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Abstract: The generation of time dependent paths is crucial for autonomous driving. While
relatively simple models are sufficient for normal driving situations, more complex models are
required the closer the trajectory is planned towards the handling limits. This paper considers
a near time optimal trajectory generation for combined longitudinal and lateral dynamics for
an over actuated vehicle. A nonlinear model predictive controller which accounts for actuator
constraints is used to generate these trajectories. The predictive model is a reduced dynamic
double track model with three degrees of freedom. The resulting trajectories show the ability of
following a reference path with the use of all available actuators up to the handling limits.
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1. INTRODUCTION

Nowadays, vehicles are equipped with many active safety
systems to improve driving safety (Heißing (2013)). Some
of these systems need additional actuators which lead to
over-actuated vehicles. Autonomous driving can be a fu-
ture step in developing these active safety systems. There-
fore, it is fundamental to plan time dependent paths called
trajectories as mentioned in Werling (2011). This paper
considers a near time optimal trajectory generation for
over actuated vehicles. The near time optimal trajectories
imply that the vehicle is operated up to the dynamic limits.
The resulting trajectories can be examined to optimally
use the over actuation for an obstacle avoidance. Further-
more, a system for automated racing or a racing trainer
can be realized based on the resulting trajectories.

Gutjahr et al. (2016) presents a trajectory generation al-
gorithm using a linear time-varying model predictive con-
troller. The lateral dynamics are considered by introducing
additional constraints.

Attia et al. (2014) considers a nonlinear model predictive
controller for the lateral dynamics of the vehicle which is
based on a nonlinear bicycle model. Inputs are the front-
wheel-steering as well as the braking and driving torque.
The longitudinal dynamics, which is controlled using a
Lyapunov approach, is combined with the lateral dynamics
via a geometric and velocity reference.

Katriniok and Abel (2011) and Katriniok et al. (2013) use
a nonlinear bicycle model combined with a nonlinear tire
model. Inputs are either only the front-wheel-steering or
an additional braking torque while actuator dynamics are
considered. The trajectory generation is performed using
a linear time-varying model predictive controller.

Falcone et al. (2007) considers a double track model as-
suming constant vertical tire forces combined with a non-
linear tire model. The front-wheel-steering and a braking
torque are assumed as control inputs. The trajectories
are generated using a linear time-varying model predictive
controller. It aims to keep the distance to a reference path
small and follow a velocity reference.

Gottmann et al. (2018) compares different models for a
racing line generation. The models reach from lumped
mass model with acceleration constraints to a nonlinear
bicycle model. The benefits of having a rear-wheel-steering
are pointed out.

The novelty of this paper is a model predictive trajectory
planner for an over actuated vehicle to generate near time
optimal trajectories up to its handling limits. The trajec-
tories are generated using a validated nonlinear dynamic
double track vehicle model in a nonlinear model predictive
control (NMPC) framework. To the best knowledge of
the authors, such a detailed model has not been used
to generate a near time optimal trajectory. This paper,
however, does not consider the controller to track the
reference trajectory.

The remainder of this paper is structured as follows.
Section 2 presents the considered model and shows some
adaptions. In Section 3, the trajectory generation using
an NMPC is introduced and the optimization problem is
presented. Simulation results are pointed out in Section 4
and a conclusion is given in 5.

2. MODELING

In this section, the nonlinear vehicle model which is used
in the NMPC framework to generate the trajectories is
introduced. Firstly, the pose model in Frenet coordinates is
given, which is based on Gottmann et al. (2018). Secondly,
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Fig. 1. Pose model of a vehicle based on Werling et al.
(2010).

a reduced dynamic model for the vehicle with mainly five
states is introduced. This model is derived and validated in
Henning and Sawodny (2016). Finally, the model is slightly
adapted for the usage in an NMPC.

2.1 Pose Model in Frenet Coordinates

A Frenet frame moves along a differentiable path. For the
vehicle model, this is depicted in Fig. 1 which is based
on Werling et al. (2010). The tangential vector tr and
the normal vector nr form the orthonormal basis of the
Frenet frame at the base point of the path r(s). The
tangential vector has the orientation ψT and s represents
the total distance travelled. The position and orientation
of the vehicle with the frame [V x, V y] can be described
with respect to the Frenet frame with the distance d and
the orientation ψ. This formulation is chosen since the
distance from the vehicle to the path and the orientation
error eψ is explicitly available which can be considered
in the cost function of the optimization problem for the
trajectory generation. The kinematic model of the vehicle
in a Frenet frame is given by Gottmann et al. (2018)

ṡ =
vx

1− κTd
cos(eψ)− vy

1− κTd
sin(eψ)

