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Abstract: We study a PDE based linearized model for the vertical motion of a solid floating at
the free surface of a shallow viscous fluid. The solid is controlled by a vertical force exerted via
an actuator. This force is the input of the system, whereas the output is the distance from the
solid to the bottom. The first novelty we bring in is that we prove that the governing equations
define a well-posed linear system. This is done by considering adequate function spaces and
convenient operators between them. Another contribution of this work is establishing that the
system is input-output stable. To this aim, we give an explicit form of the transfer function and
we show that it lies in the Hardy space H∞ of the right-half plane.
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1. INTRODUCTION

In this work we consider an infinite dimensional system
describing the vertical motion of a solid floating at the
free surface of a viscous fluid with finite depth and flat
bottom. This system is motived by the growing interest
of wave energy extractors that float on the sea and extract
energy by activating a hydraulic pump, which in turn
drives a hydraulic motor connected to a generator. In
such an arrangement, the torque on the generator can
be controlled, leading to a controllable vertical force on
the floating object, see for instance Korde and Ringwood
(2016) or Pecher and Kofoed (2017). The input of the
considered system is the force acting on the solid by an
actuator, whereas the output is the distance from the solid
to the sea bottom. The novelty brought by this work is
twofold:

• The viscous effects are taken in consideration from
the beginning of the modelling process, by adapting
a method describing viscous free boundary value flows
which has been introduced in Maity et al. (2018).
• We give an explicit form of the transfer function,

allowing, in particular, to establish the input-output
stability of the system. In a future work we aim at
using this explicit form to implement simple feedback
laws.

? This first and the third author have been supported by the
European Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement No 765579. The
third author also was supported by the SingFlows project, grant
ANR-18-CE40-0027 of the French National Research Agency (ANR).

The leading assumptions on the fluid are that it is one
dimensional and unbounded in the horizontal direction,
that the flow can be described within the shallow water
approximation(this mean that the horizontal length scale
of motion L is much greater than the perpendicular fluid
depth D, i.e. D/L � 1) and that the viscosity effects
cannot be neglected. Concerning the solid, we assume that
it has vertical walls, that it can move only vertically and
that it is subject to a vertical control force. The output
signal is the distance from the bottom of the solid to
the sea bottom. More precisely, we consider the model
introduced in Maity et al. (2018), with the particularity
that the fluid is supposed to be infinite in the horizontal
direction, denoting I := [a, b] the projection on the fluid
bottom of the solid domain and setting E := R \ [a, b].
The floating solid is supposed, without loss of generality,
to have massM = 1 and it is constrained to move only in
the vertical direction. Given t > 0, we denote by h(t, x) the
height of the free surface of the fluid, by q(t, x) the flux of
viscous fluid in the direction x and by hS(t) the distance
from the bottom of the rigid body to the bottom of the
fluid, supposed to be horizontal, as described in Fig. 1. We
denote by h and hS the equilibrium height for the fluid and
the solid, respectively. Then, following Maity et al. (2018),
we have

h = hS +
1

b− a
,

and for simplicity, we assume that

h = 1, g = 1, p =
1

b− a
.

Hence, Linearizing around the trajectory (hS , h, q, p) =
(hS , h, 0, p) we we obtain the equations
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Fig. 1. Graphical sketch of the model. The function h(t, x)
denote the height of the free surface of the fluid, and
hS(t) is the function which describes the distance from
the bottom of the rigid body to the bottom of the
fluid.

∂h

∂t
+
∂q

∂x
= 0, (x ∈ E), (1)

∂q

∂t
+
∂h

∂x
− µ∂

2q

∂x2
= 0, (x ∈ E), (2)

h(t, a−)−µ∂q
∂x

(t, a−) = p(t, a+)+hS(t)−µ∂q
∂x

(t, a+), (3)

h(t, b+)−µ∂q
∂x

(t, b+) = p(t, b−) +hS(t)−µ∂q
∂x

(t, b−), (4)

ḣS(t) +
∂q

∂x
= 0 (x ∈ I), (5)

∂q

∂t
+
∂p

∂x
= 0 (x ∈ I), (6)

