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Abstract: In this paper we address the problem of identifying a continuous-time deterministic
system utilising sampled-data with instantaneous sampling. We develop an identification
algorithm based on Maximum Likelihood. The exact discrete-time model is obtained for
two cases: i) known continuous-time model structure and ii) using Kautz basis functions to
approximate the continuous-time transfer function. The contribution of this paper is threefold:
i) we show that, in general, the discretisation of continuous-time deterministic systems leads to
several local optima in the likelihood function, phenomenon termed as aliasing, ii) we discretise
Kautz basis functions and obtain a recursive algorithm for constructing their equivalent discrete-
time transfer functions, and iii) we show that the utilisation of Kautz basis functions to
approximate the true continuous-time deterministic system results in convex log-likelihood
functions. We illustrate the benefits of our proposal via numerical examples.
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1. INTRODUCTION

Identification of continuous-time (CT) systems has been
studied in different areas of research such as System Iden-
tification and Control of Linear Systems (Åström et al.,
1984; Garnier and Wang, 2008; Yuz et al., 2011; Ljung
and Wills, 2010; Goodwin et al., 2013; Chen et al., 2017),
Identification of Nonlinear Systems (Laila and Astolfi,
2006), Signal Processing (Kirshner et al., 2011), Vibration
Analysis (Prior and de Oliveira, 2014; González et al.,
2018) and Time Series Analysis (Simos, 2008), among
others.

In some applications model structure (number of poles,
and zeros) of CT systems is known (see e.g. Tzeng et al.
(2001); Rojas et al. (2014)). However, when the model
structure is unknown, Basis Functions (BFs) can be used
to obtain accurate models represented by few parameters
(Heuberger et al., 2005). This approach has been tailored
in control theory and system identification, specifically,
using Laguerre and two-parameter Kautz BFs (Kautz,
1954; Wahlberg, 1994; Wahlberg and Mäkilä, 1996).

On the other hand, several methods to identify CT systems
have been developed from the corresponding discrete-time
(DT) model (Wahlberg, 1988; Ljung and Wills, 2010;
Goodwin et al., 2013). This approach is known as Indirect
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method. Since the mapping from CT system parameters to
the corresponding sampled-data model is highly complex,
approximated DT models are obtained in this approach by
using i) fast sampling (∆→ 0), ii) Euler transformation or
iii) Bilinear transformation (see e.g. Åström et al. (1984);
Yuz et al. (2011); Heuberger et al. (1995)).

In the Maximum Likelihood (ML) framework to iden-
tify CT systems utilising sampled-data, the log-likelihood
function presents, in general, several local maxima (Kir-
shner et al., 2011; Chen et al., 2017; González et al.,
2018)). It has been shown that the location and number of
local optima changes when the sampling process is modi-
fied (e.g. when the sampling period changes or irregular
sampling is introduced). This phenomenon was termed
as aliasing (Kirshner et al., 2011) for stochastic systems.
This aliasing effect makes it difficult to optimize the log-
likelihood function, especially when slow sampling is used
(for more details see Kirshner et al. (2011); Chen et al.
(2017); González et al. (2018)).

In the recent paper (Coronel et al., 2019) a methodol-
ogy to identify CT deterministic systems represented by
Laguerre BFs from sampled-data was presented. In this
approach the exact equivalent DT system was utilised.
This approach exhibits good accuracy in the estimation
for fast and slow sampling. Nevertheless, the estimation
accuracy is limited to approximating CT systems without
complex poles.

In this paper, we propose an identification algorithm
based on the ML framework for CT deterministic systems
with complex poles using exact DT models and finite

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 554



sample period. We analyse two cases: i) known model
structure and ii) Kautz BFs to approximate CT systems.
We analyse the log-likelihood function for both cases,
extending the concept of aliasing in the likelihood function
to deterministic systems. In the numerical examples, we
observe that only for the case in which known model
structure is assumed, the log-likelihood function exhibits
several local maxima for slow sampling, whilst by using
Kautz BFs the aliasing in the log-likelihood function is
not present.

