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Abstract: We generalize the definition of flat inputs to implicit nonlinear differential equations
of order α > 1. By allowing injections of input components and its time derivatives up to some
finite order δ in both the dynamics and the output equations we show that physical realizability
of generalized flat inputs can be achieved in cases that were shown to possess no physically
realizable flat input. In addition, it can be shown that there always exists a physically realizable
(generalized) flat input of order δ < α in the linear case.
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1. INTRODUCTION

While linear systems have been well understood, the
control of nonlinear systems faces many open problems.
A typical approach in control theory is a linearization via
(dynamic) feedback which then allows the usage of a rich
set of linear methods. The property that characterizes the
class of nonlinear systems which is feedback linearizable is
differential flatness and has been introduced in the early
1990s by Fliess et al. (1992, 1995). Flat systems are in
a certain sense equivalent to linear controllable systems
(Fliess et al., 1999a). Informally, they possess a (possibly
virtual) output called a flat output that (along with its
derivatives) parametrizes the system variables, while the
flat output itself is parametrized by the system variables
(and derivatives thereof). Despite a lot of progress (see
e.g. Lévine (2004, 2009, 2011); Schöberl and Schlacher
(2007); Antritter and Lévine (2008); Franke and Röbenack
(2013); Fritzsche et al. (2016b,a)) and the fact that many
(industrial) systems are flat (see e.g. Fliess et al. (1999a)
and the references therein), for arbitrary systems neither
the existence of flat outputs nor the computation thereof
have been answered sufficiently and remain open problems,
see Fliess et al. (1999b); Martin et al. (2007).

A different approach to exploit flatness has been taken
from a dual perspective: The question of where to influence
a system such that a given output becomes flat motivates
the definition of flat inputs, as defined by Waldherr and
Zeitz (2008, 2010). For (locally) observable state space
systems, there exist different approaches for the compu-
tation of flat inputs (Nicolau et al., 2018a; Fritzsche and
Röbenack, 2018b). It has been shown that the computa-
tion of flat inputs is far easier (for this class of nonlinear
systems) compared to flat outputs, and can even be carried
out in a purely algebraic way, i.e., there is no integrabil-
ity condition to be satisfied, see Fritzsche and Röbenack
(2018b). Besides actuator placement, flat inputs have been
shown to be useful as pure computational quantities for
the control of non-flat systems (Stumper et al., 2009),

for parameter identification (Schenkendorf and Mangold,
2014) and secure communication (Nicolau et al., 2018b).

While (local) controllability is a necessary condition for
the existence of flat outputs, flat inputs exist for (certain)
non-observable systems as well. For special non-observable
two-output systems, the computation of flat inputs has
been solved by Nicolau et al. (2018a), whereas the general
non-observable case remains an open problem. However,
as shown in Fritzsche et al. (2019) these difficulties can
be circumvented and a flat input based tracking control
can be achieved for non-observable systems with stable
internal dynamics, too.

So far, flat inputs have been introduced for state space sys-
tems only, although most flatness based methods exist for
implicit systems as well. When dealing with higher order
differential equations, the computation of flat input vector
fields is complicated by possible injections into definitional
equations that arise when transforming these equations
into state space representation. While Waldherr and Zeitz
(2010) define the property of physical realizability of a flat
input, we draw a different conclusion:

In this contribution we generalize the definition of flat
inputs in different ways: (1) We allow injections of the
input and its time derivatives up to some finite order
δ, (2) we permit input injections (and derivatives up to
some finite order) into the output equation, and (3) we
define flat inputs for implicit nonlinear systems. None of
these generalizations are a limitation regarding a physical
realization. We describe how the algorithm proposed in
Fritzsche and Röbenack (2018b) can be used to compute
generalized (physically realizable) flat inputs for observ-
able implicit nonlinear systems. Finally, while the order of
input derivative injections δ can be arbitrary large (but
finite), for linear systems there can always be found a
generalized flat input with δ < α where α is the order of
our original differential equation.
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2. PRELIMINARIES

