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Abstract: Artificial pancreas (AP) systems have shown to improve glucose regulation in type 1
diabetes (T1D) patients. However, full closed-loop performance remains a challenge particularly
in children and adolescents, since these age groups often present the worst glycemic control. In
this work, a new algorithm based on switched control and time-varying insulin-on-board (IOB)
constraints is presented (ARGAE). This method is a combination of ideas from the previously
introduced Automatic Regulation of Glucose (ARG) algorithm, which features no pre-meal
insulin boluses, and the Amplitude Enable (AE) mode, which allows the controller to act
more aggressively at the beginning of meal intake without risking postprandial hypoglycemia.
The proposed control strategy is evaluated in silico and its performance contrasted with the
ARG algorithm in the pediatric population. Results show that the ARGAE presents improved
performance compared to the ARG algorithm even in presence of misclassified meals. Thus,
future in vivo testing will involve the AE configuration.
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1. INTRODUCTION

Artificial pancreas (AP) systems consist of a subcuta-
neous insulin pump connected to a continuous glucose
monitoring (CGM) sensor through a control algorithm
that automatically calculates insulin doses according to
CGM measurements (Haidar, 2016). Unfortunately, the
subcutaneous route introduces considerable issues, includ-
ing large delays in glucose measurements and insulin action
(Bequette, 2012).

The vast majority of AP systems are based on model pre-
dictive control (MPC) (Shi et al., 2019; Abitbol and et. al.,
2018) , proportional-integral-derivative (PID) (Steil, 2013)
and fuzzy logic (FL) (Mauseth et al., 2013) (see Sánchez-
Peña and Cherñavvsky (2019) for a thorough description
of the current situation). Since high model uncertainty and
large delays limit the autonomy of the glucose controller,
most of these control systems are hybrid, i.e., a combina-

? Research in this area is supported by the Argentine government
(PICT 2017-3211 Agencia Nacional de Promoción Cient́ıfica y Tec-
nológica, PIP 112-201501-00837 CONICET, and UNLP 11/I216).

tion of manual meal boluses and automatic basal modu-
lations. However, carbohydrates (CHO) counting implies
an important burden and risk for people with diabetes
(Brazeau and et. al., 2013). Therefore, a purely feedback
solution is necessary.

Recently, a control algorithm without pre-meal insulin
boluses called Automatic Regulation of Glucose (ARG)
was proposed and clinically evaluated in five adult sub-
jects with type 1 diabetes (T1D) at the Hospital Ital-
iano de Buenos Aires (HIBA) (Sánchez-Peña and et. al.,
2018). This algorithm consists of an inner switched linear
quadratic gaussian (SLQG) controller and an outer sliding
mode safety layer called Safety Auxiliary Feedback Ele-
ment (SAFE) (Revert et al., 2013). The inner controller
switches between an aggressive LQG controller to com-
pensate for the effect of meals and other large pertur-
bations, and a conservative LQG controller to maintain
normoglycemia at all other times (see also Colmegna et al.
(2018)). A meal announcement is required at meal times
to trigger a listening mode in which the controller waits to
detect an increasing trend on CGM readings to switch to
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Fig. 1. Glycemia (mean ± 1 std) vs time of the three age ranges when facing 5 meals during 36 hs using the ARG
controller (10 adults - red, 10 adolescents - yellow, 10 children - cyan). Dashed green lines delimit the desired range
([70-180] mg/dl) and the yellow show the acceptable range ([70-250] mg/dl).

the aggressive controller. Although promising results were
obtained, more and more intensive trials are necessary
to asses the controller performance. Particularly, trials
involving children and adolescents are fundamental since
these age groups often present poor glycemic control and
respond to treatment significantly different from adults
(Sherr, 2018). In children, this is mainly due to fear of
hypoglycemia during the night, school hours, or whenever
the caregivers are not present, resulting in the set of a
higher BG target. On the other hand, adolescent are more
prone to be affected by diabetic burnout and suffer from
higher insulin resistance (Caprio et al., 1989). To this
end, a clinical trial in collaboration with the pediatric
hospital Garrahan in Buenos Aires is expected to take
place at the beginning of 2020. Figure 1 shows the re-
sponse of the different age groups to a 5 meal scenario
similar to the one carried out at the HIBA using the ARG
algorithm. It can be seen that children and adolescents
present larger glucose excursions and more pronounced
hypo- and hyperglycemic episodes. Therefore, it is reason-
able to consider an enhanced control approach in order to
control the pediatric population. A recent in silico study
was carried out by the research group to evaluate a more
adequate tuning of the ARG algorithm for children and
adolescents (ARGmod) (Fushimi et al., 2019). Even though
this modified version of the ARG reduced hypoglycemia
episodes more effectively, the time spent in hyperglycemia
was increased.

