform of the per-
turbed third-order system, notice that ξ(s) = s3ey(s) −
βeu(s). It then follows that the estimation of the distur-
bance term is given by,

z(s) =

[
λ0

s3 + λ2s2 + λ1s+ λ0

] (
s3ey − βeu (s)

)
(39)

=

[
s3λ0

s3 + λ2s2 + λ1s+ λ0

]
ey (40)

−
[

λ0
s3 + λ2s2 + λ1s+ λ0

]
βeu (41)

The transfer functions above, represent, respectively, the
inverse of the nominal plant multiplied by a low pass filter
Q(s),

Q (s)G(−1) (s) =

[
s3λ0

s3 + λ2s2 + λ1s+ λ0

]
ey (42)

and the same low pass filter excited by the control input
error:

Q (s)βeu =

[
λ0

s3 + λ2s2 + λ1s+ λ0

]
βeu (43)

which is, precisely, the traditional DOB estimation scheme
for the additive uncertain perturbation [Chen et al. (2016);

Ohishi et al. (1987)]. This disturbance estimate term is
used as part of the feedback controller action to approxi-
mately cancel the effects of the total disturbance term.

4. SIMULATION STUDY

The ROESO ADRC controller, developed in section 2.1, is
implemented in a third-order, perturbed, pure integration
system (1) tracking a smooth reference trajectory for a
rest to rest maneuver during a time interval of 3 seconds.
The DOB observer, designed in section 3, is incorporated
into the control scheme, as shown in figure 1. The effects
of adding the DOB-disturbance estimation as part of the
feedback control action, are depicted in the next graphs.

Fig. 1. ADRC-DOB control scheme

Figure 1 shows the proposed control scheme, which em-
ploys the DOB estimated disturbance, where C(s) is the
transfer function of the ROESO-ADRC controller (35),
G−1
n (s) is the inverse of the unperturbed nominal plant,

and Q(s) the proposed low pass filter (43). Notice that
this control scheme is a ROESO based ADRC controller
assisted by a DOB observer; the influence of the DOB
disturbance estimation can be eliminated by only taking
it out of the diagram.
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Fig. 2. Trajectory tracking with a step disturbance

Figure 2 and 3 depicts the simulation results of tracking a
rest-to-rest maneuver. On figure 2, the system is disturbed
with a 5 units step in t = 7[s]. While in figure 3, a time-
variant disturbance signal perturbs the system all the time.
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Fig. 3. Trajectory tracking with a time-varying perturba-
tion

Despite the ROESO ADRC performs-well against distur-
bance signals, the tracking error graph shows quite an
improvement when we include the DOB disturbance es-
timation term. However, integral square error indices were
arranged in order to objectively compare the performance
of both techniques; once again, a significant improvement
is shown by the ISE index graph, incorporating the DOB
scheme; as seen on the tracking error graphs in Fig. (2)
and (3). This index is defined by,

ISE =

∫ t

0

(y − y∗(t))2dt (44)

We compute the controller design parameters,{γ2, γ1, γ0},
and the observer design parameters,{λ2, λ1, λ0}, by using
the following third-order Hurwitz polynomial:

(s2 + 2ζoωnos+ ω2
no)(s+ po) ROESO/DOB (45)

(s2 + 2ζωns+ ω2
n)(s+ p) ADRC (46)

Table 1 shows the parameters employed in this simulation.

Gain ADRC ROESO/DOB

β ωn ζ p ωno ζo po
5 10 1 10 30 1 30

Table 1. Simulation parameters

5. A PERMANENT MAGNET SYNCHRONOUS
MOTOR CONTROL APPLICATION

The set of differential equations describing the mathemat-
ical model of a PMSM, written in a d-q frame, is given by
Chiasson (2005):

Ls
did
dt

=−Rsid + npωLsiq + ud (47)

Ls
diq
dt

=−Rsiq − (npLsid +Km)ω + uq (48)

J
dω

dt
=Kmiq −Bω − τL (49)

where dθ
dt = ω , id and iq are the phase currents, θ and

ω represent, respectively, the angular position and the
angular velocity. The variables ud and uq are the control
input voltages, and τL is the unknown time-varying load
torque. The parameter, Rs is the stator resistance, Ls is
the stator inductance, J and B represent, respectively,
the moment inertia and the rotational friction coefficient.
The parameter Kmiq is the back-emf (back electro-motive
force) term and, finally, np is the number of pole pairs.

