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Abstract: This paper investigates the use of a networked system (e.g., swarm of robots,
smart grid, sensor network) to monitor a time-varying phenomenon of interest in the pres-
ence of communication and computation latency. Recent advances in edge computing have
enabled processing to be spread across the network, hence we investigate the fundamental
communication-computation trade-off, arising when a sensor has to decide whether to transmit
raw data (incurring communication delay) or preprocess them (incurring computational delay)
in order to compute an accurate estimate of the state of the phenomenon of interest. We
propose two key contributions. First, we formalize the notion of processing network. Contrarily
to sensor and communication networks, where the designer is concerned with the design of a
suitable communication policy, in a processing network one can also control when and where the
computation occurs in the network. The second contribution is to provide analytical results on
the optimal preprocessing delay (i.e., the optimal time spent on computations at each sensor) for
the case with a single sensor and multiple homogeneous sensors. Numerical results substantiate
our claims that accounting for computation latencies (both at sensor and estimator side) and
communication delays can largely impact the estimation accuracy.

Keywords: Networked systems, communication latency, processing latency, processing network,
resource allocation, sensor fusion, edge computing, smart sensors.

1. INTRODUCTION

Networked systems are becoming an ubiquitous technology
across many application domains, including city-wide air-
pollution monitoring (Maag et al., 2018), smart power
grids (Pasqualetti et al., 2011), swarms of mobile robots
for target tracking (Li Fan et al., 2009), interconnected
autonomous vehicles and self-driving cars (Shalev-Shwartz
et al., 2017). Progress on communication systems, such
as the development of 5G, carries the promise of further
expanding the reach of these systems by enabling more
effective and larger-scale deployments. At the same time,
recent advances on embedded computing, from embedded
GPU-CPU systems to specialized hardware (Suleiman et al.,
2018), are now providing unprecedented opportunities for
edge-computing, where sensor data are processed locally at
the sensor to minimize the communication burden.

The availability of powerful embedded computers creates a
nontrivial communication-computation trade-off : is it best
to transmit raw sensor data and incur larger communication
and data fusion delays at a central station, or to perform
more preprocessing at the sensors and transmit more refined
(less noisy and more compressed) estimates? Fig. 1 provides
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and under the initiative “Departments of Excellence” (Law 232/2016).

Fig. 1. Example of processing network : smart sensors (in
blue and black) collect, process, and communicate
data to track the state of a vehicle (in red) in the
presence of communication and computation latency.

an example of this trade-off: the figure depicts a network of
smart sensors (in black and blue) observing and tracking
the state of a moving vehicle (in red) and transmitting data
to a central fusion station (the computer at the bottom of
the figure), which is in charge of monitoring the state of
the red truck. The smart sensors may have heterogeneous
computational resources: for instance, the large drone (in
black) might have a powerful onboard GPU-CPU system,
while other smart sensors (in blue, e.g., smaller drones,
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mobile phones) might have limited computation. Therefore,
some sensors might prefer sending raw data and incur larger
delays for transmission, while some other sensors might
prefer preprocessing the data at the edge. These choices
will impact the quality of the red vehicle estimate: larger
computation and communication delays will lead to less
accurate estimates, hindering the tracking task.

In this paper we investigate the communication-computation
trade-off that arises in a networked system responsible for
estimating the state of a time-varying phenomenon of inter-
est in the presence of computational and communication
delays. Related work in the IoT community focuses on
optimizing data transmission by means of smart communi-
cation policies, with respect to estimation performance (Wu
et al., 2018) or the so-called Age of Information (AoI)
due to delays and unreliability (Zhou and Saad, 2019;
Yates and Kaul, 2019). Kosta et al. (2017) and Bisdikian
et al. (2013) introduce the Value of Information of Update
(VoIU), which addresses the impact new samples have on
the current state estimate. Also, the former formalize the
Cost of Update Delays (CoUD), a non-linear function of
AoI expanding such concept, which concurs in the VoIU
of samples. Contrary to this line of work, we focus on
monitoring a dynamical system and advocate a unified task-
driven framework, where computation and communication
are jointly modeled in an optimal estimation framework.
In hindsight, we propose a paradigm shift from sensor
and communication networks, in which one has to decide
the best communication policy, to processing networks,
where one also controls when and where the computation
occurs. Moreover, we analyze the relation between compu-
tation/communication delays and system dynamics, while
previous work mostly focuses on the channel properties.