ḋ = vx sin(eψ) + vy cos(eψ)

ėψ = ψ̇ − κT · ṡ
s(0) = s0, d(0) = d0, eψ(0) = eψ,0

(1)

with the velocity in the x- and y direction vx and vy,
the error between the path and the vehicle given by
eψ = ψ − ψT and the initial conditions. The curvature κT
is given by Burg (2012)

κT =
dψT

ds
. (2)

A further advantage by describing the pose of the vehicle in
a Frenet frame is that the vehicle dynamics are described
in a vehicle fixed coordinate system. The velocities in x-
and y-direction and the yaw rate are calculated by the
dynamic model and then entered in the pose model in (1).

2.2 Vehicles Dynamics

The vehicle dynamics are described in the body fixed
coordinate system V depicted in Fig. 2. The superscript
V indicating this coordinate system is mostly neglected
in the following model. The actuators of the considered
vehicle are the front-wheel-steering with the steering angle
δf , the rear-wheel-steering δr, the driving torque MD and
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Fig. 2. Coordinate systems of a double track vehicle model.

the braking torque MB which are applied on each wheel
equally as well as the wheel individual brakes MB,add.
The states and the inputs of the vehicle considering the
dynamics and the pose model are given by

x = [s, d, eψ, ψ̇, vx, vy, ax, ay, δf , δr,MD]T ,x ∈ R11,

u = [δ̇V, δ̇H, ṀD,MB,MB,add,i]
T ,u ∈ R8, i = 1, 2, 3, 4.

(3)
The first three states represent the pose model in Section
2.1. The next five states [ψ̇, vx, vy, ax, ay] are used to de-
scribe the vehicle dynamics. The dynamics of the steering
angles and the driving torque are approximated with the
last three states which are the integral from the first three
inputs. This model of the vehicle is over actuated since it
has more inputs than degrees of freedom.

The derivation of the differential equation for the five
states representing the vehicle dynamics is presented in
Henning and Sawodny (2016). For the velocity and the
yaw rate, these are given by

v̇x = ψ̇ · vy +
V Fx,Chassis

m

v̇y = −ψ̇ · vx +
V Fy,Chassis

m

ψ̈ =
1

Jz

 4∑
i=1

V px,0,i
V py,0,i

0

×
V Fx,i
V Fy,i

0


vx(0) = vx,0, vy(0) = vy,0, ψ̇(0) = ψ̇0,

(4)

with the mass of the vehicle m and the vector V p0,i
from the frame V to the tire i as depicted in Fig. 2.
The forces V Fx,i and V Fy,i are the transformed forces
from the tire coordinate system Ti into the body fixed
coordinate system V generated by the tire i in x- and y
direction. The forces with the additional subscript Chassis
include furthermore the drag forces. The initial conditions
are labeled with the subscript 0. The model requires the
accelerations in x- and y-direction for the calculation of
the vertical tire force, which are approximated by

ȧx =
1

Tax

(
Fx,Chassis

m
− ax

)
ȧy =

1

Tay

(
Fy,Chassis

m
− ay

)
ax(0) = ax,0, ay(0) = ay,0,

(5)
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Fig. 3. The approximated slip κi,approx and the slip calcu-
lated by directly inverting the simplified MFT. The
different representations of this function have different
vertical tire forces as a basis.

with the time constants Ta according to Henning and
Sawodny (2016).

2.3 Adaption for the Usage in the NMPC Framework

Some equations for the calculation of (4) contain disconti-
nuities. This behavior is undesirable for the NMPC since
the chosen optimizer requires a valid gradient of the system
dynamics to find the optimal solution. Therefore, these
equations are adapted for this usage.

One equation concerns the calculation of the generated
force by the tires. Using an approximated Magic Formula
Tire (MFT) model as presented in Orend (2005) and
Pacejka (2012), the tire force in x- and y-direction resolved
in the tire frame is given by

TiFx,i = kµx
Fmax,i sin

(
C arctan

(
B

µ
sges,i

))
sx
sges,i

TiFy,i = −Fmax,i sin

(
C arctan

(
B

µ
sges,i

))
sy
sges,i

(6)

with the friction coefficient µ, the tire parameters C, B
and kµx

, the maximal force of the tire Fmax depending
on the vertical tire force and the scaled slip in x-direction
sx = kκκ and in y-direction sy = α according to Henning
and Sawodny (2016). The calculation of the slip angle α is
given by Pacejka (2006, 2012). The combined slip results
in

sges,i =
√
s2x,i + s2y,i + sadd, (7)

with a small added slip sadd to avoid singularities (Henning
and Sawodny (2016)). Since the wheel speeds are not
modeled as an explicit state, the slip cannot directly be
calculated. In Henning and Sawodny (2016), a workaround
using the inverse of (6) is suggested. This results in

κi =
µ

kκ ·B
tan

(
1

C
arcsin

(
Fges,i

Fmax,i

))
1

Fges,i

Fx,i
kµx

(8)

with

Fges,i =

√(
Fx,i
kµx

)2

+ F 2
y,i. (9)

The required force in x-direction is approximated using
the torque at each wheel in combination with the radius
as suggested in Henning and Sawodny (2016).