2.1 Ore polynomial matrices

Let N = {0, 1, 2, . . .} be the set of natural numbers,
N+ = N \ {0} the set of positive natural numbers, t the
time and K the set of meromorphic functions. The set of
polynomials in the differential operator d

dt whose coeffi-
cients are elements in K is a so-called Ore polynomial ring
and will be denoted as K[ d

dt ]. The multiplication in this
ring is non-commutative and determined by

∀a ∈ K : d
dta = ȧ+ a d

dt . (1)

The set ofm1×m2 matrices whose coefficients are elements
in K[ d

dt ] will be denoted by Km1×m2 [ d
dt ] (or (K[ d

dt ])
m1×m2

depending on the context). We also define

row(A1( d
dt ), ... ,Ap( d

dt )) :=

A1( d
dt )

...
Ap( d

dt )


and

col(B1( d
dt ), ... ,Bp( d

dt )) := (B1( d
dt ) ... Bp( d

dt ))

for Ai(
d
dt ) ∈ K•×m2 [ d

dt ], i ∈ {1, . . . , p} and Bj(
d
dt ) ∈

Km1×•[ d
dt ], j ∈ {1, . . . , p}.

Definition 1. Let A( d
dt) =

∑d
i=0 Ai · ( d

dt)
i ∈ Kp×q[ d

dt ] where
Ai ∈ Kp×q. We define the degree of A( d

dt) w.r.t. d
dt as

deg A( d
dt) := d.

Since in general the inverse of a polynomial is not a poly-
nomial, the following definition characterizes an important
set.

Definition 2. A matrix A( d
dt) ∈ Kp×p[ d

dt ] is called unimod-
ular if there exists a matrix B( d

dt) ∈ Kp×p[ d
dt ] such that

A( d
dt)B( d

dt) = B( d
dt)A( d

dt) = Ip. The set of unimodular
p× p matrices is denoted by Up[ d

dt ].

This definition now motivates an interesting property
for non-square matrices, which is typically introduced
using the so-called Smith normal form. However, to keep
it simple we will use an equivalent, more appropriate
definition here (cf. Antritter and Middeke (2011); Fritzsche
and Röbenack (2018a)).

Definition 3. A matrix A( d
dt) ∈ Kp×q[ d

dt ] is called hyper-
regular if it can be completed to a unimodular matrix,
i.e., if there exists a matrix B( d

dt) (of suitable size) such
that {

row(A( d
dt),B( d

dt)) ∈ Uq[ d
dt ], p < q

col(A( d
dt),B( d

dt)) ∈ Up[ d
dt ], p > q.

The matrix B( d
dt) is then referred to as a unimodular

completion of A( d
dt).

Obviously, a hyper-regular square matrix is unimodular,
and vice versa.

Lemma and Definition 4. A matrix A( d
dt) ∈ Kp×q[ d

dt ] with
p 6= q is hyper-regular, iff there exists a matrix B( d

dt) ∈
Kq×p[ d

dt ] such that{
A( d

dt)B( d
dt) = Ip, p < q

B( d
dt)A( d

dt) = Iq, p > q.

The matrix B( d
dt) is then called a right pseudo inverse

of A( d
dt) denoted by A+R( d

dt) if p < q, and a left pseudo
inverse of A( d

dt) symbolized by A+L( d
dt) if p > q.

Proof. We show the case p < q: Hyper-regularity of
A( d

dt) implies the existence of a unimodular completion
C( d

dt), i.e., D( d
dt) := row(A( d

dt),C( d
dt)) ∈ Uq[ d

dt ]. The ma-
trix B( d

dt) consists of the first p columns of the inverse of
D( d

dt). The case p > q is similar. �

For a practical computation of right and left pseudo
inverses we refer to Fritzsche and Röbenack (2018a).
Evidently, the inverse of a unimodular matrix is unique,
i.e., it is left and right invertible. A useful fact about hyper-
regular matrices can be stated as follows:

Lemma 5. Let A( d
dt) ∈ Kp×q[ d

dt ] be hyper-regular, p < q,
and r ∈ N. Then the matrix

W( d
dt) =

(
A( d

dt) 0
T1( d

dt) B( d
dt)

)
∈ K(p+r)×(q+r)[ d

dt ]

is hyper-regular for arbitrary matrices T1( d
dt) ∈ Kr×q[ d

dt ]
and B( d

dt) ∈ Ur[ d
dt ].

