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Abstract: Terminal equality and inequality constraints along with terminal costs are known
to be ingredients that grant stability in many Nonlinear Model Predictive Control (NMPC)
approaches. Despite the availability of different methods for computing a suitable terminal set
and cost, they usually rely on the linearization of the system and the design of terminal stabilizing
control laws. Thus, approaches based on contracting constraints represent an alternative to
circumvent the calculation of terminal sets and penalties. The present work proposes an NMPC
based on a terminal state contracting constraint. This approach also avoids the need of large
prediction horizon, helping to alleviate the computational burden usually associated with NMPC.
Another contribution of this proposal is a formulation in terms of output zone control and
input targets, designed for the common situation in the process industry where the number of
degrees of freedom is not enough to independently track the setpoint of all controlled variables.
A simulated case study is presented with the application of the proposed controller to the
well-known quadruple-tank process.
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1. INTRODUCTION

The design of model predictive controllers based on rigor-
ous nonlinear models with guaranteed stability becomes
challenging in some applications when the usual ingredients
for stability such as infinite prediction horizon or terminal
equality constraints (Mayne et al., 2000) may not be in-
cluded in the optimization problem due to prohibitive com-
putational times. Moreover, terminal equality constraints
may reduce the feasibility domain (Chen and Allgöwer,
1998), which is undesirable in industrial applications where
feasible solutions are required at every time step.

In order to address the drawbacks associated with terminal
equality constraints, Michalska and Mayne (1993) first
developed a dual-mode controller based on a terminal
inequality constraint, calculated from a linearization of
the system model near the origin. The two modes of
operation consist of a receding horizon controller applied
outside the terminal region and a linear state feedback
controller for the case when the states lie inside this region.
Chen and Allgöwer (1998) proposed a quasi-infinite horizon
formulation that is based on a terminal inequality and cost
to avoid the need to switch between controllers. Ferramosca
et al. (2009) developed a similar stabilizing controller
based on the same stability ingredients but suitable for
output tracking. A generalized terminal state constraint
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was developed by Fagiano and Teel (2013) which consists
of a terminal equality constraint applied at any fixed point
lying between the initial state and the desired reference,
enlarging the controller feasibility set in comparison with
a conventional terminal equality constraint.

Some authors choose to avoid terminal equality or inequal-
ity constraints either due to the need of using large predic-
tion horizons or the difficulty of computing a controlled-
invariant set to be used in a terminal inequality constraint.
As an alternative, an NMPC based on a contracting
constraint was proposed by Yang and Polak (1993), in
which the authors failed to realize that this approach
conferred close-loop exponential stability, as pointed out
in (Kothare and Morari, 2000). In their work, Kothare
and Morari (2000) impose a state contraction between
the initial and terminal states, but their controller does
not follow the receding horizon principle since it is based
on the application of the whole control sequence to the
system before the control problem is recomputed. A first-
state contractive strategy that is implemented in the usual
moving horizon fashion was proposed by Xie and Fierro
(2008), which represents a very restrictive approach despite
the straightforward stability proof. Other approaches fea-
turing a cost contracting constraint (Mej́ıa and Stipanović,
2009) and a terminal constraint-free contractive formulation
(Alamir, 2017) were also proposed.

In this study, a new NMPC approach based on a contracting
constraint is presented. As most contractive strategies, this
formulation is independent of system linearization and also
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avoids the a priori computation of a terminal set that is
controlled-invariant with respect to a stabilizing control
law. Another aspect of practical relevance considered in
the present paper is derived from the observation that
in many chemical processes there are more controlled
variables than manipulated ones, being impossible to lead
all controlled variables to independent setpoints. Therefore,
this work considers zone tracking instead of reference
tracking (González and Odloak, 2009). In addition, the
proposed controller also features constraints on input
increments, which are not commonly addressed in the
NMPC literature but play an important role regarding
actuators preservation and equipment damage prevention.

The subsequent sections are organized as follows. Section
2 provides a first approach for the zone control NMPC
based on a terminal equality constraint, whereas in Section
3 this controller is extended using a terminal contracting
constraint in order to enlarge the feasibility domain of
the control problem. In Section 4, the application of
the proposed controller to the well-known quadruple-tank
process is presented alongside some simulation results and
Section 5 draws some final remarks.

