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Abstract: In this paper, we consider a multi-objective optimization problem over networks
in which agents aim to maximize their own objective function, while satisfying both local and
coupling constraints. This set up includes, e.g., the computation of optimal steady states in
multi-agent control systems. Since fairness is a key feature required for the solution, we resort
to Cooperative Game Theory and search for the Nash bargaining solution among all the efficient
(or Pareto optimal) points of a bargaining game. We propose a negotiation mechanism among
the agents to compute such a solution in a distributed way. The problem is reformulated as the
maximization of a properly weighted sum of the objective functions. The proposed algorithm is
then a two step procedure in which local estimates of the Nash bargaining weights are updated
online and existing distributed optimization algorithms are applied. The proposed method is
formally analyzed for a particular case, while numerical simulations are provided to corroborate
the theoretical findings and to demonstrate its efficacy.

Keywords: Cooperative game theory; Distributed optimization; Multi-Objective optimization;
Nash bargaining; Distributed model predictive control; Network games.

1. INTRODUCTION

Distributed control of large-scale systems has become a
ubiquitous requirement in many trending applications
such as smart electric grids, self-organized factories or
autonomous vehicles. The control goal in many of these
applications is not mere setpoint stabilization, but rather
optimal operation of the system with respect to certain
real, economic cost criteria such as profit or operating costs.
In cooperative multi-agent applications, the subsystems
can be interested in determining the best steady-state
operating point. However, the overall performance criterion
is usually simply taken as the unweighted sum of the local
performance criteria, which ignores the multi-objective
nature of the original problem and can lead to very poor
performance for some systems, while other systems are
treated preferentially. Thus, such a solution will in general
not be “fair”. The computation of fair optimal steady states
plays an important role in optimization-based distributed
control techniques such as distributed economic model
predictive control (MPC), see Christofides et al. (2013),
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Maestre and Negenborn (2013), Müller and Allgöwer (2017)
for an overview.

The contributions of this paper are as follows. Starting from
the main motivation, namely distributed computation of
fair optimal steady-states for multi-agent control systems,
we propose a distributed algorithm to solve general convex
constraint-coupled multi-objective optimization problems.
Among all the efficient (or Pareto optimal) solutions,
the algorithm is designed to yield a fair solution. The
proposed approach can be subsequently employed in
existing distributed economic MPC schemes, such as Köhler
et al. (2018), to obtain fair economically optimal closed-
loop system operation. The notion of fairness is well
defined in the context of Cooperative Game Theory (Nash,
1950), and in particular, in this work we regard the Nash
bargaining solution as the fair solution. The setup under
consideration consists of a group of agents with local
objectives, depending on local optimization variables, that
are intertwined by means of convex coupling constraints.
The problem of finding a Pareto optimal solution of the
multi-objective problem in a distributed way amounts to
solving a constraint-coupled optimization problem, which
has been investigated in the literature, see, e.g., Bürger
et al. (2014), Notarstefano et al. (2019), Falsone et al.
(2017), Notarnicola and Notarstefano (2019). In order
to obtain the Nash bargaining solution, the approach
proposed in this paper consists of the repeated solution
of constraint-coupled problems over the network, while in
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an iterative fashion adapting the weighting of the local
objective functions in such a way that asymptotically the
Nash Bargaining solution is obtained. To the best of our
knowledge, no such cooperative distributed algorithm has
been proposed in the literature yet, whereas there exist
numerous distributed algorithms for the computation of
Nash equilibria in non-cooperative network games, see,
e.g., Grammatico et al. (2016), Salehisadaghiani and Pavel
(2016), Liang et al. (2017). Since Pareto optimality is in
general not reached by Nash equilibria, cooperation among
the agents is incentivized. Moreover, due to the presence
of coupling constraints among the agents, cooperation is
in fact necessary to obtain a feasible solution.