ḧS(t) =

∫ b

a

p(t, x)dx+ u(t) (t > 0), (7)

where p is a Lagrange multiplier, similar to a pressure term
(which is obtained in the Hamiltonian modelling process),
u is the input function whereas the output is

y(t) = hS(t) (t ≥ 0). (8)

Our first main result is the following reformulation of the
system. Set

X := C×H1(E)× L2(E)× C× C. (9)

Theorem 1. Equations (1)-(8) can be recast as

ż = Az +Bu
y = Cz,

(10)

where the components of the vector z(t) are hS(t), h(t, ·),
q(t, ·), q(t, a) and q(t, b), B is in L(C, X), C is in L(X,C)
and A is the generator of an analytic semigroup on X.

Using the classical definition of well-posed linear systems
(see for instance the survey paper Tucsnak and Weiss
(2014), or also the book Tucsnak and Weiss (2009)), the
above theorem implies the following result:

Corollary 2. Equations (1)-(8) define a well-posed linear
system with state space X defined in (9) and input and
output spaces U = Y = C.

Remark 3. From the above results it follows, in particular,
that for every

z0 =


hS,0
h0
q0
qa,0
qb,0

 ∈ X

and every u ∈ L2[0,∞), the initial value problem formed
of (1)-(8) and the initial condition z(0) = z0 admits a
unique solution

z(t, x) =


hS(t)
h(t, x)
q(t, x)
q(t, a)
q(t, b)

 ,
in C([0,∞);X). Moreover, it is easily checked that z̃
defined by

z̃(t, x) =


hS(t)

h(t, a+ b− x)
−q(t, a+ b− x)
−q(t, b)
−q(t, a)

 ,
satisfies (1)-(8). Moreover, if we assume that

q0(x) = −q0(a+ b− x), h0(x) = h0(a+ b− x) (x ∈ E),
(11)

then z̃(0, ·) = z0, thus z̃ satisfies the same initial value
problem as z. Using the uniqueness of solutions of this
initial value problem we deduce that z̃ = z. This means,
in particular, that for initial data satisfying (11) we have

q(t, a) = −q(t, b), h(t, a) = h(t, b) (t > 0).

Continuing with our results, we remember that a well-
posed linear system of the form (10) is said input-output
stable if equations (10) define, for z(0) = 0 a bounded map
from L2([0,∞);U) to L2([0,∞);Y ). Considering this our
second main result can be stated as:

Theorem 4. The system described by (1)-(8) is input-
output stable.

The remaining part of this paper is organized as follows.
In Section 2 we prove Theorem 1. Finally, Section 3 is
devoted to the proof of our second main result, asserting
the input-output stability of the considered system.

2. PROOF OF THEOREM 1

For t ≥ 0, we set qa(t) := q(t, a) and qb(t) := q(t, b). Since
(5) implies that q is a linear function of x on I, for every
t ≥ 0 and x ∈ I,

ḣS(t) = −qb(t)− qa(t)

b− a
, (12)

q(t, x) = qa(t)
(x− b
a− b

)
+ qb(t)

(x− a
b− a

)
, (13)

∂q

∂x
(t, x) =

qb(t)− qa(t)

b− a
. (14)

We differentiate (6) with respect to x and use (3)-(5) to
arrive at

∂2p

∂x2
(t, x) = ḧS(t) (x ∈ I),

p
(
t, a+

)
= pa(t), p

(
t, b−

)
= pb(t),

(15)

where

pa(t) := h
(
t, a−

)
− µ∂q

∂x

(
t, a−

)
− hsol(t)− µḣsol(t), (16)

pb(t) := h
(
t, b+

)
− µ∂q

∂x

(
t, b+

)
− hsol(t)− µḣsol(t). (17)
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Moreover, the first equation in (15) implies that, for every
t ≥ 0, p(t, x) is a second order polynomial in x so that∫ b

a

p(t, x) dx = p(t, a)l − q̇a(t)
l2

3
− q̇b(t)

l2

6

= p(t, b)l + q̇a(t)
l2

6
+ q̇b(t)

l2

3
,

where we set l := b− a. Combining this with (7) and (12)
we deduce that[

1 +
l3

3

]
q̇a(t)−

[
1− l3

6

]
q̇b(t) = p(t, a)l2 + lu(t),

−
[
1− l3

6

]
q̇a(t) +

[
1 +

l3

3

]
q̇b(t) = −p(t, b)l2 − lu(t).