Proof. Due to hyper-regularity of A( d
dt) there exists a

right pseudo inverse A+R( d
dt) ∈ Kq×p[ d

dt ]. It is easy to verify
that

W+R( d
dt) =

(
A+R( d

dt) 0
−B−1( d

dt)T1( d
dt)A

+R( d
dt) B−1( d

dt)

)
is a right pseudo inverse of W( d

dt), thus W( d
dt) is hyper-

regular. �

We now bridge the preceding definitions with nonlinear
systems.

2.2 Differential flatness and flat outputs

Let

0m = F(x, ẋ, . . . ,x(α)), x(t) ∈ Rn, α ∈ N+ (3)

be an implicit system, where F is assumed meromorphic.

Definition 6. The matrix

Jx(F) :=

(
α∑
i=0

∂F

∂x(i)

(
d

dt

)i)
∈ Km×n[ d

dt ]

is called generalized Jacobian of F.

Definition 7. (Fliess et al. (1992, 1995)). The system de-
scribed by (3) with m < n is called (differentially) flat if
there exists an n−m tuple y such that

(1) y = hy(x, ẋ, . . . ,x(β)), β ∈ N,

(2) x = gx(y, ẏ, . . . ,y(γ)), γ ∈ N, and
(3) the components of y are differentially independent,

i.e., there exists no differential equation of the form
R(y, ẏ, . . . ,y(ϕ)) = 0, ϕ ∈ N.

The tuple y is then called flat output of (3).

Note that flatness is a local property, i.e., flat outputs
may not be globally defined. A necessary condition for the
existence of flat outputs is (local) controllability, which can
be linked to hyper-regularity (Lévine, 2011):

Proposition 8. The system (3) with m < n is (locally)
controllable iff Jx(F) ∈ Km×n[ d

dt ] is hyper-regular.

Proof. See Lévine (2011). �

Dual to Proposition 8, system (3) with m > n is (locally)
observable iff Jx(F) ∈ Km×n[ d

dt ] is hyper-regular. However,
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(local) observability is not a necessary condition for the
existence of flat inputs (Waldherr and Zeitz, 2010) as
mentioned in the introduction.

A more constructive proposition for flat output compu-
tation which can be utilized for the computation of flat
inputs as well is the following sufficient condition for dif-
ferential flatness (Lévine, 2011).

Proposition 9. The system (3) with m < n is flat, if there
exists a (virtual) output

y = hx(x, ẋ, . . . ,x(β)), y(t) ∈ Rn−m, β ∈ N
such that

Jx( F
hx

) ∈ Un[ d
dt ].

Proof. See (Lévine, 2011, Thm. 3). �

3. GENERALIZED FLAT INPUTS FOR IMPLICIT
SYSTEMS

3.1 Flat inputs for state space systems and physical
realizability

In Waldherr and Zeitz (2008, 2010) flat inputs have been
introduced for state space systems as follows:

Definition 10. Given a system ẋ = f(x), x(t) ∈ Rn with
an output y = h(x), y(t) ∈ Rm, the (independent) com-
ponents of any gf = (gf,1, . . . ,gf,m) that render

ẋ = f(x) +

m∑
i=1

gf,i(x)uf,i (4)

flat such that y is a flat output are called flat input vector
fields. The corresponding uf(t) := (uf,1(t), . . . , uf,m(t))T is
then called a flat input.

Oftentimes, the state space description results from in-
troducing equations of the form żi = zi+1 which we will
refer to as definitional equations. These are used to replace
higher order derivatives in the original differential equation
and thus reducing the order of the system. Injecting flat
inputs into these definitional equations however prevents
us from reversing this process, so this is to be avoided.
Waldherr and Zeitz (2010) give the following

Definition 11. A given flat input vector field of a state
space system is called physically realizable if the flat input
does not act on the definitional equations.

