Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Efficient failure-recovering supervisors

N. Paape* J.M. van de Mortel-Fronczak * L. Swartjes **
M.A. Reniers*

* Findhoven University of Technology, Eindhoven, The Netherlands
(e-mail: n.paape@tue.nl, j.m.v.d.mortel@tue.nl, m.a.reniers@tue.nl)

** Vanderlande Industries B.V., Veghel, The Netherlands
(e-mail: lennart.swartjes@uanderlande.com,)

Abstract: Automated systems require controllers which guarantee machine safety and specified
functionality even in case of occurring defects. In literature, several methods can be found for
formally deriving a supervisor providing such guarantees, including the existence of failure
recovery. In this paper, an extension is proposed so that the derived supervisor not only
guarantees the existence of failure recovery, but also enforces a shortest path for it. To this
end, a two-step procedure is defined for supervisor derivation, in which two algorithms are

involved.

Keywords: Discrete-event systems, supervisory control, supervisor synthesis, fault tolerance,

failure recovery

1 INTRODUCTION

Cyber-physical systems, like baggage handling, parcel sort-
ing or warehousing solutions, require controllers which
guarantee machine safety and specified functionality (live-
ness), even when they suffer from defects. As the com-
plexity of these systems is increasing rapidly, this leads to
more complex machine safety and functional specifications
and a higher number of possible defects. As a result, it
is becoming increasingly more difficult to design these
controllers. To guarantee that machine safety is satisfied in
these complex systems, controllers are often made overly
restrictive, at the cost of the enabled system functionality.

The supervisory control layer guarantees machine safety
and functionality in a plant (uncontrolled system). As
mentioned in [Wonham and Cai, 2019] and [Zaytoon and
Riera, 2017], a system and its supervisory controller —
or in short supervisor — can generally be approximated
as discrete-event systems (DES). The plant generates
uncontrollable events at discrete instances in time (which
the supervisor cannot prevent from occurring, typically
sensor events), and the supervisor guarantees the required
machine safety and functional specifications by enabling
or disabling controllable events (which the supervisor
can prevent from occurring, typically actuator events).
Examples of machine safety and functional specifications
in a cyber-physical parcel sorting system are, respectively:
no packages are released to a conveyor which is full, and
each package is eventually released to the conveyor.

As defects have a detrimental influence on the machine
safety and functionality of the controlled system [Fritz and
Zhang, 2018], maintaining both during defects is one of
the major challenges in the design of a supervisor. The
two types of defects which are dealt with in this paper are
faults and failures, which are classified in [Gertler, 2014]

Copyright lies with the authors

1781

and [Cho and Lim, 1998]. A fault is a malfunction in the
plant which degrades system performance. For faults, any
dangerous behavior can generally be prevented through
the use of a fault-tolerant supervisor with fault-specific
machine safety and functional specifications. However, for
a subclass of faults — failures — the malfunction can
result in a total system breakdown, meaning the system
can end up in a critical (dangerous) state. Unlike with
faults, reaching these dangerous states cannot be preven-
ted, as important specified functionality during nominal
system behavior would need to be disabled (e.g. a system
will obviously never be in a dangerous state if it is never
allowed to turn on at all). If prevention is not a possible
solution, then instead, a supervisor should be designed
which guarantees that after a failure the system returns
to a noncritical system state. Such a supervisor is said to
be a failure-recovering supervisor.

Many methods exist to derive fault-tolerant supervisors
without taking failure recovery into account. For example,
in [Reijnen et al., 2018], a design method is proposed
based on an existing synthesis procedure which provides a
fault-tolerant supervisor, using guards in extended finite-
state automata (EFA) and by describing nominal and
post-fault system specifications through state-based ex-
pressions. This method offers the following advantages: it
uses structured modeling steps, the resulting state-based
requirements intuitively follow from textual specifications,
it can handle multiple faults, and it supports the modular
addition of post-fault requirements.

Additionally, several methods for the design of failure-
recovering supervisors have been proposed. [Wen et al.,
2014] addresses failure recovery with bounded convergence
to nominal system behavior (guaranteed recovery in a
finite number of events). [Acar and Schmidt, 2015] intro-
duces a similar method, but with bounded convergence to
a specified desired failed system behaviour, after which the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

system can be repaired back to the nominal specifications.
In [Schuh and Lunze, 2016], a method is proposed for
recovery to a desired final state using a diagnostic unit,
and a reconfigurable controller. In [Andersson et al., 2011],
a control method for manufacturing systems is presented
in which restart states are used to return to nominal
behaviour after a failure.

The purpose of this paper is to integrate the failure-
recovering functionality in the method proposed in [Re-
ijnen et al., 2018]. To this end, on top of the nominal and
post-fault specifications, a new type of required behavior
specification is proposed: recovery objectives. Based on
these objectives, additional properties are defined which a
failure-recovering supervisor should satisfy. The synthesis
algorithm described in [Ouedraogo et al., 2011] is modified
in such a way that it provides the maximally permissive
failure-recovering supervisor. Subsequently, the failure-
recovering functionality in this supervisor is streamlined,
keeping only the shortest paths which accomplish the
specified objectives.