The paper is organized as follows. In Section 2 we introduce
the main motivation together with the general problem
setup. In Section 3, we introduce the needed game theoreti-
cal tools. In Section 4 we describe our proposed distributed
algorithm and provide some initial analysis. In Section 5,
we demonstrate its efficacy with numerical simulations. Due
to space reasons, the theoretical proofs are omitted and
will be provided in a forthcoming document.

2. MOTIVATING APPLICATION AND PROBLEM
STATEMENT

In this section, we first present our overarching motivation,
which is finding fair (economically) optimal steady states
for a network of constraint-coupled linear systems. We
then generalize this setup to arrive at a more general
optimization problem, which will be studied throughout
this work.

2.1 Multi-objective Optimal Steady States

Consider N ∈ N linear time-invariant systems of the form

zi(t+ 1) = Aizi(t) +Biui(t),

where, for all i ∈ {1, . . . , N}, zi(t) ∈ Rpi is the system’s
state at time t, ui(t) ∈ Rqi is the input to the system
at time t, and the matrices Ai, Bi are of appropriate
dimensions. Assume each system i is subject to local
constraints on the state and input of the form zi(t) ∈ Zi,
ui(t) ∈ Ui, for all t ≥ 0, where Zi ⊆ Rpi and Ui ⊆ Rqi . A
vector (zei , u

e
i ) is a feasible steady state for system i if it

satisfies

zei = Aiz
e
i +Biu

e
i and zei ∈ Zi, u

e
i ∈ Ui.

In multi-agent scenarios, a common requirement is that
the steady states must further satisfy coupling constraints,

which can be written in the form
∑N

i=1Gi(z
e
i , u

e
i ) ≤ b,

where b ∈ Rm and each Gi : Rpi+qi → Rm (assumed
to be convex) is used to express the i-th contribution
to the coupling constraints; inequality signs are meant
component-wise for vectors throughout the paper. Such
coupling constraints appear in various applications as, e.g.,
when multiple systems share a common resource, or when
mobile robots need to stay close to maintain connectivity.

Typically, there exist multiple feasible steady states sat-
isfying the coupling constraints. Therefore, we suppose
that each agent i is equipped with a utility function
`i : Rpi+qi → R that expresses the agent’s individual
preference. To determine an optimal overall steady state

configuration the following multi-objective optimization
problem needs to be solved

max
z1,...,zN
u1,...,uN

[
`1(z1, u1), . . . , `N (zN , uN )

]
subj. to zi ∈ Zi, ui ∈ Ui, i ∈ {1, . . . , N},

zi = Aizi +Biui, i ∈ {1, . . . , N},
N∑
i=1

Gi(zi, ui) ≤ b,

(1)

where the vector-valued utility function means that the
objective is to maximize all the components simultaneously
and not, for instance, in lexicographic order.

2.2 General Setup

In the remainder of the paper, we focus on a more
general problem formulation, which contains our motivating
example in Problem (1) as a special case. To this end,
consider a network of N agents that aim to cooperatively
solve the multi-objective optimization problem

max
x1,...,xN

[
f1(x1), . . . , fN (xN )

]
subj. to hi(xi) ≤ 0, i ∈ {1, . . . , N},

N∑
i=1

gi(xi) ≤ 0,

(2)

where, for all i ∈ {1, . . . , N}, xi ∈ Rni is agent i’s
component of the optimization variable, the function
hi : Rni → Rri expresses local constraints for xi, and
fi : Rni → R is the i-th utility function. Moreover, the
variables are intertwined by means of m ∈ N coupling

constraints
∑N

i=1 gi(xi) ≤ 0, where each gi : Rni → Rm

is used to model the contribution of xi to the coupling
constraints. We use the symbols 0,1 to denote the vectors
of zeroes and ones, respectively. Note that Problem (1) fits
in the general formulation (2) by defining xi as the stack
of zi, ui and by appropriately defining fi, hi and gi. Note
also that separable costs are not restrictive, since one can
make copies of common optimization variables (if present)
and add consistency-preserving coupling constraints.

We assume that each agent i knows only its local constraint
function hi, its local utility function fi, and its own
contribution gi to the coupling. We make the following
standing assumption.