The remainder of the paper is as follows: In Section 2 the
system of interest is presented. In Section 3 the equivalent
DT model is obtained. A numerical example is shown in
Section 4. Finally, conclusions are presented in Section 5.

2. SYSTEM OF INTEREST

Consider the following deterministic CT system:

y(t) = G(s)u(t), (1)

where y(t) denotes the output signal, u(t) is the input
signal, s is the time-derivative operator (s = d

dt ) or
the Laplace transform variable, and G(s) is the transfer
function (TF).

We utilise a Zero Order Hold (ZOH) and instantaneous
sampling with period ∆ to obtain the sampled output
signal. We assume that the output is given by (Jazwinski,
1970; Ljung and Wills, 2010):

ȳ(tk) = Gd(z)u(tk) + v(tk), (2)

where ȳ(tk) denotes the sampled output signal, u(tk) is
the sampled input signal, z is the forward shift operator
or Z-transform variable and v(tk) is a zero-mean Gaussian
white noise sequence with variance σ2.

It is well known that the log-likelihood function for (2) is
given by (Ljung (1999)):

`(β) = −N
2

log
(
2πσ2

)
− 1

2σ2

N∑
tk=1

εtk(θ)2, (3)

where β =
[
θT σ2

]T
is the vector of parameters to be

estimated, N is the data length and εtk(θ) is the prediction
error given by

ε(θ) = ȳ(tk)−Gd(z, θ)u(tk). (4)

The ML estimator is then given by

β̂ML = arg max
β

`(β). (5)

3. EQUIVALENT DISCRETE-TIME MODEL

3.1 Known second order model structure for the CT
system

Consider the following known model for the TF in (1):

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

, (6)

where ωn is the natural frequency of oscillation and ζ is
the damping factor.

From (6), the corresponding sampled-data TF can be
obtained as follows (see e.g. Goodwin et al. (2013)):

Gd(z) =
(
1− z−1

)
Z

{
L −1

[
G(s)

s

] ∣∣∣∣
t=k∆

}
, (7)

where L −1 is the inverse Laplace transform and Z is
the Z-transform. For completeness of the presentation we
present the following result.

Proposition 1. (Åström and Wittenmark, 1984, sec. 2.7)
The equivalent discrete-time model of the continuous-time
system in (6) is given by:

Gd(z) =
b̄1z + b̄2

z2 + ā1z + ā2
, (8)

where

b̄1 = 1−α (B + ζωn/ω̄) , b̄2 = α2 +α (ζωnγ/ω̄ −B) , (9)

ā1 = −2αB, ā2 = α2, (10)
with

ω̄ = ωn
√

1− ζ2, ζ < 1, α = exp (−ζωn∆) , (11)

B = cos(ω̄∆), γ = sin(ω̄∆). (12)

Remark 2. We note that B and γ depend on the trigono-
metric functions cos(ω̄∆), and sin(ω̄∆) respectively. Thus,
an oscillatory behaviour is expected in the log-likelihood
function (3), which corresponds to the aliasing effect
coined in (Kirshner et al., 2011) for stochastic systems.

3.2 Kautz basis functions to approximate the CT system

Kautz BFs have been widely used for systems with com-
plex poles (Wahlberg (1994); Heuberger et al. (1995);
Wahlberg and Mäkilä (1996); Baldelli et al. (2001)). They
are defined as follows (Wahlberg and Mäkilä, 1996):

F2i−1(s) =

√
2bs
(
s2 − bs+ c

)i−1

(s2 + bs+ c)
i

, (13)

F2i(s) =

√
2bc
(
s2 − bs+ c

)i−1

(s2 + bs+ c)
i

, (14)

where i = 1, 2, . . . , n, b = 2a and c = a2 + ω2, a and ω are
the real and imaginary part of the complex poles (a± jω),
with a > 0. Notice that one of the benefits of Kautz BFs
are that they can be constructed in a recursive manner.