The methods introduced in [Wen et al., 2014] and [Acar
and Schmidt, 2015] most closely match our approach for
failure recovery. However, there are a few key differences,
which are important for application in cyber-physical
systems:

Firstly, in cyber-physical systems it is often not possible to
recover to the nominal system as done in [Wen et al., 2014]
(e.g., if a component breaks down permanently). It is often
required to recover to a desired failed system behaviour
instead, as done in this paper and in [Acar and Schmidt,
2015].

Secondly, it is crucial that recovery is controllable (i.e.,
from every critical state a finite string of controllable
events exists to a noncritical state). This is done in this
paper and in [Wen et al., 2014], but not in [Acar and
Schmidt, 2015]. Uncontrollable events are not guaranteed
to ever occur, so if a recovery is uncontrollable, then the
system could stay critical indefinitely.

Finally, the method introduced in this paper is the only
one of the three in which convergence is unbounded. This
is because cyber-physical systems often have compon-
ents which can generate infinite strings of uncontrollable
events, making it impossible to synthesize a supervisor
with bounded convergence such as in [Wen et al., 2014]
and [Acar and Schmidt, 2015]. In the method presented
in this paper, infinite strings are allowed during critical
system behaviour, as long as recovery is still controllable.
Of course, this does mean that the safety of the system
depends on the supervisor being able to actually enforce
these controllable events.

The paper is structured as follows. First, preliminaries
regarding modelling with DES are given in Section 2. In
Section 3, the problem definition is given and the efficient
failure-recovering supervisor is defined. In Section 4, al-
gorithms are proposed for the derivation of such a su-
pervisor and for achieving the desired efficiency. Finally,
concluding remarks are presented in Section 5.

2 PRELIMINARIES

This section summarizes basic notations regarding model-
ing DES by extended finite automata (EFA).

2.1 FEztended finite automata

An EFA is a T-tuple A = (L, D, %, E, Lo, Dy, L,,), where
L is a finite set of locations, Ly C L is the set of initial
locations, and L,, C L is the set of marked locations.

When modeling a system, a finite number of variables with
finite domains is used. The set of possible combinations of
variable values, with p variables in the EFA, is described
by data set D = D' x --- x DP, with D? representing the
domain of the i-th variable, 1 < ¢ < p. The values of all
variables at any given moment are represented by vector
d € D of length p, d = [d(1),...,d(p)]. The initial set of
data values is Dy C D.

Y is a finite set of events. The set of events is partitioned
into a set of controllable events Y. and a set of uncontrol-
lable events 3, which a supervisor respectively can and
cannot disable. The set of fault events X is a subset of the
set of uncontrollable events, and the set of failure events
Y faiture 1s @ subset of the set of fault events.

E CLxYXxGxUxL is a finite set of transitions, with G
the set of guard predicates and U the set of data update
functions. When discussing predicates, the notations of T’
for true and F for false are used. Each transition e € F
with e = (0¢, O¢, ge, Ue, te) is a b-tuple, as defined below.

0e € L is the origin location of e.

0. € X is the transition label of e.

ge : D — {F,T} is the enabling guard of e.
ue : D — D is the data update function of e.
te € L is the terminal location of e.

Example EFAs shown in Sections 3 and 4 are represented
graphically. For each EFA we assume the presence of a so-
called location variable that always has the name of the
current location as its value. The name of this variable
is simply the name of the EFA. Updates of this location
variable are implicit and not shown in the graphical
representations. For an EFA with name A and a location
with name L, the notation A.L is the predicate that holds
only if the automaton is in that location.

2.2 Plant, requirement and fault modeling

For synthesis of a supervisor, a model of the uncontrolled
system and its requirement specification are needed.
The uncontrolled system is modelled as an EFA G =
(L,D,%,E, Ly, Dy, L,,), and the requirement specifica-
tions are represented by L, C L, which is the set of
locations in GG in which the requirements are not satisfied.
Constructing such a monolithic model can quickly become
problematic for more complex systems. Fortunately, there
are methods to simplify this process. In this paper, the
method proposed in [Markovski et al., 2010] is used, in
which EFA G and forbidden states L, are constructed out
of smaller automata describing the systems components,
and state-based expressions describing the requirement
specifications. These state-based expressions are formu-
lated as “e meeds Y, which translates to events e € E is

1782

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

only allowed when predicate Y evaluates to true. This syn-
tax naturally extends to a set of events {ej,...,e,} € E
with the expression “{ej,...,e,} needs Y.

The set of all faults in a system is denoted by F. The
set Fraiure Of all failures is a subset of F. To diagnose
if a fault has occurred in the system requires detection,
isolation, and identification of the fault. An overview of
fault diagnosis approaches can be found in [Zaytoon and
Lafortune, 2013]. However, which approach should be used
is not in the scope of this paper. In this paper, it is assumed
that all faults in the system can be diagnosed, with the
occurrence of a fault being indicated by an observable fault
event. Instead of using states to indicate the current status
of the failure, Boolean variables are used. The status of
a fault f € F is indicated by Boolean fault variable vy,
which is true as long as fault f is in the system. This way,
failure status is indicated consistently, regardless of how
fault diagnosers are modelled. This is especially helpful
when more complicated diagnoser models are used.