Related work in control, cyber-physical systems, and
robotics focuses on either the co-design of estimation
and control in the presence of communication con-
straints (Borkar and Mitter, 1997; Shafieepoorfard and
Raginsky, 2013), or on the design of the system’s sensing
and actuation (Carlone and Karaman, 2018; Summers
et al., 2016). Tzoumas et al. (2018) establish a more direct
connection between sensing and estimation performance,
by proposing co-design approaches for sensing, estimation,
and control. While these works focus on communication
constraints, we attempt to explicitly model computation
delays and understand how they impact the performance
of the estimation task. In robotics, Chinchali et al. (2019)
adopt a learning approach for computation offloading in
cloud-robotics applications. Tsiatsis et al. (2005) seek a pol-
icy to tackle edge-computing delays within a static frame-
work. Taami et al. (2019) characterize the performance
of resource-constrained devices with cloud fog offloading
(with case study on Fast Fourier Transform computation),
while Imagane et al. (2016) investigate multimedia data
processing with pipeline and parallel architectures. Con-
trary to these works, we consider the system dynamics, we
explicitly model communication and computational delays,
and we are concerned with the analytical derivation of
optimal computation policies for estimation.

We propose the following contributions. First, we formalize
the notion of processing network and provide a model
which is amenable for analysis (Section 2). The networked
system is modeled as a set of smart sensors in charge of

estimating the state of a dynamical system in the presence
of communication and computation latency. We assume
that edge devices run so-called anytime algorithms, i.e.,
the quality of their estimates improves with longer runtime.
The key idea is to capture the impact of the preprocessing
at each sensor using a processing-dependent measurement
noise, such that more processing leads to more refined
measurements. Second, we derive fundamental limits for
such model: we prove that in two instantiations of the model
there is an optimal choice for the amount of preprocessing
done at each sensor which can be computed analytically. In
particular, Sections 3–4 consider the continuous-time case
with a single sensor and provide closed-form expressions for
the optimal computational delay, while Section 5 generalizes
the setup to multiple homogeneous sensors. A discussion of
potential extensions to heterogeneous sensors and discrete-
time systems is briefly presented in Section 6, while we
refer the interested reader to the preprint Ballotta et al.
(2019) for a more comprehensive discussion. Conclusions
are drawn in Section 7.

2. ESTIMATION IN PROCESSING NETWORKS:
PROBLEM FORMULATION

A processing network is a set of interconnected smart
sensors that collect sensor data and leverage onboard
computation to locally preprocess the data before com-
municating it to a central fusion center. The goal of the
network is to obtain an accurate estimate of the state of a
time-varying phenomenon observed by the sensors, in the
face of communication and computation latencies.

2.1 Anatomy of a Processing Network

Dynamical system: We consider a processing network
monitoring a time-varying phenomenon described by the
following linear time-invariant (LTI) stochastic model:

dxt = a xtdt+ dwt (1)

where xt ∈ R is the to-be-estimated state of the system at
time t, a ∈ R is a constant describing the system dynamics,
and wt ∈ R represents process noise. We focus on the scalar
system (1) which can be analyzed analytically and postpone
the discussion on the multi-variate case to Section 6.2.
Smart sensors: The processing network includes N
smart sensors, N = {1, ..., N}. After acquiring data, each
sensor may refine raw measurements via some local prepro-
cessing. For instance, in the robotics application of Fig. 1,
each robot is a smart sensor that may process raw data
(e.g., images) to obtain local measurements of the state
(e.g., the tracked vehicle location in Fig. 1). Depending on
the time and computational resources, the robot may use
more sophisticated algorithms (or a larger number of visual
features (Hartley and Zisserman, 2004)) to obtain more
accurate measurements. More generally, the use of anytime
algorithms (Zilberstein, 1996) at each sensor entails a trade-
off, where the more time is spent on preprocessing, the more
accurate is the measurement by the sensor. We capture
the dependence of the preprocessing time on the refined
measurements through the following model:

zt(τp)=Cxt+vt(τp), zt(τp)=
[
z

(1)
t (τp,1) ... z

(N)
t (τp,N )

]T
(2)

where z
(i)
t is the measurement collected at time t by the

i-th sensor, τp,i is the preprocessing delay associated with
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Fig. 2. Block diagram of the processing network with latency contributions by preprocessing, communication, and fusion.

the i-th sensor, and vt is white noise; τp
.
= {τp,i}i∈N , and

zt contain the delays and measurements from all sensors.
In order to capture the anytime nature of the sensor
preprocessing, we model the intensity of the white noise vt
as a decreasing function of τp, see Sections 3 and 3.2.
Communication: The sensors send preprocessed data
to the central station for data fusion. To simplify the
mathematical analysis, we assume what follows.

Assumption 1. (Reliable channel). Packet loss and chan-
nel erasure probabilities are equal to zero.

Assumption 2. (Unconstrained channel capacity). All sen-
sors can transmit “in parallel”.

These assumptions are quite strong in practice, but they
are needed for a tractable analytical approach. Future
work may include more realistic communication models. In
Ballotta et al. (2019), channel capacity is addressed.
Given limited bandwidth, also data transmission induces
a communication delay τc,i for each sensor i. We consider
two models for τc,i as a function of τp,i:
• constant τc,i: the transmitted packet length/number

is fixed and does not depend on the preprocessing;
in this case the communication delay is a constant,
irrespective of the preprocessing delay τp,i.

