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Abstract: We propose a Kalman filter-based observer utilizing noisy remote compartment
insulin measurements to estimate plasma insulin concentration. The design considers plant-
model mismatch, sensor noise, as well as both uniform sampling intervals, mimicking infrequent
continuous measurements, and non-uniform sampling intervals, mimicking infrequent on-
demand measurements. The performance of the observer is demonstrated on ten in-silico
subjects from the UVA/Padova simulator using real-life scenarios, including variability in sensor
noise and variability in insulin pharmacokinetics. The proposed observer provides insight into
the future use of insulin measurements for diabetes management.
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1. INTRODUCTION

Type 1 diabetes (T1D) is a disease that prevents the body
from properly producing insulin and requires tracking and
control of blood glucose (BG) levels. For effective BG
management, both those with diabetes and their families
must learn to calculate the correct insulin dosage, as well
as understand the effect of insulin dosage with regards to
varying meal contents, physical activity, illness, and stress,
in addition to other aspects related to their treatment.
While there have been significant improvements in mea-
surement techniques for BG monitoring, limited research
has focused on advancing insulin measurement devices.
Conventional methods of BG monitoring now require only
a small amount of blood acquired through either finger
pricking, called self-monitoring blood glucose (SMBG),
or a thin sensor inserted subcutaneously, providing con-
tinuous monitoring and aptly called continuous glucose
monitoring (CGM) (Villena Gonzales et al., 2019). Insulin
sensors would provide additional information that could
be used as feedback for insulin infusion systems, insulin
pumps, and even for enhanced control of automatic insulin
delivery systems, such as an artificial pancreas (AP).

Currently, insulin measurements can be obtained within
a laboratory using whole blood, serum, or plasma mea-
surements via immunoassays that cannot be used in am-
bulatory settings (Vargas et al., 2019). However, recent
technological advances in insulin sensor capability may
soon allow for on-demand insulin information, similar to
SMBG meters (Wang and Zhang, 2001; Bisker et al., 2015;
Vargas et al., 2019; Kartal et al., 2019). These sensors
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have the potential to lead to point-of-care (POC) mea-
surements, advancing personalized diabetes management
with estimates of insulin (Wang and Zhang, 2001; Vargas
et al., 2019).

This advancement may lead to exciting new opportunities
for glycemic control, but first, one must consider sensor
limitations, as well as how this new insulin information
can be used. Similar to SMBG meters, errors can arise
from insulin measurements, including both sensor system
errors and user errors (Staal et al., 2018). Even with
the technological advances in sensor design, all sensors
are still prone to inherent and systemic noise, as well as
biofouling, bias, and latencies. These challenges must be
balanced with models that are robust to erroneous insulin
measurements if they are to be used to further improve
diabetes management.

While continuous real-time sampling is the paramount ob-
jective, initial insulin sensors are primed for infrequent on-
demand measurements. On-demand insulin measurements
will allow the user to monitor their insulin at discrete
times throughout the day, as a corollary to SMBG, most
likely two to three times per day (Gonder-Frederick et al.,
1988), though recommended four or more times per day
(Rewers et al., 2014). Looking forward to insulin sensor
commercialization, how frequently measurements should
be obtained is an important consideration. While every
half hour or even every hour may not yet be feasible,
measurements every two to three hours may still provide
the user with usable insulin updates, in addition to being
used for closed-loop control.

A current limitation of AP systems is the estimation of
active insulin concentrations. Knowing insulin informa-
tion may allow for faster automated insulin system re-
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sponses; the pending effect of insulin on glucose may be
detected earlier under different physiological conditions,
such as changing insulin sensitivity. Many AP designs do
not integrate insulin measurements, but instead approxi-
mate insulin-on-board (IOB) to correct for any remaining
insulin from the last injection or infusion (Rodriguez-
Saldana, 2019; Gondhalekar et al., 2018). Since insulin
cannot yet be measured in real-time, measurements of
interstitial glucose concentration via glucose-insulin mod-
els are used to estimate insulin concentration (Hajizadeh
et al., 2019, 2017; de Pereda et al., 2016; Haidar et al.,
2013; Dalla Man et al., 2007; Hovorka et al., 2004). For
example, de Pereda et al. (2016) and Hajizadeh et al.
(2017, 2019) demonstrate the performance of their respec-
tive Extended Kalman Filter algorithms in simulation. To
account for the high intra- and inter-subject variability in
insulin pharmacokinetic (PK) dynamics, both utilized per-
sonalized insulin PK models. While each approach demon-
strates plasma insulin concentration estimation, neither
uses insulin-based measurements.