Assumption 2.1. The feasible set of Problem (2) is non-
empty and compact. Moreover, for all i ∈ {1, . . . , N}, (i)
the function fi is concave and continuously differentiable,
(ii) the functions hi and gi are convex and continuously
differentiable. �

In distributed optimization (with standard scalar cost
function), agents are interested in computing an optimal
solution to the overall problem. However, since we deal
with multi-objective optimization, additional elaboration
on the concept of desired optimality is in order.

2.3 Pareto Optimality

For a multi-objective optimization problem, it may be
possible to compute a solution that is optimal for all ob-
jective function components, however this is an uncommon
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situation that is seldom found. A far more interesting and
realistic case occurs when a high degree of optimality for
one component corresponds to a low degree of optimality
for the others. In these cases, one is typically interested in
computing a so-called Pareto optimal solution, the formal
definition of which is as follows.

Definition 2.2. A feasible vector (x?1, . . . , x
?
N ) for Prob-

lem (2) is Pareto optimal if there does not exist another
feasible vector (x′1, . . . , x

′
N ) such that fi(x

′
i) ≥ fi(x

?
i ) for

all i ∈ {1, . . . , N} and fj(x
′
j) > fj(x

?
j ) for at least one

j ∈ {1, . . . , N}. �

Figuratively, a Pareto optimal solution “saturates” optimal-
ity in the sense that an improvement over one component of
the objective function can only be obtained by worsening
(at least) one other component. In order to practically
compute Pareto optimal solutions of Problem (2), several
techniques exist in the literature, see, e.g., Miettinen (2012).
Here we employ the so-called weighting method, which is
amenable for distributed computation. The original multi-
objective problem (2) is transformed into a (standard)
optimization problem with scalar objective function, i.e.,

max
x1,...,xN

N∑
i=1

wifi(xi)

subj. to hi(xi) ≤ 0, i ∈ {1, . . . , N},
N∑
i=1

gi(xi) ≤ 0,

(3)

where each wi ≥ 0 is a weight assigned to the i-th
component of the overall objective function. Under the
convexity Assumption 2.1, it can be shown that any Pareto
optimal solution of Problem (2) corresponds to a set of
weights for Problem (3), as detailed in the next lemma.

Lemma 2.3. (Miettinen (2012), Thm 3.1.4). Let Assump-
tion 2.1 hold and let (x?1, . . . , x

?
N ) denote a Pareto opti-

mal solution of Problem (2). Then, there exist wi ≥ 0,
for i ∈ {1, . . . , N}, such that (x?1, . . . , x

?
N ) is an optimal

solution of Problem (3). �

For preassigned, fixed weights wi, Problem (3) may be
solved cooperatively in a distributed way using an existing
algorithm such as, e.g., Bürger et al. (2014), Falsone
et al. (2017), Notarnicola and Notarstefano (2019). Clearly,
depending on the Pareto optimal solution, each component
of the objective function is weighted differently from the
others. A natural question arising at this point is whether
it is possible to find a fair Pareto optimal solution and,
consequently, how to choose the weights wi accordingly.
Hence, the goal of this work is to develop a distributed
algorithm that provides a fair set of the weights in
Problem (3) online, where the notion of fairness is detailed
in the following.

3. COOPERATIVE GAME THEORY

In this section we provide some background on cooperative
game theory. We recall the definition of bargaining problem
and we formulate a game associated to the multi-objective
problem (2). Then, we recall the definition of Nash
bargaining solution along with its main properties.

3.1 Bargaining Problems

Bargaining problems were first introduced by Nash (1950).
A bargaining problem is a game in which several players (or
agents) aim to share a surplus that they are able to generate
through cooperation. The goal of the game is that agents
agree on how the surplus should be split. Formally, an N -
player bargaining game is defined by a tuple (Y, d), where
Y ⊆ RN is the feasible set and d ∈ RN is the disagreement
point (Thomson, 1994). The feasible set represents all the
possible outcomes of the game, while the disagreement point
is a “fallback solution”, which is selected if negotiation
breaks down. The solution of the bargaining game is a
vector y? ∈ Y on which agents unanimously agree (it can
also be y? = d). Clearly, each agent i is interested in making
its y?i as large as possible. In order to apply cooperative
game theory results, the following assumption is made.