• decreasing τc,i: in this case, sensor preprocessing
compresses the measurements, such that a longer
preprocessing leads to less packets to transmit.

These models are used in Sections 4.1 and 4.2, respectively.
Fusion center: The central station is in charge of fusing
all sensor data to compute a state estimate. We assume

that Zt(τp) = {z(i)
si (τp,i), si ∈ [t0, t− τp,i − τc,i]}i∈N is the

dataset available at time t (starting from an initial time t0).
Fusion adds further latency, namely the fusion delay τf,tot,
which is the sum of the delays τf,i required to process the
data stream from each sensor i. In particular, as above, we
assume that either τf,i is constant, or it decreases with the
preprocessing delay τp,i (intuitively, the more preprocessing
is done at the sensor, the less effort is needed for fusion).
Fig. 2 gives an insight on the processing network with the
different latency contributions - by sensor preprocessing,
communication, and central station fusion.

2.2 Optimal Estimation in Processing Networks

While the sensor data might be received and fused with
some (computation and communication) delay, we are
interested in obtaining an accurate state estimate at the
current time t; this entails fusing sensor information Zt(τp)
(partially outdated, due to the computation and communi-
cation delays) with the open-loop system prediction in (1).
This raises a nontrivial communication-computation trade-
off: is it best to transmit raw sensor data and incur larger
communication and fusion delays, or to perform more pre-
processing at the edge and transmit more refined (less noisy
and more compressed) estimates? For instance, consider

again Fig. 1 where robots compute local estimations from
images. Each extracted feature both enhances sensor-side
accuracy and possibly reduces communication and fusion
delays. However, feature extraction comes with preprocess-
ing (edge computation) delay. A trade-off emerges: on one
hand, many features cause a long prediction; on the other
hand, few provide a poor estimation. An optimal estimation
policy would decide the preprocessing at each sensor in a
way to maximize the final estimation accuracy.

Problem formulation: In general, one may wish to
optimize the estimation performance at all times, i.e.,
as for Mean Squared Error (MSE) estimators, find
arg minτp∈RN

+
var (xt − x̂t(τp)), where x̂t(τp)

.
= g(Zt(τp))

is a state estimator. However, such problem comes with
the nuisance of time variance. Instead, we resort to its
time-invariant steady-state counterpart by exploiting com-
munication reliability (Assumption 1).

Problem 1. Given the system (1) with sensor set N and
measurement model (2), find the optimal preprocessing
delays τp = {τp,i}i∈N that minimize the steady-state
estimation error variance:

arg min
τp,i ∈ R+, i ∈ N

p∞|∞−τtot(τp) (3)

where the total delay is

τtot
.
= min

i∈N
(τp,i + τc,i)︸ ︷︷ ︸
.
= τs

+
∑
i∈N

τf,i︸ ︷︷ ︸
.
=τf,tot

(4)

and p∞|∞−τtot(τp)
.
= lim

t→+∞
var (xt − x̂t(τp)) is the steady-

state estimation error variance. τtot accounts for the fact
that, due to delays, the steady-state estimate relies on
partially outdated measurements: τs is the time it takes
to collect data from all sensors (including the freshest
available), while τf,tot is the time it takes to fuse them.

We start by analyzing the single-sensor case to gain
some intuition on Problem 1. In the following, to keep
notation more readable, we drop the subscripts from the
preprocessing delay τp,i and refer to it as τ .

3. SINGLE SENSOR: PREPROCESSING DELAY τ

The goal of this section is twofold: (i) to provide a closed-
form expression for p∞|∞−τtot(τ) for the case in which we
have a single sensor (N = 1) and we neglect communication
and fusion delays (τtot = τ), and (ii) to compute the optimal
preprocessing delay that solves Problem 1. Towards this
goal, we use a Kalman filter for state estimation, which is
an MSE estimator for linear Gaussian systems. Moreover,
we assume var(vt)

.
= σ2

v(τ) is inversely proportional to
preprocessing delay. This choice is motivated by the
observation that the variance of least squares estimation is
inversely proportional to the number of independent data
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Fig. 3. Visual representation of p∞|∞−τ (τ), with contribu-
tions due to estimation f(τ) and process noise q(τ).

point (e.g., features extracted in an image). Other models
are discussed in Section 3.2.

In the single-sensor setup, we can compute the steady-state
error variance p∞|∞−τ (τ) in closed form and derive an
analytical solution for Problem 1.