2.8 FA equivalence of EFA

As shown in [Skoldstam et al., 2007], each EFA can
be transformed to an equivalent FA. Thus, supervisor
properties which are defined for FAs, such as nonblocking
and controllability, can also be defined for EFAs. An FA
uses states, while an EFA uses locations and variables.
However, for the FA equivalent of an EFA, each state
q = (l4,dq) is represented as a combination of a location
lq € L and the values of all variables at a given moment
dq € D, with the set of all states defined as @ = L x D.
The set of initial states is defined as Qg = Lo X Dy. The
set of marked states is defined as @Q,, = L,, x D. It is
not necessarily true that every state in sets @ or Q.
can be reached from an initial state. Similarly, an EFA
transition e = (0¢, O¢, ge, Ue, te) € E induces transitions
in an equivalent FA as follows. For each vector d € D, if
ge(d) = T there is a transition from state (o.,d) to state
(te,ue(d)) labelled with event o.

To support reasoning about failure-recovering supervisors,
three notions are defined: a path, reachability and a
supervisor.

Definition 1. (Path). Let G = (L,D,%,E, Ly, Dg, Ly,)
be an EFA. For o,t € L, d,d € D and 0 € X, by
(0,d) % (t,d') we denote that a transition (o0,0,g,u,t) €
E exists such that g(d) = T and d = u(d). A path
from state ¢; to state g,41 is an alternating sequence
(q1,01,92,"** ,Gn,On, qn+1) of states ¢; and events o; such
that ¢; = ¢isq for all 1 < i < n. The length of path p,
notation [p|, is the number of states in the path. T (p)
denotes the number of transitions in path p. Notation
g — ¢ denotes the existence of a path from ¢ to ¢'.
Notation g —y ¢’ is used to denote the existence of a
path ¢ — ¢ where all events are from the set ¥/ C X.
Notation P(q,q’,%’) denotes the set of all paths from ¢ to
¢' in which only events from Y’ are used.

Definition 2. (Reachability). For EFA G = (L, D, %, E,
Lg, Dy, L,,), a state ¢ € @ is said to be reachable if gg — ¢
for some ¢y € Qo. The set of reachable states Q¢ in G is
defined as Q¢ = {qg € Q | Iycq, [0 ~ q]}-

Definition 3. (Supervisor). Given EFAs G and G’, EFA
@’ is said to be a supervisor of G, if G’ is obtained from
G, by strengthening guards on transitions in G. This is
denoted by G’ < G. The guard on a transition e € E is
said to be strengthened if for its guard g. in G and its
guard ¢/ in G’ the following holds: g/ A g. = ¢..

3 PROBLEM DEFINITION

In this section, we first walk through an example to show
why the method proposed in [Reijnen et al., 2018] would
benefit from an extension to include failure-recovering
functionality. We then discuss what properties a failure-
recovering supervisor should have and conclude with its
formal definition.

3.1 Ezxample

Suppose a sorting system consists of a conveyor, a sorter,
and a diagnoser which detects if the system has jammed.
We want to synthesize a fault-tolerant supervisor for this
system using the method detailed in [Reijnen et al., 2018].
First, the system components, fault diagnosers, and nom-
inal and post-fault requirements need to be modeled. In
[Reijunen et al., 2018], physical relations between compon-
ents are also modeled, but for simplicity it is assumed
that there are no physical relations in the sorting system.
To explain the required extension, critical and noncritical
states are considered in the context of the synthesized
fault-tolerant supervisor.

Components The system has two components: a conveyor
and a sorter. Controllable events are used to turn on or
start and turn off or stop each of them. In Figure 1, the
component models are depicted graphically.

turn_on

turn_off

(a) Conveyor

(b) Sorter

Figure 1. The two components of the system.

detect

Trml
reset

do Vjym :=F

Figure 2. The diagnoser for a jam failure.

Fault diagnoser For the sorting system there is one dia-
gnoser, shown in Figure 2, which diagnoses if a jam failure
has occurred in the sorter. The diagnosis of a jam is
indicated by variable vj4, being true. This might seem
unnecessary, given that the diagnosis is also indicated
by the states of the diagnoser. However, as mentioned
before, this separation is very useful when modeling more
complicated diagnoser models.

1783

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

off
idle
failed

Conveyor.turn_off

nominal

Conveyor.turn_off

dojs iayos
Je1siauos
dojs iayo0s
MeisIauos

Conveyor.turn_on

off
sort
nominal

on
sort
nominal

Conveyor.turn_off

S e

78
A4 X2 DN\
/ /.sz IR

Conveyor.turn_off

failed

Figure 3. Fault-tolerant supervisor with critical states.

Nominal and post-fault requirements The sorting system
has two requirements, which are described with state-
based expressions as proposed in [Markovski et al., 2010].
Requirement (R1) states that the sorter events are only
allowed when the conveyor is turned on. Requirement (R2)
is a post-fault requirement which states that when a jam
failure is diagnosed, the conveyor is no longer allowed to
turn on again.