5.1 ADRC and DOBC based ADRC

The mathematical model of the PMSM (47) is a nonlinear
MIMO, differentially flat, system with two flat outputs
given by id and θ (See Sira-Ramı́rez et al. (2017)). The
simplified input-output perturbed model for the phase
current id and for the angular position θ are given by,

did
dt

=
1

Ls
ud + ξi(t) (50)

d3θ

dt3
=
Km

JLs
uq + ξθ(t) (51)

where ξi and ξθ lump all the non included terms of the
model, which are taken to represent the total disturbances,
we have:

ξi(t) =−Rs
Ls
id + npωiq

ξθ(t) =−RsKm

JLs
iq +

1

JKm
(
Km

Ls
− npid)ω +

B

J

dω

dt
− 1

J
τ̇L

To control the direct current id, we deal with a first
order controlled system. For this, we propose a PI2

(Proportional-Double Integral) control, written in “s” do-
main as,

ud = u∗d − Ls
[
k2s

2 + k1s+ k0
s2

]
(id − i∗d) (52)

For the control of the angular position, θ, we have a third
order controlled system. In this case, to avoid the measure-
ments of the angular velocity and angular acceleration, and
in accordance with section 2.1, we propose a ROESO in
terms of the angular position reference trajectory tracking
error,

˙̂
ζ2 = ζ̂3 − λ2ζ̂2 +

(
λ1 − λ22

)
eθ (53)

˙̂
ζ3 = u+ η̂ − λ1ζ̂2 + (λ0 − λ1λ2) eθ (54)

˙̂η = −λ0ζ̂2 − λ0λ2eθ (55)

where eθ = θ−θ∗. Defining, respectively, the first and sec-
ond order time derivative of eθ as, ey2 and ey3 respectively,
their estimates are given by:

êy2 = ζ̂2 + λ2ey; êy3 = ζ̂3 + λ1ey; z = η̂ + λ0ey (56)

The corresponding ADR control for the tracking of the
angular position reference trajectory θ∗(t), using the
ROESO, is just given by:

uq = u∗ − JLs
Km

[−k2êy3 − k1êy2 − k0eθ − z] (57)

The direct current is stabilized to zero (i.e., i∗d = 0) [Sira-
Ramı́rez et al. (2014)]. In closed loop, both closed loop
sub-systems resemble a set of decoupled perturbed linear
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systems, while the state and input interactions are con-
fined to the additive total disturbance signals (see Zurita-
Bustamante et al. (2018)). The characteristic polynomial,
associated with the closed loop of direct current control, is
obtained as a third order polynomial. So, we compute the
PI2, ADR controllers, and the observer design parameters,
by using the following third-order Hurwitz polynomials:

(s2 + 2ζ1ω1s+ ω2
1)(s+ p1) PI2 (58)

(s2 + 2ζ2ω2s+ ω2
2)(s+ p2) ROESO (59)

(s2 + 2ζ3ω3s+ ω2
3)(s+ p3) ADRC (60)

5.2 A DOBC based ADRC

Based on section 3, a DOB scheme is proposed by ex-
tracting it from the estimation part of the ADR control
scheme. For the case of a third order system, the DOB
scheme estimating the total disturbance is given by:

z = ξ−ẽξ =

[
λ0

s3 + λ2s2 + λ1s+ λ0

]
ξ (s) (61)

=

[
λ0

s3 + λ2s2 + λ1s+ λ0

](
s3ey−βeu (s)

)
(62)

=

[
s3λ0

s3 + λ2s2 + λ1s+ λ0

]
ey (63)

−
[

λ0
s3 + λ2s2 + λ1s+ λ0

]
βeu (64)

where the parameters λ0, . . . , λ2 are taken from the
ROESO design and β = Km

JLs
.

6. EXPERIMENTAL SETUP

An experimental platform was developed for the control
of the angular position in the PMSM. The parameter
values of the motor are shown in Table 2. In figure
4, a block diagram of the built platform is depicted.
This experimental setup is integrated by a three phase
diode bridge rectifier, a 2.4 kW voltage source inverter
and a Baldor PMSM. The PWM device (10 kHz), the
Bézier polynomial, the d-q/abc transformation, and the
ADRC and DOB-ADRC position tracking controller are
implemented in the STM32F4 controller card. The sample
period of the card was set to 10µs.