Theorem 2. (Optimal preprocessing, single sensor).
Consider the LTI stochastic scalar system{

dxt = axtdt+ dwt
zt(τ) = xt + vt(τ)

(5)

with state matrix a ∈ R, process noise wt ∼ (0, σ2
w) with

σ2
w > 0, measurement noise vt(τ) ∼ (0, σ2

v(τ)) with

σ2
v(τ) =

b

τ
b > 0 (6)

and initial condition xt0 ∼ (µ0, p0), p0 ≥ 0. Assume x̂t(τ)
is the Kalman filter estimate at time t given measurements
collected till time t − τ . Then, the steady-state error
variance p∞|∞−τ (τ) has the following expression:

p∞|∞−τ (τ) =
be2aτ

τ

(
a+

√
a2 + σ2

w

1

b
τ

)
︸ ︷︷ ︸

f(τ)

+
σ2
w

2a

(
e2aτ − 1

)
︸ ︷︷ ︸

q(τ)

with limits

lim
τ→0+

p∞|∞−τ (τ)= lim
τ→+∞

p∞|∞−τ (τ)=

+∞, a ≥ 0
σ2
w

2|a|
, a < 0

(7)

Moreover, p∞|∞−τ (τ) has a unique point of global mini-
mum τopt > 0 that satisfies:

σ2
w

b
τ3
opt = −a2τ2

opt +
1

4
(8)

Proof. See Appendix A.

Fig. 3 illustrates the cost function of Theorem 2, together
with the contributions due to projecting in open-loop the
measurement-based estimation and the process noise (f(τ)
and q(τ), respectively).

3.1 Parameter dependence of optimal delay

Eq. (8) provides a characterization for the optimal pre-
processing delay τopt. Here we discuss how τopt behaves
as a function of each system’s parameter. Notice that b
and σ2

w do not affect τopt independently, as they appear in

Fig. 4. Optimal delay τopt as a function of s = σ2
w/b

with a = 1, and upper bound τu as per (9).

the same coefficient: therefore, we can focus on their ratio
s := σ2

w/b. Also, this suggests that what really matters is
the relative intensity between the process noise and the
uncertainty reduction due to preprocessing.

Proposition 3. τopt is strictly decreasing with s and a2.

Proof. See Appendix B.

On one hand, Proposition 3 states that it is more convenient
to choose small preprocessing delays for “unpredictable
systems”, characterized by fast dynamics or large process
noise. On the other hand, if the sensor noise is large, it is
convenient to perform further preprocessing, which explains
why τopt grows with b.

The proof of Proposition 3 also yields the following upper
bound, which may turn useful with uncertain models.

Corollary 4. (Upper bound for τopt)

τopt ≤ τu
(
|a|, σ

2
w

b

)
:=


1

2|a|
, |a| > 3

√
σ2
w

2b

3

√
b

4σ2
w

, otherwise

(9)

Fig. 4 shows how τopt varies with s, together with the upper
bound in (9). The dependence on a2 is qualitatively similar
and omitted for space reasons.

3.2 Alternative preprocessing models

Here we consider two different models for the relation
between the measurement variance and the preprocessing
delay, which can be used in place of (6). The models
involve a coefficient γ > 0 that can be understood as
a convergence rate of an anytime algorithm. The following
case generalizes model (6) accounting for non-ideality of
preprocessing algorithms (as dependent samples).

Corollary 5. (Non-ideal preprocessing). Given system (5)
and hypotheses as per Theorem 2 with

σ2
v(τ) =

b

τγ
γ > 0

the steady-state error variance p∞|∞−τ (τ) has a unique
global minimum τopt > 0.

Proof. It can be seen that limits (7) hold and p∞|∞−τ (τ)
is strictly quasi-convex on R+ (e.g., via graphical analysis).

The second model comes into play with anytime algorithms
with exponential convergence, as in Rudolph (2013).
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Unstable systems Stable systems

Fig. 5. Steady-state error variance p∞|∞−τs(τ) with σ2
w = b = 1, a = 0.1 (left) and a = −0.1 (right). Black line: no

communication delay (τs = τ). Dashed red line: constant communication delay (τc = 1). Solid red line: τ -varying
communication delay (c = 1).

Corollary 6. (Anytime algorithms). Given system (5) and
hypotheses as per Theorem 2 with

σ2
v(τ) = be−γτ γ > 0

the steady-state error variance p∞|∞−τ (τ) has a unique
global minimum τopt > 0 if and only if

γ > 2

√
σ2
w

b
+ a2 (10)

Proof. In this case, τopt can be computed analytically.
Condition (10) is required to make τopt positive.

Remark 7. (Phase transition). The algorithms whose con-
vergence rate is too slow with respect to the system dy-
namics are discarded by condition (10): if the latter does
not hold, τopt = 0, i.e., transmitting raw measurements is
the optimal choice at sensor side.

4. SINGLE SENSOR: PREPROCESSING AND
COMMUNICATION DELAYS τ, τC

In this section we add the communication delay, according
to the two models mentioned in Section 2. The prediction
step therefore stretches to the sensor delay τs (cf. (4)).