The TF in (1) can be approximated by using Kautz BFs
as follows (Wahlberg and Mäkilä, 1996):

Ĝ(s) =

n∑
i=1

ŵ2i−1F2i−1(s) + ŵ2iF2i(s), (15)

where n is the number of BFs used, ŵ2i−1 and ŵ2i are the
weights associated to the BFs to be estimated and F2i−1(s)
and F2i(s) are the Kautz basis TF in (13) and (14). Notice

that the terms
√

2b and
√

2bc in (13) and (14) respectively,
can be included in the weights of Kautz BFs in (15).

The Kautz BFs in (13) and (14) can be expressed in terms
of the following recursion:

(1) for i = 1:

F1 =
s

s2 + bs+ c
, F2 =

1

s2 + bs+ c
. (16)

(2) for i ≥ 2:

F2i−1 = F2i−3 + F̄2i−1, F2i = F2i−2 + F̄2i, (17)

where

F̄2i−1= F2i−3W̄ , F̄2i = F2i−2W̄ , W̄ =
−2bs

s2 + bs+ c
. (18)

Typically the TFs are represented in state-space form for
simplicity of the computation and representation. In fact,
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we base our analysis on the state-space representation of
the TF in (18) in order to exploit a particular structure
that is obtained. Moreover, this structure allows for defin-
ing some terms that yield a recursive structure of the DT
versions of Kautz BFs based on (17).

Here we use a general CT state-space representation to
obtain the exact DT model:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (19)

where the system matrices are constructed with the follow-
ing recursion corresponding to the space-state matrices of
the ith-term in (15) 1 :

(1) for i = 1:

A1=A2=

[
−b 1
−c 0

]
, B1=

[
1
0

]
, B2=

[
0
1

]
, C1=C2=[1 0] . (20)

(2) for i ≥ 2: we define the circulant upper triangular
(cut) matrix operator :

Ā2i−1 = Ā2i = cut(AW̄ , B
∗, 02×2, · · · , 02×2),

=


AW̄ B∗ 02×2 · · · 02×2

02×2 AW̄ B∗ · · · 02×2

...
...

. . .
. . .

...

02×2 02×2 · · ·
. . . B∗

02×2 02×2 · · · · · · AW̄

 , (21)

B̄2i−1=[02×2 02×2 · · · 1 0]
T
, B̄2i=[02×2 02×2 · · · 0 1]

T
,

(22)
C̄2i−1 = C̄2i = [1 0 02×2 · · · 02×2] , (23)

where:

AW̄ =

[
−b 1
−c 0

]
, B∗ =

[
−2b 0

0 0

]
. (24)

Then, the sampled-data model is given by (Bernstein and
So, 1993; Goodwin et al., 2013):

x(tk+1) = Adx(tk) +Bdu(tk), y(tk) = Cx(tk), (25)

where Ad = eA∆ and Bd =
∫∆

0
eAηBdη.

The exact DT model for Kautz BFs can be obtained using
the following result:

Theorem 3. The equivalent discrete-time model of the
Kautz Basis Functions are given by:

(1) for i = 1:

F d1 =
d2z̄ − d1

z̄2 − 2z̄ cos(ω∆) + 1
, (26)

F d2 =
e2z + e1

z̄2 − 2z̄ cos(ω∆) + 1
, (27)

where:

z̄ = ea∆z, d2 = sin(ω∆)/ω, d1 = ea∆ sin(ω∆)/ω,

e2 = (ea∆ω − ω cos(ω∆)− a sin(ω∆))/(ω(a2 + ω21)),

e1 = (ω − ωea∆ cos(ω∆) + aea∆ sin(ω∆))/(ω(a2 + ω21)).

(2) for i ≥ 2:

F d2i−1(z) = F d2i−3(z) + F̄ d2i−1(z), (28)

F d2i(z) = F d2i−2(z) + F̄ d2i(z), (29)

1 The subscripts refer to the corresponding CT Kautz BFs and Āj

to the corresponding F̄j TF of the recursions defined in (17) and
(18).
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Fig. 1. Frequency Response of CT (F2) and DT (F d2 ) Kautz
BFs for slow sampling.

where:

F̄ d2i−1 =[1 0]

(
R−1Bd2i−3+

2i−3∑
k=1

R−1Mk
∆R

−1Bd2i−2−k

)
, (30)

F̄ d2i =[1 0]

(
R−1Bd2i−2+

2i−2∑
k=1

R−1Mk
∆R

−1Bd2i−k−1

)
, (31)

with R = z − eAW̄ ∆, Bd2i−3 =
∫∆

0
eĀ2i−3ηB̄2i−3dη and

Bd2i−2 =
∫∆

0
eĀ2i−2ηB̄2i−2dη. The matrices AW̄ , Āj and

B̄j are given by (24), (21) and (22) respectively.