(R1) {Sorter.start, Sorter.stop} needs Conveyor.on
(R2) Conveyor.turn_on needs vjqm = F

Fault-tolerant supervisor Based on the conveyor, sorter
and jam diagnoser automata, and the two requirements,
the fault-tolerant supervisor is synthesized in the conven-
tional way, of which the FA-equivalent is shown in Figure 3.

In the figure, two classes of states can be distinguished: the
inner states in which the system is nominal (vjq,,, = F) and
the outer states in which the system has failed (vjom = T).
Intuitively, the nominal states can be considered noncrit-
ical. Additionally, all failure states in which the system
is regarded as recovered from the failure are noncritical
states. Suppose that the above system is regarded to
be recovered from the jam failure when both physical
components are in their inactive states. Then the state
associated with Conveyor.off A Sorter.idle A Jam.failed
can be considered noncritical. These noncritical states are
colored green.

The remaining failure states in the system can be con-
sidered critical. From one of those states, associated with
Conveyor.off A Sorter.sort A Jam.failed, no failure recov-
ery using exclusively controllable events is possible. This
state is colored red (unrecoverable). The reason why failure
recovery should use exclusively controllable events can be
seen here. From the red state there is an uncontrollable
transition “Jam.reset” to a noncritical state. However, it is
not guaranteed that this event will ever occur; the system

could be stuck in this state indefinitely. The two yellow
states are labelled recoverable, as controllable failure re-
covery from these states is possible. However, recovery
is not guaranteed due to the cycle of controllable events
between those states. This can be solved by only allowing
transitions which converge to the recovery objective. To
conclude, for a system with faults and failures, a supervisor
needs to be defined in which critical states are permitted
if they are recoverable through controllable events, and in
which recovery uses a minimum number of transitions.

3.2 Recovery objective

To ensure that the supervisor can recover from failures,
it is important to define which states of the system are
noncritical. As illustrated above, the set of noncritical
states consists of states in which no failure is present and
all failure states which are regarded as recovered. They can
be characterized through the fault variables and recovery
objectives. For each fault in the set of failures f € Fraiture,
a recovery objective must be defined, which is a predicate
Zsy : D — {F,T}, which evaluates to true if the system
is recovered from the failure. Hence, the set of noncritical
states @) for a system with set of states @) is determined
as:

Qr={(1.d) € Q| Vrem, [0s(@) = Z;(@)}.

For the sorting system, the system is regarded to be
recovered from the jam failure if both physical components
are inactive. Hence, the recovery objective and resulting
set of noncritical states for the sorting system are:

Zjam = Conveyor.off A Sorter.idle
Oy = {(z,d) cQ \ Viam (d) => Zjam(d)}

It can be assumed without loss of generality that the plant
and its requirements are represented by the single refined
plant EFA G = (L,D,%,E, Ly, Do, Ly,), set L, C L of
forbidden locations, and set @y C @ of noncritical states.
The set of forbidden states of G is Q, = L, x D.

8.8 Failure-recovering supervisor

In this subsection, a supervisor is defined in which all
unrecoverable critical states are made unreachable. This
supervisor is referred to as the failure-recovering super-
visor. In Subsection 3.4, a modification to such a su-
pervisor is introduced to obtain efficient failure recovery,
meaning only those paths from a critical to a noncritical
state are kept that contain the least number of controllable
transitions.

The failure-recovering supervisor is a modification of the
proper supervisor described in [Ouedraogo et al., 2011]. A
proper supervisor is a supervisor which ensures nonblock-
ing, safety and controllability of the controlled system.
Of these properties, nonblocking ensures that the system
does not end up in a state from which no marked state
can be reached. Safety ensures that the specified safety
requirements are always satisfied. States in which these
requirements are not satisfied are forbidden states, which
are made unreachable by the supervisor. Controllability

1784

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

ensures that an uncontrollable transition enabled in the
plant is not disabled by the supervisor.

For a supervisor to be failure recovering, all its reachable
states need to satisfy the recoverability property defined
below. A state is recoverable if a noncritical state can
be reached from it by a path of controllable events.
Unrecoverable states should be made unreachable by the
supervisor. This way a failure-recovering supervisor is
always in “control” of its recovery.

Besides recoverability, a failure-recovering supervisor re-
quires a stricter form of nonblocking. As described in
[Moor, 2016] and implemented for fault-tolerant super-
visors in [Reijnen et al., 2018], it should not be possible
that a marked state can only be reached if a fault or failure
occurs. Logically, it is not desirable for the system to have
to return to a critical state after just having recovered.
Thus, the nonblocking property must be modified, such
that a noncritical marked state should always be reachable,
without a fault or failure occurring, and without trans-
itioning from a noncritical to a critical state. In the sequel,
this property is called FR-nonblocking (nonblocking for
failure recovery).

Definition 4. (Recoverability). Given EFA G = (L, D, %,
E, Ly, Dy, L,,) with controllable events 3. C 3, and given
noncritical states Q. State ¢ € Lx D is recoverable if there
is a path p € P(q, ¢, ;) to a noncritical state gx € Q.