2. NOTATION AND PROBLEM FORMULATION

The following notation is used in this study. For a given
positive-definite symmetric matrix P ∈ Rnx×nx , the
weighted Euclidean norm of x ∈ Rnx is denoted as

‖x‖P :=
√
xTPx. The set of real numbers is denoted as R,

while Z, Z+, Z[a,b] correspond to the set of integers, non-
negative integers and integers between a and b, respectively.
For a given initial state x(k), the n-steps ahead predicted
state is denoted by x(n|k) and u(n|k) represents the n-th
control of the input sequence computed at time step k.
Other definitions will be presented throughout the article
as needed.

The goal of this paper is to propose an NMPC for zone
control and tracking of input targets without excessively
tight terminal constraints. However, before achieving such
formulation, it is instructive to start with an optimization
problem that explicitly forces the system to achieve a
steady state at the end of the prediction horizon, similarly
to the proposal of Fagiano and Teel (2013) but including
a zone constraint on the steady state. Later in Section 3
the problem is rewritten with a terminal state contracting
constraint.

Consider a discrete time-invariant nonlinear system repre-
sented by the following model:

x(k + 1) = f(x(k), u(k)) (1)

in which x ∈ X and u ∈ U are the system states and
inputs, respectively, and X ⊆ Rnx is closed and U ⊂ Rnu

is compact. The successor state is computed for a given
pair (x, u), in which f(·) is implicitly defined by difference
equations with f : Rnx × Rnu → Rnx . Also, since we
aim to treat the case in which the input moves are
constrained, let us define ∆u(k) = u(k) − u(k − 1) such
that ∆u ∈ U∆ ⊂ Rnu .

Assumption 1. The set Xss of equilibrium points xss ∈
Xss ⊂ Rnx with Xss := {xss ∈ Rnx : xss = f(xss, uss),
xss,min ≤ xss ≤ xss,max, uss ∈ U} is non empty.

Then, consider the following infinite horizon control cost
function:

V (k) =

∞∑
j=0

‖x(j|k)− xss,k‖2Qx
+

∞∑
j=0

‖∆u(j|k)‖2R

+ ‖u(Nc − 1|k)− udes‖2Qu

(2)

in which udes denotes an optimizing input target, assumed
known. Also, consider after a given control horizon of length
Nc we have that

∆u(j|k) = 0, j ≥ Nc (3)

Thus, a sequence of control actions can be defined as follows:

uk =
[
u(0|k)T u(1|k)T · · · u(Nc − 1|k)T

]T
(4)

Considering a prediction horizon of length Np ≥ Nc, then
the following terminal constraint is enforced:

x(Np|k)− xss,k = 0 (5)

in which xss,k is defined as the steady state correspond-
ing to the last control action of uk, that is, xss,k =
f(xss,k, u(Nc − 1|k)). Notice that such u(Nc − 1|k) exists
due to Assumption 1.

Therefore, assuming (3) and (5) hold, then the summations
in the control cost function can be reduced and the
nonlinear MPC results from the solution to the following
finite horizon problem:

Problem 1. P1(x(k)) :

min
uk,xss,k,uss,k

V (k) =

Np−1∑
j=0

‖x(j|k)− xss,k‖2Qx

+

Nc−1∑
j=0

‖∆u(j|k)‖2R

+ ‖u(Nc − 1|k)− udes‖2Qu

(6)

subject to

x(0|k) = x(k) (7)

x(j + 1|k) = f(x(j|k), u(j|k)), ∀j ∈ Z[0,Np−1] (8)

xss,k = f(xss,k, u(Nc − 1|k)) (9)

x(Np|k)− xss,k = 0 (10)

xss,k ∈ Xss (11)

u(j|k) ∈ U , ∀j ∈ Z[0,Nc−1] (12)

∆u(j|k) ∈ U∆, ∀j ∈ Z[0,Nc−1] (13)

The following lemma ensures the recursive feasibility of
Problem 1.

Lemma 1. For an undisturbed nominal system, if Problem
1 is feasible at time step k, it will remain feasible for any
subsequent time step.

Proof. Suppose Problem 1 has a feasible solution at time
step k, which results in the following optimal control
sequence:

u∗k =
[
u∗(0|k)T u∗(1|k)T · · · u∗(Nc − 1|k)T

]T
(14)

Also, consider a candidate solution to Problem 1 at time
step k + 1 given as follows:

ũk+1 =
[
u∗(1|k)T · · · u∗(Nc − 1|k)T u∗(Nc − 1|k)T

]T
(15)
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It is easy to see that ũk+1 satisfies input constraints (12)
and (13). Also, since ũ(Nc − 1|k + 1) = u∗(Nc − 1|k), then
x̃ss,k+1 = xss,k and x̃(Np|k+ 1) = x∗(Np|k), which implies
that constraints (9) and (11) are satisfied as well.