Inverting the above linear system, we get[
q̇a(t)
q̇b(t)

]
= M

[
p(t, a)
−p(t, b)

]
+

1

l
M

[
u(t)
−u(t)

]
(18)

where M is the matrix given by

M :=
1

l(1 + l3

12 )


1 +

l3

3
1− l3

6

1− l3

6
1 +

l3

3

 . (19)

Considering equation (3)-(4) together with (14) we deduce
that

p(t, a) = h(t, a−)− µ∂q
∂x

(t, a−)− hS(t) + µ
qb − qa
b− a

, (20)

and

p(t, b) = h(t, b+)− µ∂q
∂x

(t, b+)− hS(t) + µ
qb − qa
b− a

. (21)

Finally, the system (1)-(7) writes in the equivalent form

ḣS(t) = −qb(t)− qa(t)

b− a
(t ≥ 0), (22)

∂h

∂t
+
∂q

∂x
= 0 (x ∈ E), (23)

∂q

∂t
+
∂h

∂x
− µ∂

2q

∂x2
= 0 (x ∈ E), (24)[

q̇a(t)
q̇b(t)

]
=

M

b− a

[
u(t)
−u(t)

]
+

M

 h(t, a−)− µ∂q
∂x

(t, a−)− hS(t) + µ
qb − qa
b− a

−h(t, b+) + µ
∂q

∂x
(t, b+) + hS(t)− µqb − qa

b− a

 . (25)

Let X be defined by (9), set

W := C×H1(E)×H2(E)× C× C,

and denote by z := [hS h q qa qb]
T

a generic element of
X. Consider the operator A : D(A)→ X defined by

D(A) := {z ∈W | q(a) = qa, q(b) = qb} , (26)

Az :=



−q(b)− q(a)

b− a
− dq
dx

−dh
dx

+ µ
d2q

dx2
R1z
R2z


, (27)

where[
R1z
R2z

]
:= M

 h(a−)− µdq
dx

(a−)− hS + µ
qb − qa
b− a

−h(b+)− µdq
dx

(b+)− hS + µ
qb − qa
b− a

 .
In the situation when E is supposed to be bounded (which
means that the fluid is contained in a container), it has
been proved in (Maity et al., 2018, Section 6) that the
corresponding version of A defined in (26)-(27) generates
an analytic semigroup. This proof can be transposed with
obvious modifications to our case so that the operator A
generates an analytic semigroup on X. We set

Bu := [0, 0, 0,
lu

2
(
1 + l3

12

) ,− lu

2
(
1 + l3

12

) ]T and Cz := hS ,

(28)
and we observe that B ∈ L(C, X) and C ∈ L(X,C). Hence
the proof of Theorem 1 is completed.

3. PROOF OF THEOREM 4

It has been shown in Maity et al. (2018) that in the case
of a bounded container, the linearized system describing
the motion of the floating body is exponentially stable.
It is not difficult to check that in our case we have that
0 lies in the spectrum of A, thus the system is no longer
exponentially stable. However, we have the following result
where C0 denotes the open right-half plane

C0 := {s ∈ C : Re s > 0}. (29)

Proposition 5. The resolvent set ρ(A) contains C0.

Proof. Let λ ∈ C0 and F = [f1, f2, f3, f4, f5]T in X. The
equation (λI −A)z = F for z ∈ D(A) reads

λhS +
q(b)− q(a)

b− a
= f1, (30)

λh(x) +
dq

dx
= f2(x) (x ∈ E), (31)

λq(x) +
dh

dx
− µd

2q

dx2
= f3(x) (x ∈ E), (32)

M

 h(a−)− µdq
dx

(a−)− hS + µ
q(b)− q(a)

b− a
−h(b+) + µ

q

dx
(b+) + hS − µ

q(b)− q(a)

b− a


=

[
f4
f5

]
− λ

[
qa
qb

]
, (33)

lim
x→−∞

q(x) = lim
x→∞

q(x) = 0, (34)

q(a) = qa, q(b) = qb. (35)