Definition 5. (FR-nonblocking). Given EFA G = (L, D,
Y, E, Ly, Dy, Ly,) with fault events ¥y C X, and given
noncritical states . State ¢ € L x D is FR-nonblocking
if there is a path p € P(q, ¢x.m, 2 \ X) starting in ¢ to a
noncritical marked state gxm € @ NQm, such that for all
1 <4 < |p| it holds that ¢; € Qx = gi+1 € Q.

Definition 6. (Failure-recovering supervisor). Given EFA
G, forbidden locations L, and noncritical states Q», a
recoverable supervisor is defined as a proper supervisor
of G with all reachable states satisfying recoverability and
FR-nonblocking.

It is preferable that a supervisor only restricts the plant
when it is absolutely necessary, otherwise required func-
tionality of the plant could be disabled. A supervisor which
disables only the states necessary to satisfy the failure-
recovering property is defined to be maximally permissive.

Definition 7. (Maximally permissive failure-recovering
supervisor). Let A(G) be the set of all failure-recovering
supervisors of G. A supervisor G*T € A(G) is maximally
permissive if G¥ < G*T for any G* € A(G).

3.4 Efficient failure-recovering supervisor

In the failure-recovering supervisor, unrecoverable critical
states are made unreachable. However, this supervisor
does not guarantee quick and lasting recovery. Firstly,
it can contain a critical control loop (an infinite path of
critical states connected by controllable events), and never
recover to a mnoncritical state, as in the sorting system
example of Figure 3. Secondly, it can contain enabled
transitions from noncritical to critical states. For example,
if in the sorter system requirement (R2) were not included,
after the recovery, it would be possible to immediately turn

the conveyor on, and the system would end up in a critical
state again. Finally, even if a path to a noncritical state is
taken, it might not be the most efficient path.

The supervisor is said to have efficient failure recovery if it:
(A) enforces efficient failure recovery to a noncritical state
using the least possible number of transitions, and (B)
enforces that no controllable transitions from a noncritical
state to a critical state are possible.

The formal definition of efficient failure-recovering super-
visors is given below. First, the failure-recovery distance
wY (q) for a state ¢ is defined.

Definition 8. (Failure-recovery distance). Given EFA G*,
with set of noncritical states @), the failure-recovery
distance for a state ¢ € Q" is defined as the number of
transitions in the shortest failure-recovery path from state
g (with 7 (p) the number of transitions in p):

G*

w* (¢) = min

T() |p € Plgan %)
QAEQA{ ‘

Note that for all noncritical states, gy € @), the failure-
recovery distance w®" (gx) = 0. Also note that the failure-
recovery distance is infinite if there exists no path to a
noncritical state.

Subsequently, using the failure-recovery distance, the ef-
ficient failure-recovering supervisor can be defined. In an
inefficient failure-recovery path there is at least one pair of
adjacent states for which the failure-recovery distance of
the first state is not higher than that of the second state.
Efficient recovery is accomplished by restricting all con-
trollable transitions to critical states in which the failure-
recovery distance does not decrease. This way all ineffi-
cient failure-recovery paths are restricted, thus achieving
property (A). Since transitions from noncritical to crit-
ical states lead to an increasing failure-recovery distance,
property (B) is also achieved.

Definition 9. (Efficient failure-recovering supervisor). For
a given maximally permissive failure-recovering supervisor
G® and set of noncritical states @y, supervisor G X G*
is efficient if it is failure recovering and each of its edges
(0cy Tc, ges Ue, te) with a controllable event o, € X satisfies
the following condition: for all d € D such that g.(d) it
holds that (t.,u(d)) € Qx V w (0¢,d) > W (te, u(d)).

Definition 9 suggests a straightforward way of transform-
ing a maximally permissive failure-recovering supervisor
into an efficient failure-recovering supervisor by adapting
the guards of all edges that do not satisfy the imposed
conditions.

In this transformation, only transitions to critical states
in G° are restricted, and per definition a critical state
can only be reached after a failure has occurred. All pre-
failure transitions are to noncritical states, and remain un-
altered. In other words, only post-failure system behavior
is altered in the efficient failure-recovering supervisor, and
pre-failure system behavior remains unaltered. This is an
important observation, because this means that controlled
system remains maximally permissive in its nominal be-
havior.

1785

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4 SUPERVISOR DERIVATION

In this section, two algorithms are formulated for the deriv-
ation of an efficient failure-recovering supervisor. The first
algorithm is used to synthesize a maximally permissive
failure-recovering supervisor for an uncontrolled system G.
The second algorithm modifies this maximally permissive
failure-recovering supervisor such that the recovery is effi-
cient, while the nominal system behavior stays maximally
permissive. As a result, the efficient failure-recovering su-
pervisor for G is obtained.

4.1 Synthesis of the maximally permissive failure-recover-
ing Supervisor

Algorithm 1 is formulated to compute a maximally per-
missive failure-recovering supervisor, as defined in Defini-
tions 6 and 7. The algorithm is an adjusted version of the
synthesis algorithm introduced in [Ouedraogo et al., 2011].
In [Ouedraogo et al., 2011], a nonblocking predicate N is
used, but in Algorithm 1, this is replaced with a robustness
predicate R. This predicate is true if a state satisfies FR-
nonblocking and recoverability. This algorithm takes as
input an EFA G with a set of forbidden locations L, and
a set of noncritical states @. This algorithm iterates over
the set of states in G.