This definition is then motivated using the

Example 12. Consider the linear second-order system

q̈ + dq̇ + kq = 0 (5a)

where d, k are constants, and the output equation

y = h(x) = −kx1 − dx2. (5b)

Introducing the state vector x := (q, q̇)T the system (5a)
is rewritten in state space form as

ẋ = f(x) =

(
x2

−kx1 − dx2

)
(6)

which introduces a definitional equation ẋ1 = x2. In Wald-
herr and Zeitz (2010), the suggested flat input vector field
reads γ = ε(x)(d,−k)T where ε(x) 6= 0 as an arbitrary

function is a degree of freedom, i.e., the flat input system
yields

ẋ = f(x) + γu =

(
x2

−kx1 − dx2

)
+ ε(x)

(
d
−k

)
u (7)

and (5b) is a flat output. Obviously this flat input vector
field injects into the definitional equation ẋ1 = x2. The
conversion back into a second order system is therefore
not possible, i.e., this flat input is not physically realizable
– regardless of the choice of ε(x).

Waldherr and Zeitz (2010) then provide a condition for
physical realizability of flat inputs. In the following sub-
section we will show that a generalized flat input definition
allows more freedom with respect to a physical realization.

3.2 A generalized flat inputs definition

Flat outputs have been defined and analyzed for implicit
systems which justifies the urge to define flat inputs for
implicit systems, too. Another motivation to generalize
Definition 10 is the somewhat artificial restriction of not
allowing a feedthrough of the flat input, i.e., by Defini-
tion 10 there are no input injections to be made in the
output equation. Lastly, we allow affine injections of input
derivatives in both, the dynamics and the output equation.
Note that none of these generalizations limits a physical
realizability.

We examine implicit systems of the form

0n = F(x, ẋ, . . . ,x(α)), x(t) ∈ Rn, α ∈ N+ (8a)

with an output equation

y = G(x, ẋ, . . . ,x(α)), y(t) ∈ Rm,m < n. (8b)

Definition 13. Consider systems of the form (8). If there
exist matrices

Ki(x, ẋ, . . . ,x
(γ)) ∈ K(n+m)×m, i ∈ {0, . . . , δ}, (9)

with γ, δ ∈ N that render

0n = F + (In 0n,m) ·
δ∑
i=0

Kiu
(i), u(t) ∈ Rm (10)

differentially flat such that

ỹ = G + (0m,n Im) ·
δ∑
i=0

Kiu
(i) (11)

is a flat output of (10), then the input u is called a
(generalized) flat input of (8).

Note that Definition 13 is in accordance with Definition 10
for δ = 0 and (0m,n, Im)K0 = 0m×m. We may therefore
drop the specification generalized if this is clear from the
context.

3.3 On the computation of generalized flat inputs for
(locally) observable nonlinear systems

For the generalized flat input computation we will uti-
lize the algorithm described in Fritzsche and Röbenack
(2018b) which assumes (8) to be a first order (locally)
observable system. Therefore, we first carry out an order
reduction of (8): Introducing z := row(x, ẋ, . . . ,x(α−1))
with definitional equations

0(α−1)n = (żi − zi+n)
i∈{1,...,(α−1)n} =: E(z, ż) (12)
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allows the substitution of x(i) for i ∈ {0, 1, . . . , α} in (8),
i.e., we get the reduced first order system(

0αn
y

)
=

(
E(z, ż)
F(z, ż)
G(z, ż)

)
=: H(z, ż) (13)

where z(t) ∈ Rαn,y(t) ∈ Rm. The generalized Jacobian of
(13) is then computed by

Jz(H) =
∂H

∂ż︸︷︷︸
=:P1

d

dt
+
∂H

∂z︸︷︷︸
=:P0

∈ K(αn+m)×αn[ d
dt ] (14)

and has the structure

P1 =

(
I(α−1)n 0

0 Qα

)
=:

(
P1,1

P1,2

)
, (15a)

P0 =

(
0 −I(α−1)n

Q0 Γ

)
=:

(
P0,1

P0,2

)
(15b)

where

Γ := col(Q1, . . . ,Qα−1) ∈ K(n+m)×(α−1)n. (16)