Now, observe that, at time step k, x∗(Np|k) = xss,k, which
means that x∗(Np|k) is a steady state. Therefore, since
x̃ss,k+1 = xss,k, it results that x̃(Np|k+1) = x̃ss,k+1, which
means that the candidate solution ũk+1 also satisfies the
terminal constraint (10). Therefore, by induction, Problem
1 remains feasible at any time step k + j > k, j ∈ Z+. 2

After showing the recursive feasibility of Problem 1, the
following theorem addresses the convergence and stability
of the controller.

Theorem 1. Consider the nominal system in the absence
of disturbances and let Assumption 1 hold. Also, suppose
that Problem 1 has a feasible solution at time step k and
that udes is an admissible input target. The controller
drives the system into the control zone in which the pair
(xss, udes), xss ∈ Xss, udes ∈ U is an asymptotically stable
solution to Problem 1.

Proof. The proof follows the standard steps of stability
guarantees in MPC literature. Let u∗k denote the optimal
control sequence computed as solution of Problem 1 at
time step k that produces an optimal cost value V ∗(k).
The sequential solution of Problem 1 is guaranteed by
Lemma 1. Now, at time step k + 1, consider a sub-optimal
solution resulting from the control sequence ũk+1 defined
in (15). Moreover, as already shown in the proof of Lemma
1, x̃ss,k+1 = x∗ss,k because ũ(Nc − 1|k + 1) = u∗(Nc − 1|k).

Also, observe that x̃(j|k + 1) = x∗(j + 1|k) and that
∆ũ(Nc − 1|k + 1) = 0. The corresponding cost value of the

shifted solution is given by Ṽ (k + 1). Comparing the cost
at the consecutive steps k and k + 1, it follows that

V ∗(k)− Ṽ (k + 1) = ‖x∗(0|k)− x∗ss,k‖2Qx

+ ‖∆u∗(0|k)‖2R
(16)

Thus, since Qx and R are positive-definite matrices, the
left-hand side of (16) is non-negative, which means that

Ṽ (k+1) ≤ V ∗(k) and it also implies that V ∗(k+1) ≤ V ∗(k).
Consequently, the sequence of control cost at subsequent
time steps is non-increasing and, since the control cost
is built such that is bounded below by zero, it converges
to zero provided udes is reachable. Convergence of the
control cost to the origin implies that x(k)→ xss and that
u(k)→ uss = udes as k →∞. 2

3. NONLINEAR MPC WITH TERMINAL
CONTRACTION CONSTRAINT

Since Problem 1 considers constraints on the input in-
crements, this may lead to a smaller feasibility set in
comparison to the majority of NMPC approaches available
in the literature that do not consider this type of input
constraint. For instance, consider a given initial u(k − 1|k)
∈ U , then notice that Problem 1 may turn infeasible if
the prediction horizon Np is not large enough to allow the
computation of a u(Nc − 1|k) ∈ U such that xss,k ∈ Xss.
In other words, constraints (9) and (11)-(13) may not be
simultaneously satisfied. Moreover, even if a xss,k ∈ Xss
with u(Nc−1|k) ∈ U could be computed, infeasibilities may

arise when the terminal state x(Np|k) is not an equilibrium
point of the system, failing to satisfy constraint (10). In fact,
this is the main problem of terminal equality-based NMPC
approaches, requiring large prediction horizons, which also
increases computational cost (Chen and Allgöwer, 1998).

For this reason, we propose some modifications intended to
enlarge the feasibility set of the controller. Thus, instead of
forcing the equilibrium point to be defined as a function of
the last control action u(Nc−1|k) of the control horizon as
in (9), we now let the optimizer to chose any uss,k ∈ U such
that xss,k ∈ Xss. Therefore, constraint (9) is substituted
by xss,k = f(xss,k, uss,k). Besides, constraint (10) can be
relaxed by including a slack variable δk ∈ Rnx as follows:

x(Np|k)− xss,k − δk = 0 (17)

Although the standard approach would be to penalize
this slack variable in the controller cost function, it would
be no different from the well-known terminal penalty,
which has been shown to suffice in guaranteeing close-loop
stability for open-loop stable systems (Chen and Allgöwer,
1998). However, besides the fact that this procedure alone
guarantees stability only for stable systems, it still requires
a suitable terminal penalty to be computed offline.