From (33) and (25), it follows that

µ
q(b)− q(a)

l
+ h

(
a−
)
− hS − µ

dq

dx

(
a−
)

=

[
1 +

l3

3

]
(λqa,0 − f4)

l2
+

[
1− l3

6

]
(f5 − λqb,0)

l2
, (36)

− µq(b)− q(a)

l
− h

(
b+
)

+ hS + µ
dq

dx

(
b+
)

=

[
1− l3

6

]
(f4 − λqa,0)

l2
+

[
1 +

l3

3

]
(λqb,0 − f5)

l2
. (37)
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We next transform (30)-(35) into a boundary value prob-
lem for q by eliminating h, hS , qa, qb from the above
mentioned equations. First, from (31) and (32), we deduce

λq −
(
µ+

1

λ

)
d2q

dx2
= φ1 (x ∈ E), (38)

where

φ1 := f3 −
1

λ

df2
dx
∈ L2(E).

Next, using (30), (31) and (35) in (36) and (37) it follows
that(

µ+
1

λ

)
dq

dx

(
a−
)

=

(
µ+

1

λ
+
λ

l

)
q(b)− q(a)

l

− λl

6
(2q(a) + q(b)) + φ2 (39)(

µ+
1

λ

)
dq

dx

(
b+
)

=

(
µ+

1

λ
+
λ

l

)
q(b)− q(a)

l

+
λl

6
(q(a) + 2q(b)) + φ3 (40)

with

φ2 :=

(
f2 (a−)

λ
− f1
λ

)
+

[
1 +

l3

3

]
f4
l2
−
[
1− l3

6

]
f5
l2
,

φ3 :=

(
f2 (b+)

λ
− f1
λ

)
+

[
1− l3

6

]
f4
l2
−
[
1 +

l3

3

]
f5
l2
.

We first prove the existence of a weak solution to (38)-
(40) with the condition (34) at infinity. We thus set
V := H1(E). The weak formulation of (38)-(40) with the
condition (34) is to find q ∈ V such that

Bλ(q, ψ) =

∫
E
φ1ψ̄dx+ φ2ψ̄(a)− φ3ψ̄(b) (ψ ∈ V ), (41)

where

Bλ(q, ψ) :=

∫
E

[
λqψ̄ +

(
µ+

1

λ

)
dq

dx

dψ̄

dx

]
dx

−
[(

1

λ
+ µ+

λ

l

)
q(b)− q(a)

l
− λl

6
[2q(a) + q(b)]

]
ψ̄(a)

+

[(
1

λ
+ µ+

λ

l

)
q(b)− q(a)

l
+
λl

6
[q(a) + 2q(b)]

]
ψ̄(b).

(42)

For q, ψ ∈ V ,

Bλ(q, ψ) =

∫
E

[
λqψ̄+

(
µ+

1

λ

)
dq

dx

dψ̄

dx

]
dx

+

(
1

λ
+ µ+

λ

l

)
(q(b)− q(a)) (ψ(b)− ψ(a)

l
+

λl

6

[
q(a)ψ̄(a) + q(b)ψ̄(b) + (q(b) + q(a)) (ψ̄(b) + ψ̄(a))

]
.

(43)

From the above formula, it follows that for any λ ∈ C0

we can consider positive constants C = C(λ), α =
min{Re λ, Re 1/λ} such that

|Bλ(q, ψ)| 6 C‖q ‖V ‖ψ ‖V ,ReBλ(q, q) > α‖ q‖2V (44)

where q, ψ ∈ V , thus Bλ is a bounded and coercive form
on V . Moreover, the right hand side of (41) clearly defines
a bounded linear functional on V . Thus, the conclusion
follows by the complex version of the Lax-Milgram Lemma
(see, for instance, Lemma 5.4 on Arendt et al. (2014)).