This paper proposes a Kalman Filter (KF) that utilizes
noisy remote compartment insulin measurements to es-
timate plasma insulin concentration. The KF design is
evaluated by its utility for three primary challenges: plant-
model mismatch, insulin PK variability, and infrequent
sensor measurements for both uniform and nonuniform
measurement intervals. The performance of the observer
is demonstrated on ten in-silico subjects from the United
States Food and Drug Administration-accepted Univer-
sity of Virginia (UVA)/Padova T1D Metabolic Simulator
(Dalla Man et al., 2014) using real-life use-case scenarios,
including variability in sensor noise and insulin PK. The
ability to monitor and integrate insulin information will
allow users to make more informed decisions regarding
insulin dosing, thus helping to prevent hypoglycemia and
improving diabetes management.

The remainder of this paper is organized as follows: The in-
sulin PK model is introduced in Section 2. In Section 3, the
KF insulin observer is developed. For completeness, details
of the process and measurement noise covariance tuning,
as well as sample time requirements are addressed. The in-
silico implementation of the KF within the UVA/Padova
T1D Metabolic Simulator is discussed in Section 4. Con-
clusions and future work are presented in Section 5.

2. INSULIN PHARMACOKINETIC MODELS

The patient-specific insulin PK model proposed in Schi-
avon et al. (2017), which models the subcutaneous (SC)
absorption of fast-acting insulin, was used as a basis for
the presented model. First, the model includes a subject-
specific delay τ (min) in the appearance of insulin by
injection u (pmol/kg per min). The insulin injection ap-
pears in the first SC compartment ISC1 (pmol/kg), which
represents insulin in a non-monomeric state. From the first
compartment, insulin is partially absorbed into plasma
IP (pmol/kg) with a nonmonomeric insulin absorption
rate constant ka1 (min−1), while the remaining insulin
diffuses with a nonmonomeric insulin dissociation rate
constant kd (min−1) into a second compartment ISC2

(pmol/kg), representing insulin in the monomeric state.
Then, insulin is finally absorbed into plasma with a

Fig. 1. Model of insulin PK with inputs of administered
insulin and measurements of IRC . Figure adapted
from Schiavon et al. (2017).

monomeric insulin absorption rate constant ka2 (min−1).
Model parameters of plasma insulin kinetics are the vol-
ume of insulin distribution Vi (L/kg) and the fractional
clearance rate ke (min−1). The person-specific parameters
are reported in Kovatchev et al. (2010) and Schiavon et al.
(2017). The conversion factor used between conventional
and SI units for human insulin is 1 IU = 6000 pmol.

Using this model, the insulin concentration in the SC and
plasma compartments are defined as:

İSC1 = −(ka1 + kd)ISC1 + u(t− τ) (1)
İSC2 = −ka2ISC2 + kdISC1 (2)

İP = −keIP + ka1ISC1 + ka2ISC2 (3)

In an effort to further examine insulin diffusion concen-
trations, the model was expanded to include insulin in a
remote compartment IRC , which represents the delayed
appearance of insulin from the plasma compartment and
acts as the measured state (y(t) = IRC). The model for the
IRC compartment is reported in Dalla Man et al. (2007):

İRC = −p2UIRC + p2U (
IP
V i

− Ib) (4)

where p2U is the rate constant of insulin action on the pe-
ripheral glucose utilization and Ib is basal plasma insulin.
A pictorial rendition of the insulin PK model is presented
in Fig. 1. Since the Simulator contains certain features that
are not present within the PK model, specifically, hepatic
insulin, inherent plant-model mismatch is present within
the model. It is important to note that this PK model
is a preliminary proof-of-concept and may require further
refinement; clinical experimentation is needed before the
model can be validated.

3. INSULIN OBSERVER DESIGN AND TUNING

The aim of this section is to describe the design of the KF
insulin observer. The section begins with the derivation
of the KF insulin observer to estimate IP from noisy IRC
measurements. Considerations for covariance tuning and
sampling time are then discussed.

3.1 Kalman Filter Design

With a model in place to approximate the insulin PK, an
observer to estimate the various insulin states was devel-
oped. A KF was chosen as the observer because it supports
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a real-time model for making estimates of the current
insulin state and is equipped to handle state estimates for
measurements sampled at various frequencies.