Proof. See Appendix B. �

From Theorem 3, the DT model of the CT system in (1)
is obtained as follows:

Ĝd(z) =

n∑
i=1

ŵ2i−1F
d
2i−1(z) + ŵ2iF

d
2i(z), (32)

It can be shown that the discretisation of the CT Kautz
BFs results in a concave log-likelihood function, which is
simple to optimise. In addition, the recursive nature of the
result in Theorem 3 (see (28) and (29)) is useful to reduce
the computational complexity, especially when one uses a
large number of basis functions.

4. NUMERICAL EXAMPLE

In this section we present a numerical example to illustrate
the benefits of our proposal for CT system identification
using sampled-data. First, we will compare the frequency
response of the CT Kautz BF (F2) and DT Kautz BF
(F d2 ) for slow sampling. Then, we analyse the log-likelihood
function given in (3) for two cases, when the model
structure is known and when the Kautz BFs are used
for approximating the CT system. Finally, for both cases
we analyse our approach in an estimation problem using
ML. We consider the CT system in (1), in which the TF
G(s) is given by (6) with ωn = 10 rad/s and ζ = 0.3,
the input signal is zero mean Gaussian distributed with
variance σ2

u = 10 and the variance of the DT zero mean
Gaussian noise in (2) is σ2 = 1. In addition, we consider
fast sampling ∆ = 10 ms, slow sampling ∆ = 100 ms, and
data length of N = 10000. For the estimation problem we
consider 100 Monte Carlo (MC) simulations.
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(a) Fast sampling (b) Slow sampling

Fig. 2. Log-likelihood function for case known model structure. For (a) fast sampling and (b) slow sampling.
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(b) Kautz BFs

Fig. 3. Impulse response of the true system and mean of the estimated using ML with (a) known model structure and
(b) Kautz BFs. For 100 MC simulations and slow sampling.

4.1 Frequency-domain analysis

Fig. 1 shows the magnitude and phase of the frequency
response of CT (F2) and equivalent DT (F d2 ) Kautz BF
for slow sampling. It is clear that the behaviour at low
frequencies is similar and for higher frequencies we observe
a small difference between the CT Kautz BF and its DT
version.

4.2 Likelihood function analysis

Fig. 2 shows the log-likelihood function corresponding to
fast sampling and slow sampling when the model structure
is known. We observe that for slow sampling the log-
likelihood function exhibits several local maxima. This
effect of aliasing in the log-likelihood function hinders the
attainment of the global maximum. In this sense, a global
optimisation algorithm should be utilised, resulting in a
large computational load. In contrast, when the Kautz BFs
are used to approximate the CT system, the likelihood
function is concave in the region of interest for both slow
and fast sampling.

4.3 Maximum likelihood identification

When the model structure is known, we estimate the CT
parameters (ζ and ωn) utilising a global optimisation
algorithm to solve the estimation problem. In particular,
we use the Generalised Pattern Search (GPS) algorithm
of Matlab R© based on the mesh adaptive search (MADS)
algorithm (Audet and Dennis (2003)). For illustration
purposes, we choose a complex pole similar to the true

value for the Kautz BFs 2 . In this example we use a = 2.8
and ωn = 9.3 and two Kautz BFs (n = 2). We estimate the
weights of the basis in (15) utilising a closed form solution.

Fig. 3 shows the impulse response of the true system
and the mean of the estimations for all MC simulations
when the model structure is known and when Kautz BFs
are used to approximate the CT system, utilising slow
sampling. We observe a good accuracy in the estimation
for both cases. Notice that when the model structure
is known, the estimation accuracy is affected by the
initialisation of the global optimisation algorithm, due
to the heuristic nature of this method. We obtained
some outliers in the estimation of the parameters when
the model structure is known. The mean and standard
deviation of the damping factor ζ̂ and natural frequency
ω̂n are 0.2853± 0.0564 and 9.2020± 2.7257 respectively.