4.1 Constant communication delay

In this case, the communication delay τc is constant
(i.e., the preprocessing does not imply data compression):
in particular, the transmitted packet number/length is
independent on the time spent for preprocessing, which
only affects the measurement noise variance. This situation
may occur whenever the sensors send quantities whose
dimension only depends on the system/algorithms, such
as local state estimates. Being the communication delay
constant, it does not impact the optimization with respect
to the preprocessing: the steady-state variance p∞|∞−τs(τ)

is simply multiplied by the coefficient e2aτc due to the longer
open-loop prediction induced by τc. Therefore, the optimal
delay is again τopt as per Theorem 2. The dependencies
studied in Sec. 3.1 still hold.

4.2 Computation-dependent communication delay

We now turn to the case where the preprocessing also
performs data compression, leading to a τ -varying commu-
nication delay which is modelled as:

τc(τ) =
c

τ
c > 0 (11)

with known c. We have the following result.

Theorem 8. (Optimal preprocessing and communication).
Given system (5) with measurement noise variance σ2

v(τ)
as per (6), and communication delay τc(τ) as per (11), the
steady-state error variance has expression

p∞|∞−τs(τ) =
be2aτs

τ

(
a+

√
a2 +

σ2
w

b
τ

)
+
σ2
w

2a

(
e2aτs − 1

)
with τs = τ + c/τ. Moreover, p∞|∞−τs(τ) admits limits
as per (7), and has a unique point of global minimum
τopt > 0.

Proof. See Appendix C.

Fig. 5 compares the steady-state error variance with no
communication delay (but with preprocessing delay, in
black), and with communication delay (in red, dashed for
constant and solid for τ -varying delays) for an unstable
and an asymptotically stable systems. Notice that the
steepness of the black curve decreasing portion suggests
that it is preferable to round τopt in excess, if needed, as a
lower approximation likely worsens performance. The first
communication-delay model (constant τc) shifts upward
and slightly sharpens the curve, while the second smooths
it. In this case, monotonicity of τopt as in Section 3.1 cannot
be guaranteed. Also, notice that the red curves cross: the
model with constant/no compression is outperformed by
the τ -varying one if the preprocessing is longer than a
minimum threshold.

Remark 9. While model (11) is mainly used for mathemat-
ical convenience, in a real setup the compression function
should be learned or estimated from data.
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2.6

2.8

3
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3.4

Number of sensors S

p
∞
|∞
−
τ
to

t

W/ fusion delay

W/o fusion delau

Fig. 6. Variance p∞|∞−τtot(S) with a = −1, σ2
w = 10,

b = τ = 0.1, τc = 0.1, τf = 0.02 (black) and τf = 0
(red, no fusion delay).

5. MULTIPLE SENSORS: PREPROCESSING,
COMMUNICATION, AND FUSION DELAYS

We now consider the multi-sensor case and complete our
framework by adding the fusion delay. We model the
latter similar to the communication delay: τf,i is either
assumed to be constant, or we assume τf,i(τi) = fi/τi, where
fi > 0 is a known constant. We consider for simplicity N
identical independent sensors, each with the same delays τ
(preprocessing), τc(τ) (communication) and τf (τ) (fusion),
the latter two being constant or varying. The overall
delay (4) becomes

τtot = τ + τc(τ)︸ ︷︷ ︸
τs

+ τf (τ)N︸ ︷︷ ︸
τf,tot

(12)

and the network measurements in (2) are then modeled as

zt(τ) = [1 . . . 1]
T
xt + vt(τ) R(τ) =

b

τ
IN (13)

From the least squares framework, it is well known that
such system yields an overall variance reduction for zt(τ)
which is linear with the number of samples. Alternatively,
the homogeneous N -sensor network can be seen (from
the standpoint of the estimation performance) as a single
sensor with processing noise variance σ2

v(τ) reduced by a
factor N with respect to each sensor in (13), and total
delay (12). Then, the optimal computational delay for such
virtual single sensor also maximizes the performance for
the network (13).

Remark 10. The advantage of multi-sensor networks is
reducing the measurement-noise variance for each sensor,
yielding more accurate state estimation.

Remark 11. A common wisdom in estimation theory is
that adding more sensors always yields better estimates
(possibly with performance saturation). We show that, if
fusion time has to be considered, the optimal solution is
adding sensors up to a certain amount, since the cost of
processing more overtakes the sample variance reduction.

If p∞|∞−τtot is seen as a discrete function of the number
of sensors S (S ≤ N) with fixed τ , one can also ask if
there is an optimal sensor quantity Sopt, corresponding

1 2 3 4 5 6 7 8 9 10

3

3.2

3.4

3.6

Number of sensors S

p
∞
|∞
−
τ
to

t

τ = 0.05
τ = 0.1
τ = 0.15
τ = 0.2

Fig. 7. Variance p∞|∞−τtot(S) with a = −1, σ2
w = 10,

b = τc = 0.1, τf = 0.02, τ ∈ {0.05, 0.1, 0.15, 0.2}.

to arg min p∞|∞−τtot(S) 1 . Fig. 6 shows the performance
behaviour according to the number of sensors, with fixed τ .
Notice that neglecting the fusion delay may yield important
performance drops (about 12% with Sopt sensors and 32%
with all N). Then, Problem 1 can be extended to decide on
the optimal number of sensors to be used for estimation.