In this paper, a further step on the ARG algorithm is
given by introducing time-varying IOB constraints, aiming
to be tested in vivo in the Garrahan clinical trials. The
main controller is a combination of the ARG algorithm
SLQG and the SAFE layer with an IOB limit according
to an open-loop IOB profile. This kind of constraint is
called Amplitude Enable (AE) (Fushimi et al., 2018). The
proposed control strategy (ARGAE) is then evaluated in
silico and contrasted to the ARG algorithm and to its re-
tuned version (ARGmod).

2. MATERIALS AND METHODS

In this section, the ARG algorithm and the proposed
ARGAE are described.

2.1 The ARG Algorithm

Fig. 2. Block diagram of the ARG and ARGAE algorithms

The ARG algorithm regulates glycemia without delivering
open-loop prandial boluses. Instead, it switches between
an aggressive controller, which counteracts the effect of the
meals, and a conservative controller, which is in charge of
keeping the patient in the euglycemic range (BG ∈ [70 −
180] mg/dl) at all other times.

Figure 2 shows a block diagram of the ARG algorithm.
The main controller in the ARG algorithm is a SLQG,
that switches between an aggressive controller K2, which
is in charge of compensating for the effects of the meals,
and a conservative controller K1, which maintains glucose
levels in the desired range at all other times. Therefore,
while K2 has to generate large insulin spikes to reduce the
postprandial excursions, K1 has to slightly modulate the
basal insulin rate. To this end, the weighting matrices used
to design controller K2 are tailored to generate a faster and
more aggressive response than controller K1 (see details in
Colmegna et al. (2018)). The output of this block is the
insulin dose calculated by the SLQG (uc).

In its current state, the switching between K1 and K2

is made using a meal announcement. The announcement
triggers a listening mode in which the controller waits to
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detect an increasing trend on CGM readings to switch to
K2. It is worth highlighting that the meal announcement
is not used to deliver meal priming boluses and no CHO
counting is required. Instead, the user informs the size of
the meal using one of three categories: small, medium and
large. This information is used to tune the SAFE layer. On
the other hand, the switching between K2 and K1 occurs
automatically after one hour.

Since the controller does not have integral action, the
open-loop basal insulin is added to uc, yielding u. The
signal u would command the insulin pump if the SAFE
layer was not present. However, the SAFE modulates
u through the signal γ (γ ∈ [0, 1]) in order to avoid
violating an imposed restriction on the insulin-on-board
(IOB). Therefore, the insulin dose that is finally delivered
to the patient is γu. Currently, the SAFE layer in the
ARG algorithm uses piecewise constant IOB constraints
depending on the announced meal size, according to the
following equations (1):

• Small meals < 35 gCHO:
IOB = IOBss + 40 gCHO/CR.

• Medium meals [35, 65) gCHO:
IOB = IOBss + 55 gCHO/CR.

• Large meals ≥ 65 gCHO:
IOB = IOBss(t) + 70 gCHO/CR.

Where IOBss is the IOB with the basal insulin infusion,
and CR is each patients carbohydrate ratio.

The ARG algorithm has been validated in vivo in 5 adult
patients at the HIBA clinical trial. Although results were
encouraging, in silico evaluation showed that the perfor-
mance worsened when controlling the pediatric population
(Fushimi et al., 2019). In that study, a modification in the
ARG was proposed. As shown in figure 1, hyper- and hypo-
glycemia are more prominent for children and adolescents
than for adults. In order to avoid hypoglycemia episodes,
the IOB was reduced to %80 of the value obtained using
(1). On the other hand, to reduce hyperglycemia, the
switching between K1 and K2 was reformulated: the lis-
tening mode was eliminated and the commutation from
conservative to aggressive was made immediately after a
meal was announced. Then, the controller switched from
aggressive to conservative only when a decreasing trend
in CGM readings was detected. This modified version
of the ARG (ARGmod) showed improved performance in
hypoglycemia prevention at the cost of larger time periods
in hyperglycemia.