Fig. 4. Block diagram of the experimental setup for the
trajectory tracking of angular position.

Table 2. Motor Parameters

Parameters Value

Rs 1.6[Ω]

Ls 6.365[mH]

Vpk/krpm 77.4[V ]

Number of pole pairs np 2

Moment of inertia J 0.182E−3[kg −m2]

Friction Coefficient B 8.7E−5[kg −m2/s]

The parameters for the ROESO and for the feedback linear
controller are shown in Table 3. A trajectory tracking
task was developed to independently test the ADRC and
DOBC-ADRC controllers. The initial angular position was
set to 0 [rad] and the final desired angular position was
set to 10π [rad] in the time-interval, [4 , 7] seconds. After
this, the desired angular position smoothly goes back to 0
[rad] during the time interval: [10 , 13] seconds. Finally,
the desired position was set to −10π [rad], based on an
interpolation polynomial of the Bézier type, during the
time interval: [16 , 19] seconds. In figure 5, the responses
of, both, an active disturbance rejection control and an
ADRC based DOBC are shown. Figure 5 depicts the an-
gular position reference trajectory tracking performance,
whose reference trajectory is also based on an interpolation
polynomial of the Bezier type. The initial angular position
was set to 0 [rad] and the final desired angular position
was specified to 40π [rad]. The initial time was set to 1.5
seconds and the final time is 3.5 seconds. Figure 6 shows

Fig. 5. Trajectory tracking performance for the ADRC and
ADRC-DOB in the nonlinear PMSM.

PI2 ROESO ADRC
Parameter Value Parameter Value Parameter Value

ζ1 1 ζ2 1 ζ3 1
ω1 10 ω2 450 ω3 200
p1 10 p2 450 p3 200

Table 3. Simulation parameters

the control input voltage ud in the dq frame. Also, the
corresponding phase currents, id and iq, are shown. The
direct current is close to zero amperes, as desired.

Both control schemes, ADRC and DOBC-ADRC, present
similar performances for the trajectory tracking task.
However, ISE indices were arranged in order to objectively
compare the performance of both techniques.

In figure 7 the behavior of the ISE indices are shown,
for both control schemes. As it can be observed, the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1369



Fig. 6. Direct and quadrature voltage for the trajectory
tracking of angular position with ADRC and DOBC-
ADRC schemes.

DOB-ADR controller presents a substantially better per-
formance than the ROESO based ADRC scheme alone.
This is because, in the latter case, the control scheme
is estimating, and attenuating, the residual disturbance
obtained after subtracting, from the control input, its
DOB estimate.

0 2 4 6 8 10 12 14 16 18 20

time [s]

0

0.05

0.1
Integral Square Error Index

Fig. 7. ISE index comparing the performances of, both,
the ADRC and the DOB-ADRC schemes.

7. CONCLUSIONS

This paper combines Disturbance Observer Based (DOB)
control with Extended State Observer (ESO) based Active
Disturbance Rejection (ADR) control. Using a frequency
domain framework, for describing the disturbance esti-
mation part of the (ROESO based ADR control), simple
algebraic manipulations demonstrate that the total distur-
bance observation part, of the DOB scheme, is naturally
obtained from the ROESO subsystem, acting on the per-
turbed flat system. The frequency domain developments
are crucially facilitated by using a simplified input-to-flat
output, additively perturbed, pure integration model of
the differentially flat nonlinear system. If the reinterpreted
disturbance estimation process is now explicitly used in
combination with a ROESO based ADR controller, then,
the total disturbance effects on the closed loop system
are substantially attenuated in the feedback loop beyond
the level achievable by ROESO based ADRC alone. We
specifically show that the ROESO based ADRC-DOB
combination vastly improves the ESO-based ADR control

scheme acting alone, in terms of figures of merit; such as:
the Integral Square Error index, obtained for a reference
flat output trajectory tracking task. This is done in the
context of, both, a simulation example and, experimen-
tally, on a multivariable Permanent Magnet Synchronous
Motor platform.
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