The function calculating the slip in (8) is saturated as
depicted in Fig. 3 and therefore shows a discontinuity. To
avoid this, the function is approximated by

κi,approx =
2

π
arctan

(
µ ·
(
a1ξi + a3ξ

3
i + a5ξ

5
i + a7ξ

7
i

))
,

(10)

with ξi =
Fges,i

Fmax,i
according to Gottmann et al. (2018). The

parameters aj j = 1, 3, 5, 7 are identified by minimizing
the squared error between (8) and (10). Fig. 3 shows the
direct inversion and the approximated function dependent
on different vertical tire forces.

Furthermore, the vertical tire forces needed to calculate
the horizontal tire forces in (6) can become negative
under certain situations. Since this is not possible in real
world, the function is saturated in Henning and Sawodny
(2016). To avoid this discontinuity, the vertical tire force
is approximated by

Fz,blend,i =

((
1

π
arctan(Fz,i) +

1

2

)
· Fz,i + 0.35

)
.

(11)
For positive values of Fz, the function is linear apart
from close to zero. For negative values, the function is
continuously decreasing and not reaching zero.

3. TRAJECTORY GENERATION

In this section, the trajectory generation via the nonlinear
model predictive control is presented. The aim is to gener-
ate a near time optimal trajectory considering constraints
of the system. Firstly, the general idea is introduced.
Secondly, the inputs and states are scaled for the usage
within the NMPC framework. Finally, the optimization
problem is shown.

3.1 Background

A MPC solves an open-loop optimal control problem with
a finite horizon in every sample time and applies the first
control to the system. One advantage of this method is
that constraints on inputs and states can be considered
(Allgöwer et al. (1999); Mayne et al. (2000)). For the
purpose of generating a trajectory, the simulated state is
used as an initial condition instead of the measured state as
presented in Van den Broeck et al. (2009) and successfully
applied in industry in Richter et al. (2014) and Schaper
et al. (2013).

Fig. 4 shows the used structure for generating the trajec-
tories using an NMPC. The NMPC uses the same model
for the optimization and for the prediction of the states.
This has the advantage that the full state is available
without any disturbances. The optimal input trajectory
can be used as an feedforward part for the system and
the output trajectory can be used with a subsequent con-
troller, as suggested in Gottmann et al. (2017), to regard
for disturbances. Since this paper deals with generating
the trajectory, the controller is not considered here.

3.2 Scaling of Inputs and States

The maximum values of the states and inputs vary greatly
among each other. For a better numerical conditioning, the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15837



ModelNMPC Controller System
w

xM

uM yM y

- -

Model Predictive Trajectory Generation

Fig. 4. Trajectory generation using an NMPC. The NMPC uses the same model for the optimization and the prediction
and therefore has the full state available. Reference values can be the inputs and the outputs of the model.

inputs and states are scaled. This transformation is given
by

ũ = Nu · u u = N−1u · ũ,
x̃ = Nx · x x = N−1x · x̃,

(12)

where the tilde operator indicates the scaled input and
state. The transformation matrix results in

Nx = diag

(
1

xmax,1
,

1

xmax,2
, . . . ,

1

xmax,11

)
,

Nu = diag

(
1

umax,1
,

1

umax,2
, . . . ,

1

umax,8

)
,

(13)

with the maximum values for the states xmax and for the
input umax. Considering the transformation in (12), the
scaled differential equation results in

˙̃x = Nx · f(N−1x · x̃,N−1u · ũ) = f̃(x̃, ũ). (14)

3.3 Optimization Problem

For the generation of a near time optimal trajectory, the
pose model in (1) is considered. If the distance traveled s is
maximized, the time is implicitly minimized and thus near
time optimal trajectories are generated. Since the problem
cannot be solved analytically, a nonlinear optimization
which can consider constraints is used to maximize the
distance traveled. An optimization algorithm usually min-
imizes a cost function Therefore, the maximization of the
scaled distance traveled is reformulated to

−min{−s̃} = max{s̃}. (15)