2.2 The ARG Algorithm with Amplitude Enable (ARGAE)

According to Goodwin et al. (2015), the theoretically
optimal treatment for glucose regulation is the basal-
superbolus open-loop therapy. However, high uncertainty
present in meal size and composition, patient parameters,
and sensor readings make closed-loop control necessary.
With this in mind, an IOB limitation strategy based on
open-loop therapy was introduced, called the AE (Fushimi
et al., 2018).

The AE block has the same working principle as the SAFE.
The difference lies on the shape of the IOB. For the SAFE,
IOB is a constant piecewise function while, for the AE,
IOB is a time-varying constraint shaped as the open-loop

therapy IOB profile multiplied by a constant β > 1, in
order to give the controller an extra degree of freedom.

The shape of the IOB constraint used for the AE mode
has the advantage of allowing large insulin doses at the
beginning of the meal, and reducing them gradually as
the meal effect ends.

The AE layer, like the SAFE, can work around any main
controller. Here, it is combined with a switched strat-
egy (the ARG algorithm), since using a very aggressive
controller might generate unwanted oscillations (Fushimi
et al., 2019), and a conservative one might not be strong
enough to compensate large perturbations like the meals.
In order to compute the IOB, the meal classification is
used. Like the ARGmod, the switching between K1 and
K2 is made when a meal is announced, and from K2 to
K1 when BG decreases.

An illustrative example of the ARG and the ARGAE is
shown in figure 3. It can be seen that the insulin response
generated by the ARGAE is similar to a superbolus: large
insulin spikes at meal time, followed by a cut in basal
insulin delivery. The AE allows this non-linear behaviour
to an otherwise linear controller like the LQG.

Fig. 3. Example of the IOB, IOB and resulting insulin
dose for the ARG with the SAFE layer (red) and for
the ARGAE (blue).

2.3 in silico Analysis

First, the ARG with the amplitude enable layer (ARGAE)
is evaluated considering a medium-sized meal for different
values of β using the adolescent and children age groups
available in the UVA/Padova simulator, and contrasted
with the ARG, and its modified version (ARGmod). The
meal is announced at the time of intake, with the appro-
priate meal classification (medium).

Then, according to the first set of simulations, an adequate
value for β is selected. Here, hypoglycemia reduction
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is prioritized over hyperglycemia. For the second set of
simulations, meal size error is considered using a small
and a large-sized meal while announcing a medium meal.

For all simulations, meal intake takes place at t = 1 and
is followed by a 9 hour post-prandial observation period.
CGM noise is also considered using a DEXCOM CGM
model provided in the UVA/Padova simulator.

3. RESULTS

3.1 Medium-sized meal - β sweep

Table 1 shows the mean ± 1 std of the % time in
hyperglycemia (>180mg/dl), hypoglycemia (<70mg/dl),
severe hyperglycemia (>250mg/dl), the desired range (70-
180mg/dl) and the acceptable range (70-250mg/dl) for
the 10 adolescents available in commercial version of the
UVA/Padova simulator using the ARG, the ARGmod and
the ARGAE for a 55 gCHO meal. It can be observed that
while the ARGmod reduces hypoglycemia, it significantly
increases time spent in hyperglycemia. On the other hand,
ARGAE achieves the same reduction of hypoglycemia
episodes, while also diminishing hyperglycemia when an
adequate β is selected. In this case, a β = 1.4 achieves
the most time in the desired and acceptable range (grey
column).

Figure 4 shows the mean insulin delivered over time for
the ARG, the ARGmod and the ARGAE with β = 1.4. As
expected, the ARGAE administers larger doses of insulin
at the beginning of the meal and cuts insulin afterwards,
slowly returning to basal delivery when BG values start
to decrease. On the other hand, the constant IOB in
the ARG and the ARGmod results in a more distributed
insulin dosage by the end of the meal. This causes a larger
hyperglycemia peak with a higher risk of postprandial
hypoglycemia. The result of this behaviour is illustrated
with adolescent #004 in figure 5. It can be observed that
the ARGAE generates the same high peak in BG as the
ARG, while achieving higher postprandial BG values as
the ARGmod.