In Algorithms 1 and 2, o(e), o(e), g(e), u(e) and t(e) are
defined as respectively the origin location, transition label,
guard function, update function and terminal location of
transition e € E. Finally, g,(e,d) and ¢ (e, d) are defined
as respectively the origin state (o(e), d) and terminal state
(t(e),u(e)(d)) of transition e for data vector d.

To compute the supervisor SSROB(G,L,,Q,), first the
sets of states are initialized on (line 1). Following initializ-
ation, the algorithm consists of one outer loop over j, with
two inner loops over k£ and i. The outer loop strengthens
the guards of the transitions e € FE iteratively, with the
initial guards being the guards of EFA G (line 2).

The first inner loop (lines 5-11) introduces the robustness
predicate R7"*(q) which is T if a state ¢ is flagged as FR-
nonblocking and recoverable. Initially, this predicate is T if
state ¢ is marked and noncritical (line 5). If in an iteration
k, state ¢ has an enabled transition e € F, to a state
which is flagged as robust, then the robustness predicate
of ¢ updates to T (line 8). The algorithm keeps updating
the predicates, until an iteration of k is reached in which
none of the predicates change value.

The second inner loop (lines 12-18) introduces the bad-
state predicate B7(q) which is T if a state ¢ is flagged
as a bad state (a bad state is a state which has to be
unreachable in the supervisor). Initially, this predicate is
T if state ¢ is a forbidden state, if the robustness predicate
of this state is F, or if the bad-state predicate of this state
was T in a previous iteration of j (line 12). If a state ¢
has an enabled transition with an uncontrollable event to
a state which is flagged as a bad state, then its bad-state
predicate updates to T' as well (line 15). The algorithm
keeps updating the bad-state predicates, until an iteration
of i is reached in which none of the bad-state predicates
change value.

Algorithm 1 Synthesis of the maximally-permissive
failure-recovering supervisor SSROB(G,L,,Q»).

Input: EFA G = (L,D,%, E, Lo, Do, Ly,), set of forbidden loca-
tions L, C L and set of noncritical states @) C L x D.
Initialize the sets of states: @ = L X D, Qm = Lm X D,
Qs = Ly X D.

2: Initialize guards: for all e € E and all d € D, ¢2(d) = g(e)(d)
3 =0
4: repeat
5 Initialize robustness predicates: for all ¢ € @,

RIO(q)=q€QxNQm

—_

6: k=20

7 repeat

8: Update robustness predicates: for all ¢ = (Iq,dq) € Q,
RIEFY(q) = R (q) v [[gd(dg) A R7* (ge(e,dg))]

e€Ey
with Bg = {e € B | o(e) =14 Ao(e) ¢ TpA
(@€ Qx = ar(e,dg) € QA) A (g & Qx = ole) € 3c) }

9: k=k+1
10: until Yeeq [RPF(q) = RI*~1(q)]
11: for all ¢ € Q, R7(q) = RI"*(q)
12: Initialize bad-state predicates: for all g € Q,

T, if g € Qz

B7(q) = { ~R'(q), if g ¢ Qz and j =0
-Ri(q)vBi~1(q), ifqg& Qyandj>0
13: 1 =0
14: repeat
15: Update bad-state predicates: for all ¢ = (l4,dq) € Q,
B (g) = BY(q) v \/ [9l(da) A B (at(e, dg))]
e€Ey
with B4 = {e €EE|ole)=lgNo(e) € Eu}
16: =141

17: until Voeq [B7i(q) = B9 ~1(q)]

18: for all ¢ € Q, BI(q) = B¥¥(q)

19: Update guards: for all e € E s.t. o(e) € X, and all d € D,
g2t (d) = gl (d) A =B (gi(e, d))

20: j=j+1 _ -

21: until Vee . aep [9(d) = g1 (@)

Output: SSROB(G,Ls;,Qx) = (L,D,X,E’, Lo, Do, L),

with B/ = { (0(6),0(6),g£,u(e),t(e)) ‘ e€ E}

Next, the guards of transitions labelled with a controllable
event are strengthened (line 19) with the negation of
the bad state predicate. Upon termination of the outer
iteration, the algorithm outputs SSROB(G,L,,Q,), the
maximally permissive failure-recovering supervisor of G
with updated guards.

The only difference between algorithm 1 and the algorithm
presented in [Ouedraogo et al., 2011}, is that the con-
ditions for updating the robustness predicates, are more
strict than those of the nonblocking predicates. Thus, the
computational complexity of Algorithm 1 is equal to that
of [Ouedraogo et al., 2011], which is O(|Q|?).

Theorem 4.1. (Correctness of Algorithm 1). Algorithm 1
terminates and the result SSROB(G,L,,Q)) is the max-
imally permissive, failure-recovering supervisor of EFA G
w.r.t. L, and @Q».

The proof of this theorem can be found in [Paape, 2019].

1786

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4.2 Efficient failure-recovering supervisor

Algorithm 2 takes the output of Algorithm 1 and a set
of noncritical states @)y as input and provides an efficient
failure-recovering supervisor, as per Definitions 6 and 9.