Problem 12. (Homogeneous network). Given system (5)
with N identical sensors and measurement model (13),
find the optimal sensor amount S and preprocessing delay
τ that minimize the steady-state error variance:

arg min
S ∈ {1, ..., N}

τ ∈ R+

p∞|∞−τtot(S, τ)

Proving uniqueness of the solution in this case in nontrivial,
due to both the discrete domain of the cost function
(S must be natural) and the difficulty of proving quasi-
convexity (or a suitably equivalent characterization). How-
ever, simulations results suggest that Problem 12 admits a
unique solution: Fig. 7 shows p∞|∞−τtot(S) corresponding
to different values of τ with constant delay. The τ -varying
model is similar and omitted for space reasons.

6. EXTENSIONS TO HETEROGENEOUS,
MULTI-VARIATE, AND DISCRETE-TIME SYSTEMS

This section presents extensions to heterogeneous networks
and discrete-time systems, as well as future work directions.
The interested reader can find more details in Ballotta et al.
(2019), where some realistic scenarios are analyzed.

6.1 Sensor selection in heterogeneous networks

In general, sensors in the processing network might have
different resources, resulting in different coefficients b in (6).
If this is the case, computing the optimal preprocessing
becomes a multivariate problem. Moreover, if sensors are
heterogeneous, one also faces the choice of whether to use
the data from all sensors or disregard data from some of
them. Therefore, a potential generalization of Problems 1
and Problem 12 is as follows.
1 Due to its discrete domain, p∞|∞−τtot (S) may have two points of
global minimum with p∞|∞−τtot (S

∗) = p∞|∞−τtot (S
∗ + 1).
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Problem 13. (Heterogeneous network). Given system (5)
with sensor set N and measurement model (2), find the
optimal sensor subset S and preprocessing delays τ =
{τi}i∈S that minimize the steady-state error variance:

arg min
S ⊆ N

τi ∈ R+, i ∈ S

p∞|∞−τtot(S, τ)

Note that the combinatorial nature of the problem makes
it difficult to compute exact solutions. In the extended
paper Ballotta et al. (2019) we investigate this formulation
with simulations, and propose approximate algorithms.

6.2 Discrete-time and multi-dimensional systems

While the continuous-time framework was instrumental
to obtain insights and analytical solutions, in practical
problems it is interesting to consider a discrete-time
formulation due to the digital nature of involved systems
and algorithms. In Ballotta et al. (2019), we extend the
setup considered in this paper to more general scenarios,
accounting for discrete-time and multi-dimensional states.
Numerical simulations confirm that the trends observed
in the scalar case also arise in such more general case: the
communication-computation trade-off can be optimized by
suitably selecting sensors and preprocessing delays.

6.3 Dealing with channel constraints

An interesting avenue for future research is to consider more
realistic communication model, including finite bandwidth,
channel capacity, unreliability, or packet loss. For instance,
to model limited channel capacity, an upper bound may
be imposed on the total communication delay:∑

i∈S
τc,i(τi) ≤ τu,c

In this way, each sensor is forced not to keep the channel
busy for too long, letting all sensors transmit their data.

7. CONCLUSIONS

In this paper, we investigate optimal estimation in a
processing network in the presence of communication and
computational delays. We model sensor-side preprocessing
as a stochastic measurement model, whose noise intensity
decreases with the computational delay. Similarly, commu-
nication and fusion delays are modeled as a constant or
decreasing function of computation delay, simulating data
compression. For the continuous-time, scalar, single-sensor
scenario, we prove that the resulting trade-off between pre-
processing and computation can be optimized analytically.
We further extend these results to the case of a network
of homogeneous sensors, where one has also to account for
the fusion delay incurred at the central station which is in
charge of fusing all the sensor measurements. We conclude
the paper by discussing several ongoing efforts to extend
this work to the case of a multi-variate, heterogeneous
processing networks, monitoring a discrete-time system.

REFERENCES

Ballotta, L., Schenato, L., and Carlone, L. (2019).
Computation-Communication Trade-offs and Sensor Se-
lection in Real-time Estimation for Processing Networks.
arXiv e-prints, arXiv:1911.05859.

Bisdikian, C., Kaplan, L.M., and Srivastava, M.B. (2013).
On the quality and value of information in sensor
networks. ACM Trans. Sen. Netw., 9(4), 48:1–48:26. doi:
10.1145/2489253.2489265. URL http://doi.acm.org/
10.1145/2489253.2489265.

Borkar, V. and Mitter, S. (1997). LQG control with
communication constraints. Comm., Comp., Control,
and Signal Processing, 365–373.