A KF insulin observer was developed by augmenting
Eqns. (1)-(3) with Eqn. (4). The subsequent addition of Ib
as a state for parameter estimation results in the following
continuous-time model:

İSC1

İSC2

İP
İRC
İb

 =


−(ka1 + kd)ISC1 + u(t− τ)

kdISC1 − ka2ISC2

ka1ISC1 + ka2ISC2 − keIP
−p2UIRC + p2U ( IPV i − Ib)

0

 (5)

Because patient-specific information is not available for the
input delay τ , the median value of 7.6 minutes was used
for all in-silico subject scenarios (Schiavon et al., 2017).

Discretizing Eqn. (5) via forward Euler integration, we
obtain the associated discrete-time state-space equations:

xk+1 = Adxk + Bduk−∆tτ + wk (6)
yk = Cdxk + Dduk−∆tτ + vk (7)

where x is the state vector of the insulin concentration
in each compartment, Ad is the discrete-time PK model
matrix,Bd is the discrete-time input matrix for the control
input of SC insulin administration u, and Cd is the
discrete-time measurement matrix of the measured state
y, in this case IRC concentration. Covariances v and w
are discrete zero-mean white noise sources:

wk ∼ N(0,Q) (8)
vk ∼ N(0,R) (9)

where Q is the process noise covariance acting on ISC1,
and R is the measurement noise covariance acting on IRC .
The expanded form of the discrete-time state-space model
is presented in Eqns. (10) and (11), where ∆t is a fixed time
step of five minutes, comparable to the insulin adminis-
tration input rate, as well as the standard time interval
of CGM measurements, were the observer to integrate
glucose states in future research. The time step should
not be confused with the measurement sampling intervals
Ts, which will be discussed in more detail throughout the
remainder of the paper.

3.2 Kalman Filter Prediction and Correction

Once the discretized model has been defined, the KF
prediction step can be carried out using the standard KF
equations (Simon, 2006):

x̂k+1|k = Adx̂k|k + Bduk−∆tτ + 0 (12)

Pk+1|k = AdPk|kA
T
d + Q (13)

where x̂k|k represents the propagated state at the current
time step, x̂k+1|k is the propagated and updated state from
the previous time step, and uk is the most recent insulin
injection. The third term in the estimated state equation,
Eqn. (6), conveys the assumed zero noise associated with
the input. The state covariance matrix P is propagated
using the PK model matrix and Q.

The measurement, or correction, step for the state esti-
mate and covariance is then performed using the standard
KF equations:

Kk+1 = Pk+1|kC
T
d [CdPk+1|kC

T
d + R]−1 (14)

x̂k+1|k+1 = x̂k+1|k + Kk+1[yk+1 −Cdx̂k+1|k] (15)

Pk+1|k+1 = [I−Kk+1Cd]Pk+1|k (16)

where K is the optimal KF gain, which minimizes the
residual error. While KF updates are only performed at
prescribed measurement sample intervals Ts to compare
the accuracy of the estimates to the actual IRC concentra-
tion values, KF predictions are performed for each time
step ∆t, i.e., every five minutes.

3.3 Process and Measurement Noise Covariance Tuning

A key challenge when designing a KF is correctly charac-
terizing the uncertainties in both the measurements and
state dynamics. An incorrect choice of noise characteristics
can lead to deterioration in the performance of the state
estimator, and potentially result in the estimator diverging
from the model and measurements (Bavdekar et al., 2011).
Typically, it can be assumed that measurement noise co-
varianceR is known or can be obtained from measurement
data. As the noise level of the insulin sensors is yet to
be determined, we investigate the effect of noise on the
KF design and measurement sampling intervals by varying
added sensor noise, while fixing the tuning for both Q and
R (Eqns. (17) and (18)) across all subjects and scenarios.
The KF measurement noise covariance R standard devi-
ation was defined as 6.0 pmol/L in order to observe how
unknown noise estimates also affect the performance of the
observer (Vargas et al., 2019). Additionally, to reproduce
real-life scenarios in which PK models may deviate from
actual insulin dynamics, measurements were given more
tractable weighting, while still maintaining a balance with
the insulin PK model.