Algorithm 2 Calculation of the efficient failure-
recovering supervisor SSRCS(G*,Q).
Input: Recoverable supervisor G = (L, D, %, E, Lo, Do, Lym), and
set of noncritical states @\ C L x D.
Q=LXxXD,Qmn=1LmnxD
WOZQ)\? VOZQ\WO
for all ¢ € WO, w(q) =0
1 =0
repeat

Calculate reachable states:

Wit = {q=(l4,dg) € V' | Feem,larle, dg) € W'},
with Eq ={e € E|o(e) =lg No(e) € ZcAg(e)(dq) =T}
7 Vitl = yi\ witl
8 forallge Witl w(q)=i+1
9: i=1i+1
10: until W* = @
11: for all ¢ € V', w(q) = oo
12: Update guards: for all e € E s.t. o(e) € X¢, and all d € D,

g2 (d) = g(e)(d) A [gs(e,d) € Qx V w(go(e, d)) > w(gs(e, d))]
Output: SSRCS(G*,Q») = (L,D,%, E’, Lo, Do, L),

with B/ = {(o(e), a(e), grev u(e), t(e)) |e IS E}

First, the failure-recovery distance of every state in @ is
calculated iteratively with a breadth-first search (lines 2-
10). In this search, two types of sets are used. For an
iteration of i, W* denotes the set of all states for which
the failure-recovery distance equals 7. V? denotes the set
of all states for which failure-recovery distance > 4, and
thus for which the failure-recovery distance is yet to be
calculated. Initially, all noncritical states ¢y € Q) are in
set WO, and their failure-recovery distance w(gy) = 0.

Every iteration, a check is done for every state in V?
(line 6). If a state ¢ € V* has an enabled controllable
transition to a state which is in the set W*?, then ¢ € W*1,
In (line 6), for all states in set W+! the failure-recovery
distance w of these states is set to ¢ + 1. This value is
equal to the number of controllable transitions required to
reach a noncritical state. The algorithm keeps determining
the failure-recovery distances, until no more states are
discovered. In (line 11), for all states ¢ for which there
is no failure-recovery path w(q) is set to oo.

Next, on (line 12), the guard of every transition with a con-
trollable event is updated, such that all inefficient failure-
recovery paths are disabled. Such a transition is restricted
if its terminal state is a critical state, and the failure-
recovery distance does not increase from origin state to
terminal state. The algorithm terminates by outputting
the efficient failure-recovering supervisor SSRCS(G*,Q,).

While Algorithm 1 has two inner and one outer loops,
resulting in a complexity of O(|Q|?), Algorithm 2 only
has one loop, terminating in at most |@Q| steps. Thus, if
Algorithm 1 can be feasibly executed for a system, then
Algorithm 2 is also feasible.

Theorem 4.2. (Correctness of Algorithm 2). Algorithm 2
terminates, and the result SSRCS(G*,Q,) is the efficient
failure-recovering supervisor of G° w.r.t. Q.

The proof of this theorem can be found in [Paape, 2019].

off on

Conveyor.turn_off

idle idle
failed & failed
&7
Q& 7
’ ief’
/ -
\,,bé‘

nominal

Conveyor.turn_off

dojs ia10s
14e35°'I1910S
dojs iajos
14e3s°I910s

Conveyor.turn_on

off on
sort sort
& nominal nominal / %
i >
&, Conveyor.turn_off < AN
’0&// ¢ e,é N\
N X ‘9/))
arati P
S e ~
off 2 Conveyor.turn_off &
sort ¢ C
failed failed

Figure 4. The efficient failure-recovering supervisor of the
sorting system is derived through Algorithms 1 and 2.

4.3 FExample

Figure 4 shows how a supervisor can be derived for the
sorting system using Algorithms 1 and 2. In Algorithm 1,
the unrecoverable state associated with Conveyor.off A
Sorter.sort A Jam.failed is labelled as nonrobust because
it is not recoverable (in red). As a consequence, it is
labelled as a bad state, and so is the state associated
with Conveyor.off A Sorter.sort A Jam.nominal, which
has an uncontrollable transition going to the nonrobust
state. Next, the guards of the transitions to these bad
states are set to false (the red transitions indicated by
a 1). In the following iteration, no guards are changed and
the supervisor outputs the failure-recovering supervisor
SSROB(G,L,,Q.).

Next, SSROB(G,L,,Q)) is used as input for Algorithm 2.
First, the recovery distance is calculated for all states.
There is one enabled transition in which the failure-
recovery distance in the terminal state is higher than
that of the origin state (the red transition indicated
by a 2). The guard on this transition is set to false,
and the algorithm outputs the efficient failure-recovering
supervisor SSRCS(G*,Q,), which is shown in Figure 5.

If we compare the efficient failure-recovering supervisor in
Figure 5, to the fault-tolerant supervisor in Figure 3, then
we can see that all unrecoverable critical states are made
unreachable, and that recovery is always efficient (with
the least number of transitions possible). The supervisor
is also maximally permissive in its nominal behavior.