The optimization problem is given by

min
{x̃k+1,ũk}N−1

k=0

N−1∑
k=0

(
x̃Tk Q̂kx̃k − q1,k · s̃k + ũTkRkũk

)
+ x̃TNQ̂N x̃N − q1,N · s̃N

s.t. x̃k+1 = fk(x̃k, ũk) k = 0, (1), N − 1

x̃0 = x̃I[−1
−1
0

]
≤

 δ̃V,kδ̃H,k
M̃A,k

 ≤ [1
1
1

]
k = 0, (1), N


−1
−1
−1
0
0

 ≤


˙̃
δV,k
˙̃
δH,k
˙̃MA,k

M̃B,k

M̃B,add,k,i

 ≤


1
1
1
1
1

 k = 0, (1), N − 1
i = 1, 2, 3, 4.

(16)
with the initial condition x̃I and the weighting matrices
for the states and the inputs

0 50 100 150

0

1

2

3

x in m

y
in

m

Reference Path Generated Trajectory

Fig. 5. The reference path and the generated trajectory for
the double lane change. The time distance between
two crosses is one second.

Q̂k = Q̂N = diag (0, q2, q3, . . . , q11)

R̂k = Q̂N = diag (r1, r2, r3, . . . , r8) .
(17)

The weighting coefficient q1 is not included in the matrix
Q̂ which penalizes the states quadratically. It weights
the negative scaled distance traveled in a linear way to
maximize s̃. With the coefficients q2 and q3 the distance d
and the orientation error eψ are penalized. The resulting
trajectory greatly depends on these coefficients. The other
coefficients are optimized to achieve a better convergence
time of the optimization problem. The constraints in (16)
consider actuator constraints. For the steering angles and
the driving torque, also the gradient is limited.

The discretization time is chosen to 50 ms and the horizon
length N is 30 which results in a time horizon of the
optimization problem to 1.5 s. The optimization problem
is solved using a multi-stage quadratic and nonlinear
program (MSQNLP) as presented in Sonntag (2014).

4. SIMULATION RESULTS

This section shows the simulation results of the near time
optimal trajectory generation using an NMPC. The test
scenario is a double lane change. Firstly, the resulting
trajectory for the position of the vehicle and for the states
and inputs are shown. Secondly, the weighting coefficients
of the cost function are changed and the affects are
discussed.

4.1 Double Lane Change

The double lane change is a risky driving task as discussed
in Arefnezhad et al. (2018) and therefore used as a refer-
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Fig. 6. Simulation results of the steering angles, the driving
torque, the lateral acceleration, the longitudinal veloc-
ity and the distance from the vehicle to the reference
path.

ence path for this simulation case. Fig. 5 shows the refer-
ence path for the double lane change and the generated
trajectory while the time distance between two crosses is
one second. Fig. 6 shows some states and Fig. 7 shows the
braking torque of this simulation case. Considering the
driving torque, it can be seen that it mostly accelerates
at the limits apart from the transition to the other lane.
This results in a mostly increasing longitudinal velocity vx.
Only when the braking torque MB is acting, the velocity
is reduced. Considering the lateral acceleration ay, the
physical limits of 10 m/s2 are reached while changing the
lane. The steering angle of the rear axis and front axis are
mostly in the same direction which contribute to stabilize
the vehicle. The wheel individual braking torque are used
to increase the yawing moment and therefore to reduce
the error in the orientation. The distance d shows lower
values for changing to the left lane than changing back to
the right lane. Fig. 5 illustrates this behavior. The higher
distance is necessary to reduce the path curvature due to
the increased velocity.

4.2 Variation of the Weighting Coefficients

To show the ability of the trajectory generation using
the NMPC, the weighting coefficients in the cost function
are changed. The simulation labeled with V1 is the one
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Fig. 7. Simulation results for the braking torque and the
individual braking torques.
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Fig. 8. Generated and reference path for the three different
simulation cases. V1 is presented in Section 4.1, V2
uses q2

10 and V3 uses q2
10 and q1

2 .

Table 1. Distance traveled at t = 10 s for the
three simulation cases.

V1 V2 V3

s(t = 10 s) in m 172,3828 208,9751 151,8332

presented in Section 4.1. The second case reduces the
weighing coefficient q2 for the distance d by a factor of
1/10. The third case also reduces the coefficient q2 by 1/10
and further reduces the weighing coefficient q1 by 1/2. Fig.
8 shows the generated path for the three cases and the
reference path. Fig. 9 shows the lateral acceleration and
the distance d over the distance traveled s. Considering V2,
decreasing q2 results in higher deviation from the reference
path and therefore higher distances d. For V3, decreasing
q2 and q1 results in slightly higher deviations from the
path but reduces the lateral accelerations greatly. Also V2
shows lower lateral accelerations since it can further reduce
the path curvature by increasing the distance d.