The matrices Qi are computed as

Qi :=
∂

∂x(i)

(
F
G

)
∈ K(n+m)×n, i ∈ {0, . . . , α} (17)

where x
(j)
i is replaced by zi+jn for i ∈ {0, 1, . . . , n},

j ∈ {0, 1, . . . , α − 1} and x
(α)
i is replaced by żi+(α−1)n

for i ∈ {0, 1, . . . , n}.
Next, we compute a hyper-regular completion C( d

dt) of
(14). If we assume

rank
∂

∂x(α)

(
F
G

)
= n (18)

or equivalently rank P1 = αn then we can apply the
algorithm proposed in Fritzsche and Röbenack (2018b) to
compute a unimodular completion 1 2 3 . We get

(Jz(H) C( d
dt)) =:

(
P1,1

d
dt + P0,1 C1( d

dt)
P1,2

d
dt + P0,2 C2( d

dt)

)
∈ Uαn+m[ d

dt ]

The goal is to modify this unimodular completion in order
to avoid input injections in the definitional equations. The
following lemma will help to achieve that.

Lemma 14. The generalized Jacobian of definitional equa-
tions Jz(E) = P1,1

d
dt + P0,1 is hyper-regular.

Proof. We need to show hyper-regularity of

Jz(E) =
(
I(α−1)n

d
dt 0(α−1)n,n

)
+
(
0(α−1)n,n −I(α−1)n

)

=

In d
dt −In 0 0

0 In d
dt −In

0

0 0 In d
dt −In




∈ K(α−1)n×αn[ d

dt ]

1 In this case we can omit the last step in Fritzsche and Röbenack
(2018b), i.e., the completion C( d

dt
) is an element in K(αn+m)×m, not

in K(αn+m)×m[ d
dt

].
2 Different than the approach in Nicolau et al. (2018a) the algorithm
presented in Fritzsche and Röbenack (2018b) does not rely on Lie-
derivatives, thus ∂F

∂x(α) is not assumed to be a unit matrix.
3 If condition (18) is not satisfied, the algorithm in Fritzsche and
Röbenack (2018b) can not directly be applied. However, (local)
observability ensures the existence of unimodular completion.

(cf. also the similarities to singular matrix pencils in
(Gantmacher, 1990, §3)). Obviously, hyper-regularity of
Jz(E) is independent of n. For a fixed n we prove
hyper-regularity of Jz(E)(α) by induction over α: Let
α = 2, then Jz(E)(2) = (In d

dt ,−In) is right invertible
by (Jz(E)(2))+R = (0,−In)T and thus hyper-regular. Now,
assume Jz(E)(α) to be hyper-regular for some arbitrary
α > 2, then

Jz(E)(α+ 1) =

(
Jz(E)(α) 0
T1( d

dt) −In

)
where T1( d

dt) := (0, In d
dt). Setting B( d

dt) = −In we can
apply Lemma 5 which completes the proof. �

To avoid input injections into the definitional equations
we now right multiply col(Jz(H),C( d

dt)) by a matrix

T( d
dt) :=

(
Iαn L( d

dt)
0 Im

)
∈ Uαn+m[ d

dt ],

which results in

(Jz(H) C( d
dt)) T( d

dt)

=

(
P1,1

d
dt + P0,1 C1( d

dt)
P1,2

d
dt + P0,2 C2( d

dt)

)(
Iαn L( d

dt)
0 Im

)
=

(
P1,1

d
dt + P0,1 (P1,1

d
dt + P0,1)L( d

dt) + C1( d
dt)

P1,2
d
dt + P0,2 (P1,2

d
dt + P0,2)L( d

dt) + C2( d
dt)

)
=:
(
Jz(H) C̃( d

dt)
)
.

From the requirement

(P1,1
d
dt + P0,1)L( d

dt) + C1( d
dt)

!
= 0

follows

L( d
dt) = −(P1,1

d
dt + P0,1)+RC1( d

dt),

i.e., (
P1,1

d
dt + P0,1 0

P1,2
d
dt + P0,2 (P1,2

d
dt + P0,2)L( d

dt) + C2( d
dt)

)
Note that (P1,1

d
dt + P0,1)+R exists because of Lemma 14.