Q =


202 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


5×5

(17)

R = 62 (18)

3.4 Sample Time Requirements

To create more realistic applications of the insulin ob-
server, both infrequent uniform and nonuniform sampling
intervals Ts were addressed. After a SC injection, insulin
levels peak after approximately 90 minutes and then slowly
dissipates in four to six hours (Jansson et al., 1993; Raja-
mand et al., 2005). Thus, we invest two use-cases to mon-
itor insulin during elevated concentrations. First, uniform
sampling at prescribed measurement intervals were used
to mimic infrequent continuous measurements, similar to
CGM, at measurement intervals (Ts) of 5, 30, 60, 120, and
180 minutes. Considering the older BG meter models, the
first insulin sensors will most likely be used for on-demand
insulin measurement at the user’s discretion. Subsequently,
non-uniform sampling intervals were used to mimic SMBG
meters, in which infrequent on-demand measurements are
taken throughout the day.
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ISC1

ISC2

IP
IRC
Ib


︸ ︷︷ ︸

xk+1

=


1 − ∆t(ka1 + kd) 0 0 0 0

∆tkd 1 − ∆tka2 0 0 0
∆tka1 ∆tka2 1 − ∆tke 0 0

0 0 ∆tp2U
V i 1 − ∆tp2U −∆tp2U

0 0 0 0 1


︸ ︷︷ ︸

Ad


ISC1

ISC2

IP
IRC
Ib


︸ ︷︷ ︸

xk

+


∆t
0
0
0
0


︸ ︷︷ ︸

Bd

uk−∆tτ + wk (10)

[IRC ]︸ ︷︷ ︸
yk

= [0 0 0 1 0]︸ ︷︷ ︸
Cd


ISC1

ISC2

IP
IRC
Ib


︸ ︷︷ ︸

xk

+ [0]︸︷︷︸
Dd

uk−∆tτ + vk (11)

4. INSULIN OBSERVER IMPLEMENTATION

The KF was evaluated by its utility for three primary
challenges: 1) model approximation; 2) variability in in-
sulin PK; and 3) infrequent sensor measurements. In the
first challenge, plant-model mismatch and sensor noise
were addressed within the context of the observer. Second,
variations in subject PK, such as an individual’s net insulin
elimination and utilization were analyzed to observe the
performance of the KF. The third challenge considers non-
uniform sampling intervals.

The performance of the observer was demonstrated on ten
in-silico subjects from the UVA/Padova T1D Metabolic
Simulator (Dalla Man et al., 2014) using the three real-life
scenario challenges. Every scenario was tested on the ten
in-silico subjects for multiple repetitions, in which a single
random noise generator was used per patient to ensure in-
dependence across subjects, as well as reproducibility. The
protocol consisted of an eight-hour simulation with one 75-
g carbohydrate meal and a person-specific bolus based on
their carb-ratio given 65 minutes into the simulation. The
simulation scenario was chosen to observe the performance
of the KF during both fasting and postprandial states.
The KF was initialized with known individualized values
(i.e., x0 = [ISC1,0 ISC2,0 IbVi 0 Ib]) that were sensitive to
noise in order to also observe the convergence of the KF
with incorrect initial states. The performance of the in-
sulin observer estimates was evaluated by computing root-
mean-square error (RMSE) to determine the standard
deviation of the residuals, or prediction errors, from the IP
concentration obtained from the UVA/Padova Simulator.

4.1 Nominal Performance of Insulin Observer Under
Variations in Sample Time and Noise

The first challenge considers plant-model mismatch, com-
paring a person-specific individualized model across uni-
form sampling times and noise standard deviations.
Twenty-five cases, with 50 repetitions per subject, were
run in order to evaluate measurement samples of 5-, 30-,
60-, 120-, and 180-minute intervals, as well as the open-
loop case with no measurements, across noise standard
deviations of 1, 3, 6, 9, 12, 16, and 20 pmol/L.

The median RMSE values are shown in Fig. 2 and demon-
strate the expected improved performance of the insulin
observer with more frequent uniform sampling intervals
and reduced sensor noise. From the RMSE values, it was

Fig. 2. In-silico KF median RMSE (pmol/L) as a function
of measurement sampling time and sensor noise. All
sampling times begin at the start of the simulation.

also observed that the insulin observer’s sensitivity to
noise decreased as measurement intervals increased (i.e.,
as measurement frequency decreases from 5- to 180-minute
intervals). Noise sensitivity was calculated as

S =
RMSEN(0,1) −RMSEN(0,20)

RMSEN(0,1)
× 100%, (19)

where RMSEN(0,1) and RMSEN(0,20) are the RMSE val-
ues of measurement sampling interval Ts for noise stan-
dard deviations of 1 and 20 pmol/L, respectively. The
individualized model’s noise sensitivity falls from 241.05%,
152.31%, 49.59%, 13.43%, to 1.71% for measurement inter-
vals of 5, 30, 60, 120, and 180 minutes, respectively. This
result seems to infer that, as noise increases, there is a
greater cost for more frequent sampling due to sensitivity
to noise. However, if the true sensor noise level was known,
R could be more finely tuned for improved performance.
The open-loop RMSE value was found to be 47.36 pmol/L,
which reasonably indicates no measurements result in de-
graded performance of the KF.