Thus, in order to escape this step of computing terminal
weights, we want to ensure that the distance between
x(Np|k) and a feasible steady state xss,k decreases as
k →∞. For this purpose, the following terminal contraction
constraint is appended to the control problem:

‖δk‖2S ≤ αk‖δk−1‖2S (18)

in which S is a positive-definite matrix, δk−1 is computed
at previous time step and αk is a contraction parameter,
with αk ∈ [αmin, 1).

Observe that, unlike some existing contractive NMPC
strategies (Kothare and Morari, 2000; Xie and Fierro, 2008),
the contraction is imposed only at the end of the prediction
horizon and the contraction parameter is considered as
a decision variable of the control problem. This is done
because choosing a fixed contraction parameter is not
intuitive and small values of αk may compromise system
performance due to the multi-objective characteristic of
the problem. Besides, a lower bound αmin is considered in
order to avoid the computation of small values of αk due
to its overpenalization in the cost function.

Then, the extended nonlinear MPC is based on the solution
of the following optimization problem:

Problem 2. P2(x(k), δk−1) :

min
uk,xss,k,uss,k,δk,αk

V2(k) =

Np∑
j=0

‖x(j|k)− xss,k‖2Qx

+

Nc−1∑
j=0

‖∆u(j|k)‖2R

+ ‖uss,k − udes‖2Qu

+ ‖αk − αmin‖2W

(19)

subject to

x(0|k) = x(k) (20)

x(j + 1|k) = f(x(j|k), u(j|k)), ∀j ∈ Z[0,Np−1] (21)

xss,k = f(xss,k, uss,k) (22)
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x(Np|k)− xss,k = δk (23)

xss,k ∈ Xss (24)

uss,k ∈ U (25)

x(k + j|k) ∈ X , ∀j ∈ Z[0,Np−1] (26)

u(k + j|k) ∈ U , ∀j ∈ Z[0,Nc−1] (27)

∆u(k + j|k) ∈ U∆, ∀j ∈ Z[0,Nc−1] (28)

‖δk‖2S ≤ αk‖δk−1‖2S , αk ∈ [αmin, 1) (29)

Remark 1. Notice that δk−1 must be fed back from previ-
ous sample time. However, in practical applications one
often has x(0|k) 6= x(1|k − 1) due to disturbances. In this

case, δk−1 should be replaced by δ̃k given as follows:

δ̃k = x(Np − 1|k)− x∗ss,k−1 (30)

in which x(Np−1|k) is the state prediction atNp−1 starting
from x(0|k) = x(k) and applying the control sequence

ũk =
[
u∗(1|k − 1)T · · · u∗(Nc − 1|k − 1)T

]T
computed at

time step k − 1. This procedure results in δ̃k = δk−1 when
x(k) = x(1|k − 1), i.e. when the model is nominal and in
the absence of disturbances .

Remark 2. In practice, we should allow αk to be also 1 in
the case where the terminal contraction can not be satisfied.
However, the weight W must be chosen properly so that
the contraction is guaranteed whenever it is feasible.

Since the feasibility set of Problem 2 is not necessarily
the same as the controlled-invariant set under the implicit
control law generated from the sequential application of
the proposed controller, recursive feasibility may not be
assured. In other words, since the feasibility set is not a
controlled-invariant set per se, Problem 2 can generate
inputs that steer the system to outside the feasibility set.
In this regard, we shall make the following assumption:

Assumption 2. The set X is a U-controlled invariant set
that contains a neighborhood of xss ∈ Xss.
Remark 3. In general, the above defined Assumption 2 is
not satisfied for any X simply based on physical system
limits, but state constraints can be tightened so that this
assumption is satisfied (Alamir, 2017).

Assumption 3. There exists a constant κ ∈ (0,∞) such
that ‖x(k + j)− xss‖ ≤ κ‖x(k)− xss‖, ∀j ∈ Z+.

Remark 4. Notice that by Assumption 3 finite escape time
systems are out of the scope of this study.

The following theorem ensures the convergence of δk+j to
the origin.

Theorem 2. Let Assumptions 1-3 hold. Assume Problem 2
is feasible at time step k, then δk+j converges exponentially
to the origin as j →∞.