Assumption 3.1. We assume that (i) d ∈ Y, (ii) Y is d-
comprehensive: if y ∈ Y and y ≥ y′ ≥ d, then y′ ∈ Y, and
(iii) there exists y ∈ Y such that y > d. �

Let us briefly comment on this assumption. Item (i)
requires the disagreement to be a possible outcome of
the game, (ii) can be interpreted as the freedom of each
agent to decrease its utility, while (iii) means that all the
agents can benefit from cooperation.

Let us now connect the formalism of cooperative game
theory with the definitions of the previous section by
posing a bargaining problem associated to Problem (2).
We define the feasible set Y of the game as the image of
the feasible set of Problem (2) through the vector function
F (x) = [f1(x1), . . . , fN (xN )], i.e.,

Y , F (X ) = {F (x) | x ∈ X},
where X is the feasible set of Problem (2), i.e.,

X ,
{
(x1, . . . , xN ) | hi(xi) ≤ 0 ∀ i and

N∑
i=1

gi(xi)≤0
}
.

Therefore, Y represents the set of all the possible utility
combinations that correspond to (at least) one feasible
solution of problem (2). In such a way, all the feasible
vectors of Problem (2) are represented by a point in Y,
which in turn represents how much each agent can benefit
from cooperation.

Let us briefly comment on the definition of the disagreement
point d. We suppose that the agents are equipped with a
feasible vector xd = (xd1 , . . . , x

d
N ) ∈ X such that each agent

i only knows xdi and di = fi(x
d
i ) for all i ∈ {1, . . . , N}. In

principle, we assume that the agents already know their xdi ,
because it represents the starting point of the game. For
instance, it could be provided to the agents by a centralized
authority regulating the game, or it could be computed
by the agents as the Nash equilibrium of the underlying
strategic game. In general, the way of how xd should be
computed is application specific.

3.2 Nash Bargaining Solution

There exist several notions of solutions to bargaining
problems, see, e.g., Thomson (1994). Here, we focus on
the Nash bargaining solution, the definition and properties
of which are now recalled.
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The Nash bargaining solution (y?1 , . . . , y
?
N ) is the unique vec-

tor maximizing
∏N

i=1(yi−di) while satisfying (y1, . . . , yN ) ∈
Y and y ≥ d. The significance of the Nash bargaining solu-
tion lies in the fact that it enjoys desirable properties, which
are referred to as axioms (see also Thomson (1994)). Among
them, we mention that (i) it satisfies Pareto optimality,
(ii) all agents gain from cooperation, i.e., y?i > di for all
i ∈ {1, . . . , N}, and (iii) the solution is scale invariant, in
the sense that any affine transformation applied to the
set Y and to the disagreement point d results in the same
transformation applied to the Nash bargaining solution
(y?1 , . . . , y

?
N ). Note that the latter property is of particular

significance in our setup. Indeed, this means that the Nash
bargaining solution associated to Problem (2) takes into
account the scale used by each agent to represent its utility.

We now comment on the computational aspect. To compute
the nash bargaining solution, let us consider the problem

max
x1,...,xN

N∏
i=1

(fi(xi)− di)

subj. to hi(xi) ≤ 0, i ∈ {1, . . . , N},
fi(xi) ≥ di, i ∈ {1, . . . , N},
N∑
i=1

gi(xi) ≤ 0.

(4)

Then, if (x?1, . . . , x
?
N ) denotes an optimal solution of

Problem (4), it follows that

y?i = fi(x
?
i ), for all i ∈ {1, . . . , N}.