Table 1 shows the distance traveled at t = 10 s. Consid-
ering the distance traveled at t = 10 s, the case V1 shows
lower values than V2 since the higher weighting of the
distance d results in higher path curvature and therefore
lower velocity vx. The distance traveled is the lowest for
case V3 since the weighting q1 is reduced.
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5. CONCLUSION

In this paper, a nonlinear model predictive controller is
used to generate near time optimal trajectories for an over
actuated vehicle. The pose of the vehicle is modeled in a
Frenet frame. For the vehicle dynamics, a validated non-
linear double track model with three degrees of freedom is
used. Since some equations show discontinuity, adaptions
for the usage withing the NMPC framework are carried
out. To increase the numerical conditioning, the states
and inputs are scaled. The simulation results for a double
lane change show trajectories which follow the reference
path with some deviations. The actuator constraints are
considered and the trajectories are generated up to the
dynamic limits of the vehicle. A variation of the weighting
coefficients show the ability of generating trajectories with
different focus.
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Gutjahr, B., Gröll, L., and Werling, M. (2016). Lateral
vehicle trajectory optimization using constrained linear
time-varying mpc. IEEE Transactions on Intelligent
Transportation Systems, 18(6), 1586–1595.

Heißing, B. (2013). Fahrwerkhandbuch. Grundlagen, Fahr-
dynamik, Komponenten, Systeme, Mechatronik, Per-
spektiven. Springer Vieweg, Wiesbaden.

Henning, K.U. and Sawodny, O. (2016). Vehicle dynamics
modelling and validation for online applications and
controller synthesis. Mechatronics, 39, 113–126.

Katriniok, A. and Abel, D. (2011). Ltv-mpc approach for
lateral vehicle guidance by front steering at the limits
of vehicle dynamics. In 2011 50th IEEE Conference on
Decision and Control and European Control Conference,
6828–6833.

Katriniok, A., Maschuw, J.P., Christen, F., Eckstein, L.,
and Abel, D. (2013). Optimal vehicle dynamics con-
trol for combined longitudinal and lateral autonomous
vehicle guidance. In Control Conference (ECC), 2013
European, 974–979.

Mayne, D.Q., Rawlings, J.B., Rao, C.V., and Scokaert,
P.O. (2000). Constrained model predictive control:
Stability and optimality. Automatica, 36(6), 789–814.

Orend, R. (2005). Steuerung der ebenen fahrzeugbewe-
gung mit optimaler nutzung der kraftschlusspotentiale
aller vier reifen. at–Automatisierungstechnik/Methoden
und Anwendungen der Steuerungs-, Regelungs-und In-
formationstechnik, 53(1/2005), 20–27.

Pacejka, H.B. (2006). Tyre and vehicle dynamics. Elsevier
Butterworth-Heinemann, Amsterdam and Heidelberg
[u.a.].

Pacejka, H.B. (2012). Tire and vehicle dynamics. Elsevier,
Amsterdam and Heidelberg [u.a.].

Richter, M., Arnold, E., Schneider, K., Eberharter, J.K.,
and Sawodny, O. (2014). Model predictive trajectory
planning with fallback-strategy for an active heave com-
pensation system. In 2014 American Control Confer-
ence, 1919–1924. IEEE.

Schaper, U., Arnold, E., Sawodny, O., and Schneider, K.
(2013). Constrained real-time model-predictive refer-
ence trajectory planning for rotary cranes. In 2013
IEEE/ASME International Conference on Advanced In-
telligent Mechatronics, 680–685. IEEE.

Sonntag, M. (2014). Multi-stage quadratic and
nonlinear programming (msqnlp). https://www.isys.
uni-stuttgart.de/lehre/lehrveranstaltungen/
nmopt/msqnlp/index.html. Accessed: 2019-10-29.

Van den Broeck, L., Diehl, M., and Swevers, J. (2009).
Performant design of an input shaping prefilter via
embedded optimization. In 2009 American Control
Conference, 166–171. IEEE.

Werling, M. (2011). Ein neues Konzept für die Trajek-
toriengenerierung und -stabilisierung in zeitkritischen
Verkehrsszenarien. KIT Scientific Publishing, Karl-
sruhe.

Werling, M., Groll, L., and Bretthauer, G. (2010). Invari-
ant trajectory tracking with a full-size autonomous road
vehicle. IEEE Transactions on Robotics, 26(4), 758–765.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15840