Proof. Assumption 1 is necessary to guarantee that there
is a steady state satisfying constraints (22), (24)-(25),
avoiding the situation where Problem 2 is trivially infeasible.
Provided Problem 2 is feasible at time step k, it will remain
feasible for every subsequent time step k + j, j ∈ Z+ by
virtue of Assumption 2. Therefore, the sequential solution
of Problem 2 leads to the following relationship:

‖δk+j‖2S ≤ αk+j‖δk+j−1‖2S ≤ · · · ≤
j∏
i=1

αk+i‖δk‖2S (31)

Define ᾱ as follows:

ᾱ := max{αk+i : i ∈ Z1:j : j ∈ Z+} (32)

Now, observing that
∏j
i=1 αk+i ≤ ᾱj , it follows that:

‖δk+j‖2S ≤ ᾱj‖δk‖2S (33)

From Assumption 3, there exists a finite number κ > 0
such that:

‖x(Np|k)− xss,k‖2S ≤ κ‖x(k)− xss,k‖2S (34)

Since δk = x(Np|k) − xss,k, the multiplication of (34) by
ᾱj results in the following inequality:

ᾱj‖δk‖2S ≤ ᾱjκ‖x(k)− xss,k‖2S (35)

Then, combining (33) and (35) yields:

‖δk+j‖2S ≤ ᾱjκ‖x(k)− xss,k‖2S (36)

Recognizing that, since ᾱ ≤ e(ᾱ−1), then ᾱj ≤ e−(1−ᾱ)j ,
we have the following relationship:

‖δk+j‖2S ≤ κe−(1−ᾱ)j‖x(k)− xss,k‖2S (37)

Therefore, ‖δk+j‖2S goes exponentially to zero as j → ∞,
which implies that δk+j also converges to zero. 2

Remark 5. Notice that once δk+j is zero, we have that
αk+j = αmin, x(Np|k + j) = xss,k+j and u(Nc|k + j) =
uss,k+j . Therefore, Problem 2 reduces to Problem 1, whose
asymptotic stability is guaranteed by Theorem 1.

4. APPLICATION EXAMPLE

In this section, we describe the quadruple-tank process
and provide a first-principles model that is used here as
a simulated case study. Next, we define two simulation
scenarios with changes in the control zones and input
targets and provide some results.

Tank 3 Tank 4

Tank 1 Tank 2

Reservoir Tank

Pump 1 Pump 2

Fig. 1. Schematic diagram of the quadruple-tank process.
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Table 1. Variables of the four-tank system.

Symbol Meaning

xi water level of tank i
ai cross-section of the outlet hole of tank i
Ai cross-section of tank i
γi percentage of flow directed to the tank i
g acceleration due to gravity
uj flow rate after pump j

4.1 The quadruple-tank process

The quadruple-tank process (Johansson, 2000) is a well-
known benchmark that was developed for testing and
designing controllers for nonlinear multivariable processes.
This plant consists of four tanks, two pumps and some
valves. A schematic diagram is depicted in Fig. 1. This
system has adjustable zeros, which allows one to set up
the process to operate either in minimum or non-minimum
phase conditions by only changing the position of the valves
that adjust the feed of the tanks.

The goal is to control the level of the lower tanks 1 and 2 by
manipulating the feed flow through the two pumps. Hence,
this system has two inputs u = [u1 u2]T related to the
pumps and four states x = [x1 x2 x3 x4]T corresponding
to the level of each of the four tanks, which are assumed
to be measured in this work.

The first-principles model of this system can be obtained
by using mass balances and Bernoulli’s law, resulting in the
following system of ordinary differential equations (ODE):

dx1

dt
= − a1

A1

√
2gx1 +

a3

A1

√
2gx3 +

γ1

A1
u1 (38)

dx2

dt
= − a2

A2

√
2gx2 +

a4

A2

√
2gx4 +

γ2

A2
u2 (39)

dx3

dt
= − a3

A3

√
2gx3 +

(1− γ2)

A3
u2 (40)

dx4

dt
= − a4

A4

√
2gx4 +

(1− γ1)

A4
u1 (41)

in which the variables are described in Table 1.

We used the same values of model parameters provided in
Raff et al. (2006), which are also given in Table 2.

Table 2. Model parameters (Raff et al., 2006).

Parameter Value Units

A1, A2 50.27 cm2

A3, A4 28.27 cm2

a1 0.233 cm2

a2 0.242 cm2

a3, a4 0.127 cm2

g 981 cm/s2

γ1, γ2 0.4 -

4.2 Simulation results

Simulation scenarios were carried out with two different
controllers, in which controller I consists in the NMPC
defined by Problem 2 and controller II corresponds to the
same control problem, but without the terminal contraction
constraint (29).