Fig. 4. Mean insulin infusion for a 55 gCHO meal using
the ARG (solid red), the ARGmod (dashed blue) and
the ARGAE with β = 1.4 (dashed-dotted black).

Fig. 5. Glucose, insulin, controller mode and IOB evolution
over time of adolescent 4 of the UVA/Padova simula-
tor using the ARG (solid red), the ARGmod (dashed
blue) and the ARGAE with β = 1.4 (dashed-dotted
black).

Table 2 shows the same metrics as table 1 but for the 10
children available in the UVA/Padova simulator, also for
the ARG, the ARGmod and the ARGAE with different
values of β. In this case, the ARGAE further reduces the
time in hypoglycemia achieved by the ARGmod. However,
if hypoglycemia reduction is prioritized, time in hyper-
glycemia is slightly increased compared with the ARG.
Nonetheless, time in range is significantly improved.

3.2 Overestimated announced meal

Here, a 40 gCHO (small) meal is considered but a medium
meal is announced in order to evaluate the algorithms
performance when meals are overestimated.

Table 3 shows the same metrics as table 1 for the 10
adolescents available in the UVA/Padova simulator using
the ARG, the ARGmod and the ARGAE with β =
1.4. Since the meal is overestimated, the time spent in
hyperglycemia is lower for all control strategies compared
with the 55 gCHO meal. Also, hypoglycemia is increased
for the ARG. It can be noted that as the ARGmod has
the most restrictive IOB, it presents the highest mean
time in hyperglycemia, but effectively avoids hypoglycemia
episodes. On the other hand, hypoglycemia is reduced with
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Table 1. Results (% of time) for the 10 adolescents of the UVA/Padova Simulator using the
ARG, ARGmod and ARGAE with different values of β. Results are mean ± 1 std. Meal size:M

55 gCHO (medium). Announced meal size: Medium.

ARG ARGmod
ARGAE

β = 1.2
ARGAE

β = 1.25
ARGAE

β = 1.3
ARGAE

β = 1.35
ARGAE

β = 1.4
ARGAE

β = 1.45

Hyperglycemia 23.1 +-4.2 26.6 +-5.0 24.6 +-4.8 23.8 +-4.7 23.1 +-4.6 22.5 +-4.4 22.0 +-4.3 21.5 +-4.3
Hypoglycemia 1.0 +-3.2 0.0 +-0.0 0.0 +-0.0 0.0 +-0.0 0.0 +-0.0 0.0 +-0.0 0.0 +-0.0 0.5 +-1.7
Severe hyperglycemia 11.7 +-5.8 13.4 +-6.3 11.5 +-6.9 11.2 +-6.7 10.9 +-6.6 10.7 +-6.5 10.5 +-6.4 10.3 +-6.3
Desired range 75.9 +-6.5 73.4 +-5.0 75.4 +-4.8 76.2 +-4.7 76.9 +-4.6 77.5 +-4.4 78.0 +-4.3 77.9 +-4.4
Acceptable range 87.3 +-7.8 86.6 +-6.3 88.5 +-6.9 88.8 +-6.7 89.1 +-6.6 89.3 +-6.5 89.5 +-6.4 89.2 +-6.9

Table 2. Results (% of time) for the 10 children of the UVA/Padova Simulator using the ARG,
ARGmod and ARGAE with different values of β. Results are mean ± 1 std. Meal size: 55 gCHO

(medium). Announced meal size: Medium.

ARG ARGmod
ARGAE

β = 1.15
ARGAE

β = 1.2
ARGAE

β = 1.25

Hyperglycemia 19.9 +-3.3 23.8 +-4.5 22.5 +-4.9 21.3 +-4.5 20.6 +-4.2
Hypoglycemia 6.0 +-8.8 1.2 +-3.9 0.0 +-0.0 0.0 +-0.0 1.5 +-3.3
Severe hyperglycemia 12.8 +-4.5 15.4 +-4.8 13.4 +-4.8 12.6 +-5.3 12.3 +-5.2
Desired range 74.0 +-7.1 75.0 +-4.6 77.5 +-4.9 78.7 +-4.5 77.9 +-4.6
Acceptable range 81.1 +-8.3 83.3 +-3.2 86.6 +-4.8 87.4 +-5.3 86.2 +-6.6

Table 3. Results (% of time) for the 10 adoles-
cents of the UVA/Padova Simulator using the
ARG, ARGmod and ARGAE with β = 1.4.
Results are mean ± 1 std. Meal size: 40 gCHO

(small). Announced meal size: Medium.