3.1 Transfer function

From Proposition 5 it follows that the transfer function

G(s) = C(sI −A)−1,

of the system (1)-(8) is defined for every s ∈ C0. In this
subsection we compute this transfer function and we show
that it lies in the Hardy space H∞(C0) and thus obtain
the main ingredient of the proof of Theorem 4. In other
terms, we compute the Laplace transform of the solution
of (1)-(8) with zero initial data. More precisely, we have:

Proposition 6. The transfer function of the system (1)-(8)
is given by

G(s) :=
1(

1 + l3

12

)
s2 + l2

2 s
√

1 + µs+ µls+ l
(s ∈ C0).

(45)

Proof. We first express h (t, a−)− µ ∂q∂x (t, a−) in terms of

hS and ḣS . To this end, for x ∈ I, we first note that

q(t, b)− q(t, a) = −lḣS(t). (46)

Moreover, using Remark 3 we obtain

h(t, a−) = h(t, b+), −q(t, a−) = q(t, b+), (47)

thus

q(t, a) =
l

2
ḣS , q(t, b) = − l

2
ḣS . (48)

From equations (22)-(23) it follows that for x ∈ (−∞, a]
we have

∂2q

∂t2
− ∂2q

∂x2
− µ ∂3q

∂t∂x2
= 0,

q(t, x)→ 0 as x→ −∞, q(t, a) =
b− a

2
ḣS(t),

q(0, x) =
∂q

∂t
(0, x) = 0.

(49)

For f ∈ L1[0,∞], we denote by f̂ the Laplace transform of
f . Applying the Laplace transform to both sides of (49),
we obtain

s2q̂ − (1 + sµ)
∂2q̂

∂x2
= 0

q̂(s, x)→ 0 as x→ −∞, q̂(s, a) =
b− a

2
̂̇
hS , Re(s) > 0.

(50)
Hence we can conclude that

q̂(s, x) =
b− a

2
e

−sa√
1+sµ e

sx√
1+sµ ̂̇hS(s) (51)

and

ĥ
(
s, a−

)
− µ∂q̂

∂x

(
s, a−

)
= − l

2

(
1

s
+ µ

)
s√

1 + sµ
̂̇
hS(s)

= − l
2

(
√

1 + µs)
̂̇
hS(s).

(52)
In a similar way, we obtain

ĥ
(
s, b+

)
− µ∂q̂

∂x

(
s, b+

)
= − l

2

(√
1 + µs

) ̂̇
hS(s). (53)

Moreover, applying the Laplace transform to (48) we
obtain

q̂(s, a) =
l

2
sĥS , q̂(s, b) = − l

2
sĥS . (54)

Finally, applying Laplace transform to (25), we obtain

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7584



[
sq̂a(s)
sq̂b(s)

]
=

M

b− a

[
û(s)
−û(s)

]
+

M

 ĥ(s, a−)− µ∂q̂
∂x

(s, a−)− ĥS(s) + µ
q̂b − q̂a
b− a

−ĥ(s, b+) + µ
∂q̂

∂x
(s, b+) + ĥS(s)− µq̂b − q̂a

b− a

 . (55)

Hence, using (52) and (54) in (55), we conclude(
1 +

l3

12

)
s2ĥS = l

[
− ls
√

1 + µs

2
− 1− µs

]
ĥS + û.

The above relation implies that

ĥS(s) = G(s)û(s),

where G is given by (45), which ends the proof.

Lemma 7. Let F be the function defined by

F (s) =

(
1 +

l3

12

)
s2 +

l2

2
s
√

1 + µs+ µls+ l, (56)

and let C0 be the open right-half plane, as defined in (29).
Then there exists a neighborhood O of C0 such that F is
holomorphic on O. Moreover, F does not vanish on C0.

Proof. The fact that F is holomorphic on a neighborhood
of C0 follows from the corresponding property of each
term is the right-hand side of (56) (including the one
involving the square-root, for which we take the principal
determination).