Table 3. System constraints.

Variable Min. value Max. value Unit

x [7.5 7.5 3.5 4.5]T [28 28 28 28]T cm

u [0 0]T [60 60]T mL/s

∆u [−5 − 5]T [5 5]T mL/s

For performing the simulation, the sampling time was
chosen as Ts = 2 s and the NMPC tuning parameters
are Np = 8, Nc = 4, Qx = diag([1 1 10−2 10−2]),
Qu = diag([1 0]), R = 10−2diag([1 1]), S = diag([1 1 1 1])
and W = 102. Observe that Qu was chosen such that
only the first input has an optimizing target, which
is assumed to be known. We considered the minimum
contraction parameter as αmin = 0.5. The simulation
starts with x(k) = [8.4495 7.8327 10.2386 10.2386]T ,
u(k − 1) = [30 30]T , u1,des = 39 and control zones
xss,min = [12 11 3.5 4.5]T and xss,max = [14 13 28 28]T .
Then, at t = 6 min, the input target and the control zones
change to u1,des = 41, xss,min = [14 13 3.5 4.5]T and
xss,max = [15 15 28 28]T . Finally, at t = 12 min, the input
target returns to u1,des = 39. In addition, the controller
considers the system constraints given in Table 3.

Since only the levels of tanks 1 and 2 are controlled inside
their zones, we set the zones for the other tanks to be their
physical limits. The evolution of system states, denoted as
x for controller I and xnc for controller II (no contraction),
are depicted in Fig. 2, while the inputs, represented as u
for controller I and unc for controller II, are shown in Fig. 3.
In the plots, the steady states xss and inputs uss computed
with controller II are omitted for clarity.

In the scenario simulated with controller I, the outputs
start outside their control zones and were steered into
them, while the predicted steady states were updated to
steer the input u1 to its target as well. As shown in Fig.
4, the contraction parameter decreases until it reaches its
minimum value and the quantity ‖δ‖2S converges to zero,
as expected. After zones and target changes at t = 6 min,
the system is driven to the new control zones and input
target. This change in operating point required the terminal
contraction to be attenuated as can be observed from
the increase of α, which also results in ‖δ‖2S to increase,
although it converged to zero again. Finally, the system
was driven to a new operating point after the input target
changed at t = 12 min. However, this last change did not
perturb the system enough to produce a deviation between
the terminal predicted state and the predicted steady state,
which is a particular case in which the controller defined
by Problem 1 could be applied.

Regarding the simulation with controller II, it failed to
maintain the levels of tanks 1 and 2 inside their control
zones and did not steer input u1 to its target. In fact, the
system only stabilized because the upper limit of the level
of tank 3 was reached at about t = 7 min, which forced
the controller to compute appropriate inputs to prevent
state constraint violation. The quantity ‖δ‖2S corresponding
to controller II is absent in Fig. 4 because it was much
larger than the one of controller I. This scenario shows the
importance of the terminal contraction constraint as an
ingredient that confers closed-loop stability and guarantees
the convergence of states to inside the control zones.
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Fig. 3. System inputs, steady inputs and input targets.
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Fig. 4. Contraction parameter and ‖δ‖2S .

5. CONCLUSION

This paper presented a formulation of a contractive NMPC
to control systems in terms of output zones and input
targets. The proposed controller does not depend on pre-
defined stabilizing control laws nor on terminal sets. The
simulated scenarios showed the role of the contracting
constraint in driving the outputs inside their control
zones and also grating closed-loop stability to the system,
which was not the case for the controller without this
stability ingredient. Our ongoing research is devoted to the
development of other contractive NMPC approaches that
are suitable for industrial applications.
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Chen, H. and Allgöwer, F. (1998). A Quasi-Infinite
Horizon Nonlinear Model Predictive Control Scheme
with Guaranteed Stability. Automatica, 34(10), 1205–
1217.

Fagiano, L. and Teel, A.R. (2013). Generalized terminal
state constraint for model predictive control. Automatica,
49(9), 2622–2631.

Ferramosca, A., Limon, D., Alvarado, I., Alamo, T., and
Camacho, E.F. (2009). MPC for tracking of constrained
nonlinear systems. Proceedings of the IEEE Conference
on Decision and Control, 7978–7983.
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