In order to compute the Nash bargaining solution in a
distributed way, it would be desirable to use distributed
algorithms for constraint-coupled problems (see Notarste-
fano et al. (2019) for an overview). All of these algorithms
require the overall objective function to be expressed as
the sum of local functions. In order to bring Problem (4)
into such a structure, one could consider the logarithm of
the objective function in (4). However, such an approach
would require log-concavity of the local objective functions,
which is a strong assumption. In the following, we propose
a distributed algorithm that is shown to work without the
log-concavity assumption.

4. DISTRIBUTED ALGORITHM

In this section, we propose a distributed algorithm to obtain
the Nash bargaining solution of Problem (2), which is the
optimal solution of Problem (4). First, we reformulate the
problem to make it amenable for distributed optimization.
Second, we formalize our Match Nash Weights distributed
algorithm, which is then analyzed for a particular case.

4.1 Problem Reformulation

As mentioned above, a distributed solution of the Nash
bargaining problem (4) is not directly possible using
existing distributed optimization algorithms due to the
objective being a product of local contributions. On the
other hand, Problem (3) is amenable to state-of-the art
distributed optimization algorithms. Therefore, in view of
Pareto optimality of the Nash bargaining solution and of
Lemma 2.3, we now elaborate on the computation of the
individual objectives’ weighting factors wi corresponding to

the Nash bargaining solution. In the following, we consider
a modified version of Problem (3),

max
x1,...,xN

N∑
i=1

wifi(xi)

subj. to hi(xi) ≤ 0, i ∈ {1, . . . , N},
fi(xi) ≥ di, i ∈ {1, . . . , N},
N∑
i=1

gi(xi) ≤ 0,

(5)

where we also added the constraint fi(xi) ≥ di, which
is present in Problem (4) but not in (3). Note that this
constraint is convex and involves only local information for
each agent i, therefore state-of-art distributed algorithms
can be applied to Problem (5). We also make the following
assumption on the problem, which is standard in the
literature and allows for the application of duality.

Assumption 4.1. (Slater). There exist x̄1, . . . , x̄N such that

hi(x̄i) < 0 and fi(x̄i) > di for all i and
∑N

i=1 gi(x̄i) < 0.�

As proposed in Waslander et al. (2004), let us compute
the weights corresponding to the Nash bargaining solution
by comparing the optimality conditions of Problems (5)
and (4). The next theorem formalizes this fact.

Theorem 4.2. Let Assumptions 2.1, 3.1 and 4.1 hold.
Moreover, for α > 0, let the weights of Problem (5) be

w?
i =

α

y?i − di
, i ∈ {1, . . . , N}. (6)

Then, any optimal solution (x?1, . . . , x
?
N ) of Problem (5)

corresponds to the Nash Bargaining Solution of the bar-
gaining problem, i.e., fi(x

?
i ) = y?i for all i. �

Some comments are in order. First, there is a degree of
freedom that is given by the choice of α > 0. Indeed,
the weights corresponding to the Nash bargaining solution
are defined up to a constant, therefore they essentially
identify a “direction” of optimization. Second, note that
the weights (6) explicitly depend on the optimal solution.
This fact directly suggests that we can design a distributed
algorithm, proposed in the next section, in which the
weights are iteratively adapted.

4.2 Algorithm Description

We can now state the proposed distributed algorithm, where
λ ∈ (0, 1) and M > 0 are two given design parameters.

Distributed Algorithm Match Nash Weights

Initialization: positive weights w0
i > 0 for all i

Perform distributed optimization and compute
(xt1, . . . , x

t
N ), an optimal solution of (5) with wi = wt

i

Each agent i computes w̃t
i locally as

w̃t
i =


1

fi(xti)− di
if fi(x

t
i) > di

M if fi(x
t
i) = di

(7)

Compute ‖wt‖2 and ‖w̃t‖2 via average consensus

Each agent i updates wt+1
i as

wt+1
i = λ

wt
i

‖wt‖
+ (1− λ)

w̃t
i

‖w̃t‖
(8)
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Let us comment on the algorithm evolution. Initially, agents
have an estimate w0 of the optimal weights. With this
estimate, they compute an optimal solution (xt1, . . . , x

t
N )

of Problem (5) that corresponds to a possible outcome of
the bargaining game via distributed optimization. Then,
they use the iteration (7) to compute a new set of weights
w̃t. In order to improve the convergence properties of the
algorithm, they further perform a combination step (8),
in which the updated set of weights is computed as a
convex combination of wt and w̃t. Intuitively, the algorithm
is always changing the “direction” of optimization in
Problem (5) by adapting wi until the weights of the Nash
bargaining solution are reached.