Let s ∈ C0.We set z :=
√

1 + µs. Since z2 = 1 + µs we
have

Re(z2 − 1) ≥ 0. (57)

In particular Re(z2) > 0, which implies that arg(z2) ∈
(−π/2, π/2). Consequently, we have

arg(z) ∈ (−π/4, π/4). (58)

As s = z2−1
µ , F (s) = 0 is equivalent to(

1 +
l3

12

)(
z2 − 1

µ

)2

+
l2

2

(
z2 − 1

µ

)
z + lz2 = 0. (59)

Multiplying (59) by µ2

1+ l3

12

, we obtain

(z2 − 1) + 2
l2µ

4
(
1 + l3

12

) (z2 − 1)z +
l4µ2z2

16
(
1 + l3

12

)2
+

lµ2z2

16
(
1 + l3

12

)2 (16 +
l3

3

)
= 0,

and then(
z2 − 1 +

l2µz

4
(
1 + l3

12

))2

+
lµ2z2

16
(
1 + l3

12

)2 (16 +
l3

3

)
= 0.

(60)

Hence equation (59) is equivalent to P (z)Q(z) = 0, where

P (z) := z2 − 1 +
l2µz

4
(
1 + l3

12

) + iz
µ
√
l

4
(
1 + l3

12

)√16 +
l3

3

(61)

Q(z) := z2 − 1 +
l2µz

4
(
1 + l3

12

) − iz µ
√
l

4
(
1 + l3

12

)√16 +
l3

3
.

(62)

Let us prove that P (z) 6= 0 and Q(z) 6= 0. To this aim we
write z = x + iy with x > 0 (due to (57) and (58)) and
y ∈ R. We note that:

Re(P (z)) = µRe(s) +
l2µx

4
(
1 + l3

12

) − y µ
√
l

4
(
1 + l3

12

)√16 +
l3

3
,

Im(P (z)) = y
(

2x+
l2µ

4
(
1 + l3

12

))+ x
µ
√
l

4
(
1 + l3

12

)√16 +
l3

3
,

Re(Q(z)) = µRe(s) +
l2µx

4
(
1 + l3

12

) + y
µ
√
l

4
(
1 + l3

12

)√16 +
l3

3
,

Im(Q(z)) = y
(

2x+
l2µ

4
(
1 + l3

12

))− x µ
√
l

4
(
1 + l3

12

)√16 +
l3

3
.

If Im(P (z)) = 0, since l, µ, x are positive, then y < 0.
But since Re(z2 − 1) ≥ 0, this implies that Re(P (z)) > 0.
Therefore P (z) 6= 0.

If Re(Q(z)) = 0, since Re(z2 − 1) ≥ 0 and x > 0
are positive we conclude that y < 0. This implies that
Im(Q(z)) < 0. Therefore Q(z) 6= 0.

Thus F (s) 6= 0 on C0, which concludes the proof of the
Lemma.

Note that this result can be extended to the case of a more
function defined by F̃ (s) := s2 + a1s

√
s+ ε + a2s + a3,

only requiring the positivity of the coefficients ε, ai but
not relying at all on the specific values of the physical
parameters and the algebraic relations between them, see
the companion paper Vergara-Hermosilla et al. (2020).

3.2 Proof of Theorem 4

By Lemma 7 we know that the function F defined in (56)
is not vanishing on C0. Moreover, since

lim
|s|→∞

|F (s)| = +∞,

we have that the map s 7→ |F (s)| is bounded from below
on C0. We conclude that the transfer function G defined
in (45) is such that

sup
s∈C0

|G(s)| <∞.

By the Paley-Wiener theorem (see, for instance, (Rudin,
1987, Section 19.2)), this implies that (1)-(8) is input-
output stable, so that the proof of the theorem is complete.

4. FURTHER WORK

Other issues that have not been mentionned in this work,
but that are interesting for our future research are the
following ones:

• Study of the sectorial properties of the resolvent of the
operator A defined in eq. (27), in order to establish
results related to the existence and uniqueness of
strong solutions and strong stability of the system.
• Study of the new system with vertical velocity as

output, instead of the height: would it be a well-posed
system in some suitable state space? Moreover, the
stability properties of this new system and its appli-
cations to energy wave extractors will be investigated.
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• Time-domain analyis of both these infinite-dimensional
systems, together with a careful study of the asymp-
totic behaviour as a function of the physical parame-
ters, following Vergara-Hermosilla et al. (2020).
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