ARG ARGmod
ARGAE

β = 1.4

Hyperglycemia 17.7 +-4.2 20.1 +-5.2 16.7 +-4.3
Hypoglycemia 4.4 +-9.3 0.0 +-0.0 3.5 +-6.2
Severe hyperglycemia 4.1 +-5.6 4.6 +-6.4 3.8 +-5.3
Desired range 77.9 +-10.6 79.9 +-5.2 79.8 +-6.6
Acceptable range 91.5 +-10.6 95.4 +-6.4 92.7 +-7.7

the ARGAE , while slightly lowering time in hyperglycemia
as the ARG. If a more conservative β had been chosen in
order to prioritize hypoglycemia prevention, hypoglycemia
can be avoided using the ARGAE , For example, with β =
1.3: % time in hyperglycemia = 17.5±4.5, hypoglycemia =
0± 0, severe hyperglycemia = 3.9± 5.4, the desired range
= 82.5± 4.5 and the acceptable range = 96.1± 5.4.

Table 4. Results (% of time) for the 10 children
of the UVA/Padova Simulator using the ARG,
ARGmod and ARGAE with β = 1.2. Results
are mean ± 1 std.Meal size: 40 gCHO (small).

Announced meal size: Medium.

ARG ARGmod
ARGAE

β = 1.2

Hyperglycemia 15.7 +-3.2 18.1 +-3.9 15.7 +-3.5
Hypoglycemia 6.8 +-9.0 3.3 +-5.4 5.6 +-7.5
Severe hyperglycemia 7.4 +-3.9 8.5 +-4.6 6.6 +-4.0
Desired range 77.6 +-7.1 78.5 +-4.8 78.7 +-5.1
Acceptable range 85.9 +-8.8 88.2 +-6.6 87.8 +-7.4

Table 4 shows the same metrics as table 3 but for the 10
children available in the UVA/Padova simulator, also for
the ARG, the ARGmod and the ARGAE with β = 1.2.
In this case, the ARG and the ARGAE show the same %
of time in hyperlgycemia, while the ARGmod achieves the

highest reduction of hypoglycemia. However, like with the
adolescent age group, if a more restrictive β were selected,
the ARGAE has the ability of obtaining similar results
with lower hyperglycemia. For example, with β = 1.15:
% time in hyperglycemia = 16.3 ± 3.6, hypoglycemia =
3.1 ± 4.7, severe hyperglycemia = 6.9 ± 4.1, the desired
range = 80.7± 2.6 and the acceptable range = 90.0± 4.9.

3.3 Underestimated announced meal

Here, a 70 gCHO (large) meal is considered but a medium
meal is announced in order to evaluate the algorithms
performance when meals are underestimated.

Table 5. Results (% of time) for the 10 adoles-
cents of the UVA/Padova Simulator using the
ARG, ARGmod and ARGAE with β = 1.4.
Results are mean ± 1 std. Meal size: 70 gCHO

(large). Announced meal size: Medium.

ARG ARGmod
ARGAE

β = 1.4

Hyperglycemia 27.8 +-4.2 32.0 +-4.8 26.6 +-4.6
Hypoglycemia 0.0 +-0.0 0.0 +-0.0 0.0 +-0.0
Severe hyperglycemia 17.9 +-4.6 20.4 +-5.0 16.8 +-4.8
Desired range 72.2 +-4.2 68.0 +-4.8 73.4 +-4.6
Acceptable range 82.1 +-4.6 79.6 +-5.0 83.2 +-4.8

Table 5 shows the same metrics as table 1 for the 10
adolescents available in the UVA/Padova simulator using
the ARG, the ARGmod and the ARGAE with β = 1.4.
Since the meal is underestimated, the time spent in hy-
perglycemia is higher for all control strategies, and hypo-
glycemia is avoided. It can be noted that as the ARGmod

has the most restrictive IOB, it presents the highest mean
time in hyperglycemia. On the other hand, hyperglycemia
and sever hyperglycemia are slightly improved with the
ARGAE .