1787

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

off
idle
failed

Conveyor.turn_off

nominal

Conveyor.turn_off

dojs iayos
Je1siauos
dojs iajos

on
sort
nominal

Figure 5. The resulting efficient failure-recovering super-
visor of the sorting system.

5 CONCLUDING REMARKS

In this paper, a supervisor is defined with efficient failure
recovery. To derive such a supervisor, two algorithms have
been developed: one for the synthesis of the maximally
permissive failure-recovering supervisor, and one for the
modification of this supervisor to obtain efficient fail-
ure recovery. This efficient failure-recovering supervisor is
maximally permissive in the nominal system behavior. The
proposed method allows for adding faults and failures in a
modular and intuitive way.

The advantage over fault-tolerant supervisory control ap-
proaches without failure recovery is that failures can be
dealt with, without placing unwanted and unnecessary
restrictions on the nominal system behavior. The advant-
ages over other failure-recovery approaches are threefold.
Firstly, failures can be added modularly and at later steps
in the design cycle. Secondly, the controlled system can
recover quickly from multiple simultaneous failures. Fi-
nally, this method is easy and intuitive to use; besides the
modelling steps as described in [Reijnen et al., 2018], the
only extra step required to synthesize a supervisor is to
define the recovery objective for every failure.

As a final note, failure recovery — as defined in this paper
— is limited to controllable events, as it is assumed it
cannot be guaranteed that uncontrollable events will ever
occur. However, this assumption might be more strict
than necessary; some uncontrollable events can reasonably
be guaranteed to occur. As future work, it might be
interesting to partition the event set into progressive
and non-progressive events, such as done in [Ware and
Malik, 2014], with events which are guaranteed to happen
being labelled progressive. Using such a method, a failure-
recovering supervisor could be synthesized in which re-
covery can include uncontrollable events as long as they
are progressive.

REFERENCES

Acar, AN. and Schmidt, K.W. (2015). Discrete event
supervisor design and application for manufacturing sys-
tems with arbitrary faults and repairs. IEEE Interna-
tional Conference on Automation Science and Engineer-
ing, 825-830.

Andersson, K., Lennartson, B., Falkman, P., and Fabian,
M. (2011). Generation of restart states for manufactur-
ing cell controllers. Control Engineering Practice, 19(9),
1014-1022.

Cho, K. and Lim, J. (1998). Synthesis of fault-tolerant
supervisor for automated manufacturing systems: a case
study on photolithographic process. IEEE Transactions
on Robotics and Automation, 14(2), 348-351.

Fritz, R. and Zhang, P. (2018). Overview of fault-tolerant
control methods for discrete event systems. IFAC-
PapersOnLine, 51(24), 88-95.

Gertler, J. (2014). Fault Detection and Diagnosis. Encyc-
lopedia of Systems and Control, 1-7.

Markovski, J., van Beek, D.A., Theunissen, R.J.M., Jac-
obs, K.G.M., and Rooda, J.E. (2010). A state-based
framework for supervisory control synthesis and verifica-
tion. In 49th IEEE Conference on Decision and Control,
3481-3486. IEEE.

Moor, T. (2016). A discussion of fault-tolerant supervisory
control in terms of formal languages. Annual Reviews
in Control, 41, 159-169.

Ouedraogo, L., Kumar, R., Malik, R., and Akesson, K.
(2011). Nonblocking and Safe Control of Discrete-Event
Systems Modeled as Extended Finite Automata. IEEE
Transactions on Automation Science and Engineering,
8(3), 560-569.

Paape, N. (2019). Model-Based Design of a Supervisory
Controller for a System with Faults and Failures. Mas-
ter’s thesis, Eindhoven University of Technology.

Reijnen, F.F.H., Reniers, M.A., van de Mortel-Fronczak,
JM., and Rooda, J.E. (2018). Structured Synthesis
of Fault-Tolerant Supervisory Controllers. IFAC-
PapersOnLine, 51(24), 894-901.

Schuh, M. and Lunze, J. (2016). Fault-tolerant control
for deterministic discrete event systems with measurable
state. In American Control Conference, 7516-7522.

Skéldstam, M., Akesson, K., and Fabian, M. (2007). Mod-
eling of Discrete Event Systems using Finite Automata
With Variables. In 46th IEEE Conference on Decision
and Control, 3387-3392.

Ware, S. and Malik, R. (2014). Progressive events in super-
visory control and compositional verification. Control
Theory and Technology, 12(3), 317-329.

Wen, Q., Kumar, R., and Huang, J. (2014). Framework
for optimal fault-tolerant control synthesis: Maximize
prefault while minimize post-fault behaviors. IEFEE
Transactions on Systems, Man, and Cybernetics: Sys-
tems, 44(8), 1056-1066.

Wonham, W.M. and Cai, K. (2019). Supervisory Control of
Discrete-Event Systems. Communications and Control
Engineering. Springer International Publishing.

Zaytoon, J. and Lafortune, S. (2013). Overview of fault
diagnosis methods for Discrete Event Systems. Annual
Reviews in Control, 37, 308-320.

Zaytoon, J. and Riera, B. (2017). Synthesis and im-
plementation of logic controllers — A review. Annual
Reviews in Control, 43, 152—168.

1788