We do not provide a full analysis of Match Nash Weights,
however in the next subsection we give a theoretical result
for a special case. In Section 5, we demonstrate the efficacy
of the proposed algorithm through numerical simulations.

4.3 Algorithm Analysis

In this section we present a convergence analysis of our
distributed algorithm under simplifying assumptions that
allow us to explicitly express the evolution of the algorithm
in order to avoid technicalities. Although this example
may seem oversimplified, its sole purpose is to highlight
the main features of the analysis of the algorithm in full
generality, which is subject of ongoing work.

Let us consider the following multi-objective optimization
problem, which is a special case of Problem (2),

max
x1,...,xN

[√
x1, . . . ,

√
xN
]

subj. to

N∑
i=1

xi ≤ N

xi ∈ [0, N ], for i ∈ {1, 2}.

(9)

Let us formulate the bargaining problem corresponding
to Problem (9). The feasible set of the problem is X =

{(x1, . . . , xN ) ∈ [0, N ]N :
∑N

i=1 xi ≤ N} and the vector-
valued objective function is F (x) = [

√
x1, . . . ,

√
xN ]. It

follows from these definitions that the feasible set of the
bargaining problem, i.e. Y = F (X ), admits the expression

Y =

{
(y1, . . . , yN )

∣∣∣∣ y ≥ 0,
N∑
i=1

y2i ≤ N
}
. (10)

The set Y is an N -sphere intersected with the non-negative
orthant. This is a “normalized” bargaining problem, in
the sense that it satisfies the symmetry axiom and the

simplex
∑N

i=1 yi ≤ N is a supporting hyperplane of the set
Y . For such a particular case, the Nash bargaining solution
is already known to be equal to y? = 1 (Thomson, 1994).

We will now analyze the algorithm applied to this setup,
assuming the disagreement point is the origin, i.e., d = 0.
First, note that Assumptions 2.1, 3.1 and 4.1 are satisfied,
except for differentiability of the objective functions at xi =
0, which however is only required to apply Theorem 4.2. By
using (10) and by applying the change of variables yi =

√
xi

for all i, it follows that the network-wide optimization
problem with weighted sum of the objectives amounts to

max
y1,...,yN

N∑
i=1

wiyi

subj. to y ≥ 0
N∑
i=1

y2i ≤ N.

(11)

By applying Theorem 4.2 to Problem (11) the weights
corresponding to the Nash bargaining solution are w? = α1,
for α > 0. At any iteration t, if (yt1, . . . , y

t
N ) denotes

the optimal solution of Problem (11) for w = wt, the
computation of w̃t

i reduces to

w̃t
i =

{
1/yti if yti > 0,

M if yti = 0.

Next we provide the convergence result for Match Nash
Weights applied to Problem (9) in the case of two agents. To
remove the extra degree of freedom α > 0, the convergence
result is stated in terms of the normalized version of wt.

Theorem 4.3. Assume N = 2 and let 0 < λ < 1. Consider
the sequence {wt}t≥0 generated by Match Nash Weights
applied to Problem (2), initialized with w0 > 0. Then, it
holds

lim
t→∞

ut = u? ,
1√
2
1.

Proof. For space reasons, we only provide a sketch of the
proof. It is based on deriving an explicit expression of ut

of the form

ut+1
1 =

λut1 + (1− λ)ut2√
λ2 + (1− λ)2 + 4λ(1− λ)ut1u

t
2

,

and a symmetric expression for ut2. Then, the main idea is
to prove that, for λ ∈ (0, 1), the angle between the vectors
ut and u? decreases strictly at each iteration. This can be
accomplished by defining a sequence V t of the form

V t ,
1>ut

‖1‖
=
ut1 + ut2√

2
, for all t ≥ 0,

which is equal to the cosine of the angle between ut and
u? and thus satisfies −1 ≤ V t ≤ 1. By using geometric
observations, it is possible to show that V t converges to 1
and, as a consequence, the vector ut converges to u?.