Table 6 shows the same metrics as table 5 but for the
10 children available in the UVA/Padova simulator, also
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Table 6. Results (% of time) for the 10 children
of the UVA/Padova Simulator using the ARG,
ARGmod and ARGAE with β = 1.2. Results
are mean ± 1 std. Meal size: 70 gCHO (large).

Announced meal size: Medium.

ARG ARGmod
ARGAE

β = 1.2

Hyperglycemia 24.0 +-3.9 29.0 +-5.4 33.6 +-14.8
Hypoglycemia 4.0 +-6.5 0.6 +-1.8 0.0 +-0.0
Severe hyperglycemia 17.6 +-3.9 21.3 +-4.5 20.3 +-4.6
Desired range 72.0 +-5.5 70.5 +-5.0 66.4 +-14.8
Acceptable range 78.3 +-6.1 78.1 +-3.9 79.7 +-4.6

for the ARG, the ARGmod and the ARGAE with β =
1.2. In this case, hyperglycemia is increased when using
the ARGmod and the ARGAE . However, hypoglycemia is
avoided only with the ARGAE , which is the primary goal
specially when regulating BG in children since it can have
the most severe consequences. Additionally, it is worth
highlighting that children tend to eat rather medium to
small-sized meals.

4. DISCUSSION

Simulations show that when the meal size is estimated
properly, the ARGAE has the ability of reducing hypo-
glycemia episodes as was done with the ARGmod but
without increasing (or even further lowering) time in hy-
perglycemia compared to the ARG. Thus, the compromise
between prandial hyperglycemia and postprandial hypo-
glycemia is eliminated.

When meals are not classified adequately, the ARGAE

shows consistent robust performance in adolescents, unlike
the ARGmod. On the other hand, in the case of the 10
children of the UVA/Padova simulator when meals are
overestimated, hypoglycemia might increase compared to
the ARGmod if β is too relaxed. However, β can be as
conservative as necessary taking into account each patient
habits. A study involving long-term, online adjustment of
the β parameter should be performed in the future for
multi-day clinical trials.

Another important upside of the ARGAE is that its
tunning is relative to the open-loop therapy. This is an
advantage since it is more user-friendly, and can use the
information from the traditional patient treatment.

5. CONCLUSIONS

A strategy for automatic glycemic regulation based on
switched control and time-varying IOB constraints was
introduced and compared with the previously tested ARG
algorithm and a modified version of it proposed in previous
work. The comparison is made in silico considering the pe-
diatric population available in the UVA/Padova simulator,
on account of the coming up clinical trials in collaboration
with the Garrahan hospital. Simulations show that the
proposed algorithm improves the performance of the ARG
algorithm and is robust to misclassified meals, as well
as providing intuitive tuning. Future work should include
automatic meal detection in order to evaluate the response
of the proposed algorithm to unannounced meals.
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(2019). Evaluación pre-cĺınica de controladores para
páncreas artificial en población pediátrica. In XVIII
Workshop on Information Processing and Control.

Goodwin, G.C., Medioli, A.M., Carrasco, D.S., King, B.R.,
and Fu, Y. (2015). A fundamental control limitation
for linear positive systems with application to type 1
diabetes treatment. Automatica, 55, 73–77.

Haidar, A. (2016). The artificial pancreas: How closed-
loop control is revolutionizing diabetes. IEEE Control
Systems, 36(5), 28–47. doi:10.1109/MCS.2016.2584318.

Mauseth, R., Hirsch, I., Bollyky, J., Kircher, R., Matheson,
D., Sanda, S., and Greenbaum, C. (2013). Use of
a ”fuzzy logic” controller in a closed-loop artificial
pancreas. Diabetes Technology and Therapeutics, 15(8),
628–633. doi:10.1089/dia.2013.0036.

Revert, A., Garelli, F., Picó, J., De Battista, H., Rossetti,
P., Vehi, J., and Bondia, J. (2013). Safety auxiliary
feedback element for the artificial pancreas in type 1
diabetes. IEEE Trans Biomed Eng, 60 (8), 2113–2122.

Sánchez-Peña, R. and et. al. (2018). Artificial pancreas:
Clinical study in Latin America without premeal insulin
boluses. J Diabetes Sci Technol, 12(5), 914–925.

Sánchez-Peña, R.S. and Cherñavvsky, D.R. (2019). The
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