4.2 Variability in Insulin Pharmacokinetics

The second challenge considers enforced changes in insulin
PK variability. Within the UVA/Padova, fifty repetitions
per subject were run and three parameters, m1, m2, and
m4 were modified in the insulin subsystem:
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Fig. 3. Median and IQR ranges for enforced PK modifica-
tions utilizing 30-minute measurement intervals at a
noise standard deviation of 6 pmol/L; IP represented
by solid lines and ÎP by dotted lines. Top: Nomimal
(i.e. non-modified) and open-loop.Middle: Increased
net elimination. Bottom: Reduced net utilization.

İP = −(m2 +m4)IP +m1IL + ka1ISC1 + ka2ISC2 (20)

where IL is hepatic insulin concentration; m1, m2, and
m4 are the insulin kinetic rate parameters (Kovatchev
et al., 2010; Dalla Man et al., 2014). Two insulin PK
modifications were made: 1) increased net elimination via
decreasing m1 by 25% and increasing (m2 +m4) by 150%;
and 2) reduced net utilization via increasing m1 by 25%
and decreasing (m2 + m4) by 25%. Insulin elimination
occurs when the liver and kidneys metabolize insulin so
that it is no longer functional, while insulin utilization
occurs when cells and tissues use insulin to absorb glucose.
The asymmetric kinetic rate parameter modifications were
chosen to obtain more symmetric results in terms of fasting
plasma insulin rates (e.g., reduce/increase equilibrium by
±50 pmol/L). By changing these parameters within the
simulator, we are able to observe how the KF performs
when metabolic parameters are incorrectly defined. Ad-
ditionally, it provides an opportunity to see how the KF
performs in terms of estimating insulin peak dynamics.
Five cases were run to evaluate time samples of 5-, 30-,
60-, 120-, and 180-minute intervals for a noise standard
deviation of 6.0 pmol/L.

The purpose of this real-life scenario was to observe not
only the performance of the insulin estimator with un-
known or changing PK dynamics, but also the change in
insulin action peak time during these cases. In Fig. 3, it is
observed that increased net elimination (middle) results in
faster peak times, with a median peak time at 93 minutes
into the simulation (28 minutes after the meal), while
reduced net utilization (bottom) results in slower peak
times, with a median peak time at 111 minutes (46 minutes
post meal); the median nominal peak time occurred at 100
minutes (35 minutes post meal). The results demonstrate
a clear trend in relative peak times in regards to increased
insulin elimination, with faster peak times at lower concen-
trations, versus reduced utilization, with slower peak times
at higher concentrations. From these dynamics, it is also
observed that the KF filter overestimates increased net
elimination and underestimates reduced net utilization.

Fig. 4. In-silico KF median RMSE (pmol/L) as a function
of measurement sampling time, including no measure-
ments in open-loop, for enforced PK variations.

Underestimating insulin concentrations is far more danger-
ous when attempting to estimate someone’s current insulin
concentration – a user may think they have less insulin on
board then is the case. As such, insulin measurements to
update the model become much more important.

The median RMSE values are reported in Fig. 4, where
again a clear trend in increasing median and interquartile
(IQR) RMSE of 20.17 (6.84) to 39.07 (13.04) pmol/L and
of 26.96 (8.40) to 84.29 (29.54) pmol/L is observed for
increasing measurement sampling intervals from 5 to 180
minutes for increased net elimination and reduced net
utilization, respectively. Increased net elimination yields
improved KF performance compared to reduced net uti-
lization. This result may be due to the tighter concentra-
tion range for increased elimination (note the change in the
y-axis in Fig. 3); more constrained measurement variations
allow for improved KF performance than measurements
taken with a higher variance. Additionally, while the nom-
inal open-loop performance yielded an RMSE of 47.36
pmol/L, the two modified PK scenarios yielded open-loop
RMSE of 50.86 pmol/L and 111.3 pmol/L, respectively.