Carlone, L. and Karaman, S. (2018). Attention and
anticipation in fast visual-inertial navigation. IEEE
Trans. Robotics. Arxiv preprint: 1610.03344.

Chinchali, S., Sharma, A., Harrison, J., Elhafsi, A., Kang,
D., Pergament, E., Cidon, E., Katti, S., and Pavone,
M. (2019). Network offloading policies for cloud
robotics: a learning-based approach. arXiv e-prints,
arXiv:1902.05703.

Hartley, R.I. and Zisserman, A. (2004). Multiple View
Geometry in Computer Vision. Cambridge University
Press, second edition.

Imagane, K., Kanai, K., Katto, J., and Tsuda, T. (2016).
Evaluation and analysis of system latency of edge
computing for multimedia data processing. In 2016
IEEE 5th Global Conference on Consumer Electronics,
1–2. doi:10.1109/GCCE.2016.7800393.

Kosta, A., Pappas, N., Ephremides, A., and Angelakis, V.
(2017). Age and value of information: Non-linear age
case. In 2017 IEEE Intl. Symp. on Inf. Theory (ISIT),
326–330. doi:10.1109/ISIT.2017.8006543.

Li Fan, Dasgupta, P., and Ke Cheng (2009). Swarming-
based mobile target following using limited-capability
mobile mini-robots. In 2009 IEEE Swarm Intelligence
Symposium, 168–175. doi:10.1109/SIS.2009.4937860.

Maag, B., Zhou, Z., and Thiele, L. (2018). A survey on sen-
sor calibration in air pollution monitoring deployments.
IEEE Internet of Things Journal, 5(6), 4857–4870. doi:
10.1109/JIOT.2018.2853660.

Pasqualetti, F., Dörfler, F., and Bullo, F. (2011). Cyber-
physical attacks in power networks: Models, fundamental
limitations and monitor design. In IEEE Conference on
Decision and Control and European Control Conference,
2195–2201.

Rudolph, G. (2013). Convergence rates of evolutionary algo-
rithms for quadratic convex functions with rank-deficient
hessian. In M. Tomassini, A. Antonioni, F. Daolio,
and P. Buesser (eds.), Adaptive and Natural Computing
Algorithms, 151–160. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Shafieepoorfard, E. and Raginsky, M. (2013). Rational
inattention in scalar LQG control. In IEEE Conf. on
Decision and Control (CDC), 5733–5739.

Shalev-Shwartz, S., Shammah, S., and Shashua, A. (2017).
On a formal model of safe and scalable self-driving cars.
ArXiv, abs/1708.06374.

Suleiman, A., Zhang, Z., Carlone, L., Karaman, S., and
Sze, V. (2018). Navion: A 2mW fully integrated real-
time visual-inertial odometry accelerator for autonomous
navigation of nano drones. IEEE Journal of Solid-State
Circuits.

Summers, T., Cortesi, F., and Lygeros, J. (2016). On
submodularity and controllability in complex dynamical
networks. IEEE Transactions on Control of Network
Systems, 3(1), 91–101.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11177



Taami, T., Krug, S., and O’Nils, M. (2019). Experimental
characterization of latency in distributed iot systems
with cloud fog offloading. In 2019 15th IEEE Intl.
Workshop on Factory Comm. Systems (WFCS), 1–4.
doi:10.1109/WFCS.2019.8757960.

Tsiatsis, V., Kumar, R., and Srivastava, M.B. (2005).
Computation hierarchy for in-network processing. Mobile
Networks and Applications, 10(4), 505–518. doi:10.1007/
s11036-005-1563-z. URL https://doi.org/10.1007/
s11036-005-1563-z.

Tzoumas, V., Carlone, L., Pappas, G., and Jadbabaie, A.
(2018). Sensing-constrained LQG control. In American
Control Conference, 197–202. Milwaukee, WI. Arxiv
preprint: 1709.08826.

Wu, S., Ding, K., Cheng, P., and Shi, L. (2018).
Optimal Scheduling of Multiple Sensors over Lossy
and Bandwidth Limited Channels. arXiv e-prints,
arXiv:1804.05618.

Yates, R.D. and Kaul, S.K. (2019). The age of information:
Real-time status updating by multiple sources. IEEE
Transactions on Information Theory, 65(3), 1807–1827.
doi:10.1109/TIT.2018.2871079.

Zhou, B. and Saad, W. (2019). Joint status sampling and
updating for minimizing age of information in the inter-
net of things. IEEE Transactions on Communications,
1–1. doi:10.1109/TCOMM.2019.2931538.

Zilberstein, S. (1996). Using anytime algorithms in
intelligent systems. AI Magazine, 17(3).