Finally, we compute an estimation error, ε, to compare the
methodologies presented in this paper:

ε =
1

nMC

nMC∑
j=1

∥∥∥G0(s)− Ĝj(s)
∥∥∥2

2
, (33)

where nMC is the number of MC simulations, G0(s) is

the true CT transfer function and Ĝj(s) are the estimate
TF for all MC simulations. This error for known model
structure was 0.6801 and for Kautz BFs was 0.0205.
We observe that using the Kautz BFs yield a smaller
estimation error.

2 In a practical case the complex pole can be estimated (Heuberger
et al., 2005).
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5. CONCLUSIONS

In this paper we addressed the problem of identification
of CT systems with complex poles. We proposed an ML
identification algorithm by using exact DT models and
finite sample period. We extended the concept of aliasing
in the likelihood function to deterministic systems. We
also developed a recursive algorithm for constructing the
DT versions of CT Kautz BFs. We observed that the log-
likelihood function does not exhibit several local maxima
when Kautz BFs are used to approximate CT systems. Our
proposal exhibits good accuracy when Kautz BFs are used
in the estimation algorithm for CT systems with complex
poles utilising sampled-data.
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Chen, F., Agüero, J.C., Gilson, M., Garnier, H., and
Liu, T. (2017). EM-based identification of continuous-
time ARMA models from irregularly sampled data.
Automatica, 77(3), 293 – 301.

Coronel, M., Carvajal, R., and Agüero, J.C. (2019). Iden-
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Appendix A. LEMMAS

Lemma 4. Let A, B ∈ Rm×m and Āmr ∈ Rmr×mr. For
r ≥ 2, Āmr is defined by:

Āmr = cut(A,B, 0m×m, · · · , 0m×m). (A.1)

Then,

eĀmr∆ = cut(eA∆,M1
∆,M

2
∆, · · · ,Mr−1

∆ ), (A.2)

where:

M1
∆ =

∫ ∆

0

eA(∆−τ1)BeAτ1dτ1, (A.3)
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Mk
∆ =

∫ ∆

0

∫ τ1

0

· · ·
∫ τk−1

0

eA(∆−τ1)

(
k−1∏
i=1

BeA(τi−τi+1)

)
BeAτkdτkdτk−1 . . . dτ1, (A.4)

for k ≥ 2 and k = 2, · · · , r − 1.

Proof. For r = 2.

Ā2m = cut(A,B). (A.5)

Utilising the result in (Bernstein, 2009, Sec. 11.14), the
matrix exponential is given by:

eĀ2m∆ =

eA∆

∫ ∆

0

eA(∆−τ1)BeAτ1dτ1

0 eA∆

 , (A.6)

thus, it holds for r = 2.

Assume that the expression in (A.2) holds for r = j,
where j is some positive integer greater than 2. Then, for
r = j + 1, we obtain:

Ām(j+1) = cut(A,B, 0, · · · , 0) =

[
A B̄

0mj×mj Āmj

]
. (A.7)

Utilising the result in (Bernstein, 2009, Sec. 11.14), the
matrix exponential is given by:

eĀm(j+1)∆ =

 eA∆

∫ ∆

0

eA(∆−τ1)B̄eĀmjτ1dτ1

0mj×mj eĀmj∆

 ,
(A.8)

where:

A∗ =

∫ ∆

0

eA(∆−τ1)B̄eĀmjτ1dτ1,

=

∫ ∆

0

eA(∆−τ1)
[
BeAτ1 |BM1

τ1 |BM
2
τ1 | . . . |BM

j−1
τ1

]
dτ1,

=

[
M1

∆

∣∣∣∣ ∫ ∆

0

eA(∆−τ1)B

∫ τ1

0

eA(τ1−τ2)BeAτ2dτ2dτ1

∣∣∣∣∫ ∆

0

eA(∆−τ1)B

∫ τ1

0

∫ τ2

0

eA(τ1−τ2)BeA(τ2−τ3)BeAτ3dτ3

dτ2dτ1

∣∣∣∣ · · · ∣∣∣∣ ∫ ∆

0

eA(∆−τ1)BMτ1dτ1

]
,

=

[
M1

∆

∣∣∣∣M2
∆

∣∣∣∣ · · · ∣∣∣∣M j
∆

]
. (A.9)