Due to invertibility of T( d
dt), we now have a unimodular

completion of the generalized Jacobian of system (13)
without input injections in the definitional equations.
Integration of the corresponding (vector-valued) 1-forms
results in(

0αn
ỹ

)
=

∫ (
Jz(H) C̃( d

dt)
)(dz

du

)

=

(
E(z, ż)
F(z, ż)
G(z, ż)

)
+

 0(α−1)n∫
M( d

dt)du

 (19)

where

M( d
dt) := (P1,2

d
dt + P0,2)L( d

dt) + C2( d
dt).

If the generalized Jacobian of (19) is unimodular, then
equation (19) is a physically realizable generalized flat
input system. Resubstitution finally yields the higher order
generalized flat input system

0n = F(x, ẋ, . . . ,x(α)) + (In 0)

∫
M( d

dt)du (20a)

where

ỹ = G(x, ẋ, . . . ,x(α)) + (0 Im)

∫
M( d

dt)du (20b)

is a flat output.

A general condition for the existence of generalized flat
inputs is subject to further investigation. On the one
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hand, flat inputs have been shown to exist for (certain)
non-observable systems as well, where our approach does
not apply. On the other hand, the main difficulty of
our method is to ensure unimodularity of the generalized
Jacobian of (19). However, we can state the following
proposition which also solves the motivational problem for
the definition of physical realizability as given in Waldherr
and Zeitz (2010).

Proposition 15. For every observable linear system there
exists a physically realizable (generalized) flat input.

The proof of this proposition follows from the preceding
paragraph where the last unimodularity condition is al-
ways satisfied. Furthermore, we can state the following
Lemma about the order of input derivatives in a physically
realizable generalized flat input system:

Lemma 16. For an observable system (8) which is linear
with the restriction (18) there exists a (generalized) flat
input where the order of derivatives is δ < α.

Proof. Since the algorithm for the computation of uni-
modular completions in Fritzsche and Röbenack (2018b)
always results in a d

dt -free completion, the order of input

derivatives is specified by [Jz(E)(α)]
+R

, only. Due to the
structure of the definitional equations 0 = E(z, ż) a right
pseudo inverse of Jz(E)(α) is given by

[Jz(E)(α)]
+R

=−
α−2∑
i=0

(
0(1+i)n,(α−1−i)n 0(1+i)n,in

I(α−1−i)n 0(α−1−i)n,in

)(
d

dt

)i
,

i.e., due to deg Jz(E)(α) = 1 and deg [Jz(E)(α)]
+R

= α− 2
we have deg M( d

dt) = α− 1 thus δ ≤ α− 1. �

Remark 17. Right pseudo inverses are not unique, but
allow arbitrary powers of d

dt since

I(α−1)n = P( d
dt)
[
P+R( d

dt) + P⊥R( d
dt)M( d

dt)
]

where P⊥R( d
dt) is a right orthogonal complement of P( d

dt)
and M( d

dt) is an arbitrary matrix of suitable size (see
e.g. Fritzsche and Röbenack (2018a)). Thus, it should be
possible to find a generalized flat input for δ ≥ α.

Remark 18. For control purposes, the injection of time
derivatives of u suggests the usage of dynamic controllers,
and quasi-static feedbacks (Delaleau and Rudolph, 1998).

4. EXAMPLE

We consider Example 12. Assuming ε(x) ≡ 1, the general-
ized Jacobian of the implicit version of (7) with F(x, ẋ) :=
ẋ− f(x)− γu and z := (x1, x2, u)T reads

Jz( F
h ) =

 d
dt −1 −d
k d

dt + d k
−k −d 0

 =:

(
V1( d

dt) H1

V2( d
dt) H2

)
(21)

and is unimodular, so this will be our starting point.
Here, V1( d

dt) is the generalized Jacobian of the definitional
equations w.r.t. x. According to Lemma 14 this matrix is
always hyper-regular, i.e., there exists a pseudo inverse,
e.g. V+R