5. NUMERICAL EXAMPLES

In this section we demonstrate the efficacy and the
properties of Match Nash Weights in numerical simulations.
In particular, we first provide simulation results of the
setup (9) in order to illustrate the convergence analysis of
the preceding section. Subsequently, we loop back to our
very initial motivation and have our algorithm solve the
problem of determining a fair economic optimal steady-
state configuration for a set of constraint-coupled linear
systems. This second, more elaborate example highlights
that Match Nash Weights is indeed capable of finding the
Nash bargaining solution in a distributed way for setups
much more complex than the one exemplarily analyzed in
the previous section.
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5.1 Two-agent example

We consider the setup (9) with disagreement point d = 0.
The initial condition of each agent w0

i > 0 is randomly
chosen and the algorithm is run for different values of λ.
A detailed analysis of the impact of the parameter λ is
subject of ongoing work.

Figure 1 reports the cost error with respect to the optimal
cost of Problem (4) Note that, for λ = 0, the algorithm does
not converge. For λ ∈ {0.2, 0.9}, the algorithm converges,
although with different rates, while for λ = 0.5 convergence
occurs at the first iteration. Indeed, in this example, for
λ = 0.5 any choice of u0 > 0 immediately yields u1 = u?.

0 10 20 30 40
10−9

10−5

10−1

iteration

c
o
st

e
rr
o
r

λ = 0

λ = 0.2

λ = 0.5

λ = 0.9

Fig. 1. Cost error for the simulation with N = 2 agents.

5.2 N -agent example

We now focus on an example scenario of our initial
motivation, namely distributed computation of fair optimal
steady states. The setup detailed next is a readapted version
of Köhler et al. (2018, Section 5.1).

Let us consider N = 50 two-dimensional discrete-time
systems of the form xi(k + 1) = Aixi(k) + Biui(k), with
xi(k) ∈ R2 and ui(k) ∈ R with the system matrices
Ai = [ 1 1

0 1 ] and Bi = [0, 1]>. Local state and input
constraints are −1 ≤ xi, ui ≤ 1 for all i. The objective
function of each agent is `i(xi, ui) = −ηi

(
(ai − xi,1)2 +

(bi − xi,2)2 + (di − ui)
2
)
, with ai, bi, di ∈ [0, 0.1] and

ηi ∈ [0, 1] randomly chosen. The coupling constraint is

given by the resource constraint
∑N

i=1 xi,1 ≤ −0.5. For
each agent, the equilibrium (xdi , u

d
i ) corresponding to the

disagreement point is given by xdi = [−1, 0]> and udi = 0.
First, we solved Problem (4) to optimality by using a
centralized solver. Then, we executed our algorithm by
initializing each agent with a random weight w0

i > 0 and
by using different values of λ.

In Figure 2 we report the cost error and the error of xt

with respect the optimal cost and the optimal solution of
Problem (4) (respectively). It is seen that the algorithm
converges to the optimal weights and that the vector xt

approaches the optimal solution for all values of λ.

6. CONCLUSIONS

In this paper we presented a novel distributed optimization
framework. Agents in a network aim to cooperatively
solve a constraint-coupled multi-objective optimization
problem, while ensuring fairness of the computed solution.
Cooperative game theoretical tools have been used to
characterize local objective weightings corresponding to the
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Fig. 2. Cost error (left) and solution error (right) for the
simulation with N = 50 agents.

Nash bargaining solution. A distributed algorithm has been
proposed to compute such weighting factors. Convergence
of the algorithm in a particular case has been proven,
while numerical simulations demonstrate the efficacy of
the proposed approach. A detailed study of convergence
conditions of the proposed algorithm for more general
settings is the subject of ongoing work.
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