Finally, we obtain

eĀ2j+2∆ = cut(eA∆,M1
∆,M

2
∆, · · · ,M

j
∆). (A.10)

Thus, by mathematical induction, (A.2) holds for all
positive integer r greater than 2. �

Remark 5. Notice that Lemma 4 is an extension of the re-
sult presented in Van Loan (1978) for r blocks of matrices.
5

Lemma 6. Let A, B ∈ Rm×m and P ∈ Rmr×mr

P = cut(A,B), (A.11)

if A is nonsingular matrix, then the inverse of P is given
by:

P−1 = cut(A−1,−A−1BA−1). (A.12)

Proof. See (Bernstein, 2009, Proposition 2.8.4). 2

Appendix B. THEOREM

The input-output representation of the state-space form
in (25) is given by:

F d(z) = C
(
zI −Ad

)−1
Bd. (B.1)

(1) For i = 1 Directly using the definition (B.1) and the
matrix exponential (see Bernstein and So (1993)). 2

(2) For i ≥ 2. First if m = 2 and i = 2.

Ā4 = cut(AW̄ , B
∗), B̄4 = [02×2 N ]

T
, C̄4 = [L 02×2] ,

(B.2)
where: AW̄ and B∗ are given in (24), L = [1 0] and

N = [0 1]
T

.

Based on Lemmas 4 and 6 and replacing (B.2) in (B.1),
we obtain:

F̄ d4 = [L 02×2]

[
R −M1

∆
0 R

]−1 ∫ ∆

0

[
eAW̄ η M1

η

0 eAW̄ η

] [
02×2

N

]
dη,

= [1 0]
(
R−1Bd1

+R−1M1
∆R

−1Bd0

)
, (B.3)

where: R = z − eAW̄ ∆ and:

Bd1 =

∫ ∆

0

M1
ηNdη, Bd0 =

∫ ∆

0

eAW̄ ηNdη. (B.4)

Finally,
F d4 (z) = F d2 (z) + F̄ d4 (z), (B.5)

thus, it holds for i = 2.

Assume that expression in (29) holds for i = j, where j is
some positive integer greater than 2. Then, for m = 2 and
i = j + 1, we obtain:

Ā2j+2 = cut(AW̄ , B
∗, 02×2, · · · , 02×2), (B.6)

B̄2i=[02×2 02×2 . . . N ]
T
, C̄2i= [L 02×2 · · · 02×2] . (B.7)

Based on Lemmas 4 and 6 and replacing (B.7) in (B.1),
we obtain:

F̄ d2j+2(z) = C̄2i

[
cut(R,−M1

∆,−M2
∆, · · · ,−M

j
∆)
]−1

∫ ∆

0

cut(eAW̄ η,M1
∆,M

2
∆, · · · ,M

j
∆) [02×2 02×2 · · · N ]

T
dη,

= C̄2i

[
R−1 R−1M∗R−1

02j×2j A−1
2j

] [
Bdj Bdj−1

· · · Bd0
Bd0

]T
,

(B.8)
where:

A−1
2j = cut(R−1, R−1M1

∆R
−1, · · · , R−1M j−1

∆ R−1). (B.9)

Then

F̄ d2j+2(z)=[1 0]

(
R−1Bdj +

j∑
k=1

R−1Mk
∆R

−1Bdj−k

)
.

(B.10)

Bd0
=

∫ ∆

0

eAW̄ ηNdη, Bdl =

∫ ∆

0

M l
ηNdη, l = 1, · · · , r−1.

For F d2i−1(z) the proof is similar with the change N =

[1 0]
T

.

We show, by mathematical induction, that (28) and (29)
are correct for all positive integer i greater than 2. �
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