1 = (0,−1)T, while H1 = −d. Right multiplication
of (21) by the matrix

T( d
dt) =

(
I2 −V+R

1 ( d
dt)H1

0 I1

)
=

1 0 0
0 1 −d
0 0 1

 ∈ Un[ d
dt ]

results in

Jz( F
h )T( d

dt)=

( d
dt −1 −d
k d

dt + d k
−k −d 0

)(
1 0 0
0 1 −d
0 0 1

)

=

 d
dt −1 0
k d

dt + d −d d
dt − d

2 + k
−k −d d2

.
The flat input injected (first order) system can be com-
puted from (

0n
ỹ

)
=

∫
Jz( F

h )T( d
dt)dz (22)

and yields

ẋ = f(x) +

(
0

d2 − k

)
u+

(
0
d

)
u̇ (23a)

ỹ = h(x) + d2u. (23b)

Note that instead of injecting into the definitional equa-
tion, we now deal with derivatives of u and additionally
inject into the output equation. This allows the transfor-
mation back into a second-order system which results in

q̈ + dq̇ + kq = (d2 − k)u+ du̇ (24a)

where

ỹ = −kq − dq̇ + d2u (24b)

is a flat output, i.e., according to Definition (13) we get

K0 =

(
k − d2
d2

)
, K1 =

(
−d
0

)
. (25)

We can prove this result using Proposition 9 e.g. with
methods from Fritzsche and Röbenack (2018a) (or using
linear methods as we are dealing with constant coefficients
here) by verifying that

Jz̃( F̃
ỹ )=

(
( d
dt)

2 + d d
dt + k −d d

dt − (d2 − k)
−d d

dt − k d2

)
∈ U2[ d

dt ] (26)

where F̃ is the implicit version of (24a), and z̃ := (q, u)T.
Since (

d2

k2
d
k2

d
dt + d2−k

k2
d
k2

d
dt + 1

k
1
k2 ( d

dt)
2 + d

k2
d
dt + 1

k

)
is the inverse of (26) the input injection is in fact a
physically realizable (generalized) flat input. Obviously, we
have δ = α− 1 = 1.

5. CONCLUSION

Differential flatness is the key property to understand
feedback linearization and is characterized by a (possibly
virtual) output called flat output. For the class of flat
systems, many control problems are solved, however es-
sential questions have not been answered, in particular the
questions whether or not an arbitrary system is flat, and if
so, how to compute a flat output. In order to incorporate
the flatness property in the design process of (industrial)
systems, a dual perspective is given by the actuator place-
ment problem which motivates the definition of flat inputs:
Given an uncontrolled system, we are interested in an
input injected system such that a given output becomes
flat. So far, the definition of flat inputs has only be given
for state space systems (Waldherr and Zeitz, 2008, 2010).

Many state space systems originate from differential equa-
tions of order α > 1 through the introduction of defini-
tional equations. However, the injection into definitional
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equations prevents the conversion back to the higher order
differential equation, and thus hinders a physical realiza-
tion.

Therefore, in this contribution we have generalized the
existing flat input definition in multiple ways:

• We allow the injection of time derivatives of u(t) up
to a finite order δ,
• we permit input injections in the output equation,

and
• we define flat inputs for implicit systems.

None of these generalizations limit the physical realizabil-
ity of the input injection. Instead, this liberates degrees
of freedom for a conversion of the flat input state space
system back to the higher order system and thus renders
it physically realizable. We have shown, that for linear ob-
servable systems there always exists a physically realizable
generalized flat input of order δ < α. Furthermore, we have
presented how the algorithm for the computation of flat
inputs for state space systems as presented in Fritzsche
and Röbenack (2018b) can be used to compute physically
realizable generalized flat inputs for implicit systems. We
have illustrated these results using a simple example sys-
tem from Waldherr and Zeitz (2010).
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Fritzsche, K. and Röbenack, K. (2018b). On the computa-
tion of differentially flat inputs. Proceedings of the 22nd
International Conference of System Theory, Control and
Computing (ICSTCC), 12–19.

Gantmacher, F.R. (1990). The theory of matrices. Vol. 2.
AMS Chelsea Publishing, New York.
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