Appendix A. PROOF OF THEOREM 2

By considering model (6), the steady-state Kalman error
variance associated with x̂t−τ (τ) (outdated estimate) is

p∞(τ) =
b

τ

(
a+

√
a2 +

σ2
w

b
τ

)
(A.1)

The model-based open-loop predictor error has dynamics

dx̃s(τ) = ax̃s(τ)ds+ dws, t− τ ≤ s ≤ t (A.2)

Then, the error at time t is given by solving (A.2) as a
Cauchy problem with initial condition x̃t−τ (τ):

x̃t(τ) = eaτ x̃t−τ (τ) + w̄(τ)

where w̄(τ) is the stochastic integral of ws in [t− τ, t]. The
steady-state prediction error variance is then

p∞|∞−τ (τ)
(i)
= var(eaτ x̃t−τ ) + var(w̄(τ)) =

=
be2aτ

τ

(
a+

√
a2 +

σ2
w

b
τ

)
+
σ2
w

2a

(
e2aτ − 1

)
where (i) is motivated by uncorrelated terms. Indeed,
x̃t−τ ∈ span{xt0 , ws, vs : t0 ≤ s ≤ t − τ}, while w̄(τ) ∈
span{ws, t − τ ≤ s ≤ t}, with wt white noise and
wt ⊥ xt0 , vs ∀t ≥ t0,∀s by hypothesis. The only sample
providing nonzero correlation is wt−τ , but having zero
Lebesgue measure its contribution to w̄t is null.
We proceed now in studying critical points of p∞|∞−τ (τ),
since being limits (7) equal at both domain extrema and
being p∞|∞−τ (τ) ∈ C0(R̄+) at least one must exist. By
setting p′∞|∞−τ (τ) = 0 and rejecting τ = 0, we get

σ2
w

b
τ3 + a2τ2 − 1

4
= 0 (A.3)

E. (A.3) always admits a real positive solution, in virtue of
Bolzano’s theorem by considering F (τ) := σ2

w/bτ3 + a2τ2 −
1/4 and I := [0, 1/2|a|]. Strict quasi-convexity of p∞|∞−τ (τ)
on R+ can be checked via convexity of its sublevel sets
with graphical analysis. Such property guarantees that the
critical point is the unique point of global minimum.

Appendix B. PROOF OF PROPOSITION 3

For this proof we are going to exploit the implicit function
theorem, whose statement is recalled for convenience.

Theorem 14. (Dini’s theorem). Let F be a continuously
differentiable function on some open D ⊂ R2. Assume that
there exists a point (x̄, ȳ) ∈ D such that:

• F (x̄, ȳ) = 0;

• ∂F

∂y
(x̄, ȳ) 6= 0.

Then, there exist two positive constant a, b and a function
f : Ix̄ := (x̄− a, x̄+ a) 7→ Jȳ := (ȳ − b, ȳ + b) such that

F (x, y) = 0 ⇐⇒ y = f(x) ∀x ∈ Ix̄, ∀y ∈ Jȳ
Moreover, f ∈ C1(Ix̄) and

f ′(x) = −Fx(x, f(x))

Fy(x, f(x))
∀x ∈ Ix̄ (B.1)

We can see the left-hand term in eq. (8) as a one-parameter
function of two positive-valued variables, namely

F : R+ × R+ → R, (π, τ) 7→ F (π, τ) = sτ3 + a2τ2 − 1

4
with π = {s, a2}. Let us check if Dini’s theorem hypotheses
are satisfied: given a solution (π̄, τ̄opt) of eq. (8) it holds

• F (π̄, τ̄opt) = 0, by construction;
• Fτ (π̄, τ̄opt) = 3sτ̄2

opt + 2a2τ̄opt > 0, since all variables
are positive.

Then Theorem 14 applies and there exists a function τ(π)
such that F (π, τopt) = 0 ⇐⇒ τopt = τ(π), with π in some
open neighbourhood of π̄. In fact, since we did not pose
constraints on (π̄, τ̄opt), such a function is defined for all
π ∈ R+. The two cases for π are studied independently.

π = s By (B.1), the first derivative of τ(π) = τ(s) is

τ ′(s) = −Fs(s, τ(s))

Fτ (s, τ(s))
= − τ(s)

2

3sτ(s) + 2a2
(B.2)

We conclude that τ ′(s) < 0 ∀s ∈ R+, namely, τopt is
strictly decreasing with s.

π = a2 The first derivative of τ(π) = τ(a2) is

τ ′(a2) = −Fa
2(a2, τ(a2))

Fτ (a2, τ(a2))
= − τ(a2)

3sτ(a2) + 2a2
(B.3)

We conclude that τ ′(a2) < 0 ∀a ∈ R, namely, τopt is
strictly decreasing with a2 (regardless of sign(a)).

Appendix C. PROOF OF THEOREM 8

By applying open-loop prediction to p∞(τ) (A.1) so as to
cover the delay τs = τ + τc, the steady-state prediction
error variance takes the expression in Theorem 8. Strict
quasi-convexity holds also in this case (again, this can
be shown with graphical analysis). In virtue of this fact,
continuity and limits (7), we conclude that the point of
minimum exists unique and is different from zero.
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