4.3 Infrequent On-Demand Measurements

In an effort to simulate a realistic scenario using a potential
typical user’s relaxed use of the recommended SMBG mea-
surement times (Rewers et al., 2014), the third challenge
utilizes insulin measurements provided only three times
over the eight-hour simulation period with a noise stan-
dard deviation of 6.0 pmol/L. The on-demand measure-
ment times were randomly initiated, but set in time bands,
indicated in Fig. 5, to reproduce when a user may likely
take an insulin measurement: 1) prior to the meal, within
the first 65 minutes of the simulation; 2) within the next
two to three hours after the meal, from 66 to 240 minutes;
and 3) at any point after the second measurement, but
still within the eight-hour period, from 241 to 480 minutes
(e.g. this measurement may have been during the night,
for instance, if the meal provided is dinner). The mea-
surements were randomly generated to occur within their
banded periods and this challenge included 400 repetitions
per subject.
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Fig. 5. Median and IQR ranges for nonuniform sampling
with a noise standard deviation of 6 pmol/L. IP
concentration is presented in grey; ÎP concentration
is presented in red; ÎP for two sample cases are repre-
sented by dashed lines with measurements indicated
by a black ‘O’.

Figure 5 presents the median and IQR ranges of the
actual and estimated IP concentration, as well as two
sample cases for the on-demand measurement challenge.
It was observed that the time at which the measurements
occur are crucial to detecting changes in insulin PK
dynamics, particularly insulin peak times. For example,
a measurement taken shortly after the meal in Sample 1
provides the observer with more information to better
predict the insulin peak. In Sample 2, however, the second
measurement was taken almost two and a half hours after
the meal, and the interesting dynamics of the insulin peak
were likely underestimated.

The median (IQR) RMSE value was 38.47 (10.16) pmol/L,
yielding an 18.77% improvement in KF performance com-
pared to no measurements in open-loop (see Fig. 2). Uni-
form and nonuniform performance cannot be equitably
compared due to the measurement sampling procedure for
each scenario. For the uniform scenarios, all measurements
were initialized to begin at the start of the simulation
(t = 0), and each was then uniformly sampled at the
prescribed measurement interval, meaning all 5-minute
measurement samples occurred at exactly the same points
in time, and equivalently for measurement intervals of 30
to 180 minutes. Consequently, some of the more chal-
lenging insulin dynamics were missed, particularly as the
intervals between measurements increased. Additionally,
up until the first measurement, the KF relied solely on the
model for the prediction, and no noise was contributed
to the scenario before that first measurement. Moreover,
noise was only contributed during the defined measure-
ment time. Conversely, for the nonuniform scenario, the
three measurements could be taken at any point within the
eight-hour period, and thus, noise was continuously con-
tributed to the model estimates when determining RMSE
for the 4000 individual nonuniform cases.

5. CONCLUSIONS

The proposed observer provides insight into the future use
of insulin monitoring for diabetes management. Overall,

more frequent uniform sampling and reduced sensor noise
resulted in improved performance of the insulin observer.
However, as noise increased, there appeared to be a greater
cost for more frequent sampling due to noise sensitivity.
This result may infer that that less frequent sampling
is needed, when in reality, the true sensor noise level is
still unknown, and thus Q and R may need finer tuning.
Moreover, as the PK model is refined and verified, the KF
performance will further improve. Variability in insulin PK
was also detected when examining trends in insulin peak
times. Finally, it was found that the observer produced
reliable estimates even for very infrequent on-demand
insulin measurements.

The presented uniform sampling scenarios were initialized
to began at the start of the simulation, and then only
procured a measurement at the prescribed sample interval.
Future work will integrate randomized sampling times
within the uniform sampling intervals to better compare
the uniform and nonuniform scenarios. Additionally, fu-
ture extensions will evaluate the inclusion of capillary in-
sulin within the PK model, which may ultimately provide
improved approximations of estimated insulin concentra-
tions.

While no current recommendations exist as to how of-
ten insulin measurements should occur, the proposed in-
sulin observer demonstrates that even three measurements
within an eight-hour period provide useful insulin infor-
mation. Ultimately, monitoring insulin information and
integrating estimated concentrations within feedback sys-
tems will allow those with diabetes to make more informed
decisions regarding insulin dosing, helping to prevent hy-
poglycemic events and improving diabetes management.
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