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Abstract: For linear control systems, the so-called controllability Gramian has played an
important role to quantify how effectively the dynamical states can be driven to a target one by
a suitable driving input. On the other hand, thanks to the availability of Big Data, the Gaussian
process state space model, a data-driven probabilistic modeling framework, has attracted much
attention in recent years. In this paper, we newly introduce the concept of the controllability
Gramian for nonlinear dynamics represented by the Gaussian process state space model, aiming
at better understanding of this new modeling framework. Then, its effective calculation method
and application to model sparsification are investigated.
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1. INTRODUCTION

In system and control theory for linear systems, fun-
damental mathematical structure such as controllability,
observability, optimal control, robustness has been well
understood. These concepts have played a crucial role in
control system design and analysis; see e.g., Zhou et al.
(1996). Furthermore, various results have been successfully
extended to nonlinear control systems to some extent,
which also have been utilized to construct nonlinear con-
trol systems; see Khalil (2002). On the other hand, based
on recent availability of Big Data and remarkable advance
of machine learning, data-driven modeling has attracted
much attention in controls community. Such a machine-
learning assisted modeling is easier to implement than the
first principles modeling and has higher describing abil-
ity in general. However, the obtained models are mainly
used for simulation or simple error evaluation, but not for
understanding fundamental mathematical structure of the
modeled dynamics, which shows a clear contrast to the
conventional system and control theory.

The ultimate goal of our study is to bridge the gap between
these two complementary disciplines. Toward this end,
in this paper, we focus on the Gaussian Process State
Space Models (abbr. GPSSM), which is a typical data-
driven modeling framework Eleftheriadis et al. (2017);
McHutchon (2014). Then, we attempt to extend the con-
cept of the controllability Gramian, one of the most clas-
sical tools in systems control theory, to GPSSM. GPSSM
can be viewed as a probabilistic modeling method by local
interpolation of the vector field of dynamics. In comparison
to other similar methods such as Just-in-Time modeling
(Cleveland and Devlin (1988); Zheng and Kimura (2008);
Stenman et al. (1996)), the Gaussian process approxi-
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mation has several mathematically interesting properties;
Rasmussen and Williams (2006). In particular, in this pa-
per, moment matching technique of the Gaussian process
approximation is utilized for effective calculation of the
controllability Gramian that we newly introduce.

The organization of this paper is as follows: In Section
2, we briefly overview several definitions and fundamental
results on the controllability Gramian. Then, we newly
introduce controllability Gramian for GPSSM, and in-
vestigate its practical calculation procedure in Section 3.
In Section 4, we apply the newly introduced controlla-
bility Gramian to model sparsification. Some concluding
remarks are given in Section 5.

Notations: The determinant of a square matrix X is
denoted by |X|. The matrix exponential of a square matrix
X is represented by eX . The probability density of
the multidimensional (denoted by k) normal distribution
N (x;µ,Σ) with mean vector µ ∈ Rk and (positive
definite) covariance matrix Σ ∈ Rk×k is defined by

1√
(2π)k|Σ|

exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
.

The variable x is omitted if it is clear from the context.

2. PRELIMINARY: QUANTITATIVE
CONTROLLABILITY ANALYSIS OF NONLINEAR

SYSTEMS

2.1 Controllability Gramian of linear systems

Let us consider the continuous-time linear time-invariant
system

d

dt
x(t) = Ax(t) +Bu(t), x(0) = 0 (1)
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where x(t) is the n-dimensional state, u(t) is the scalar
input, and A ∈ Rn×n, B ∈ Rn. Then, (finite-time)
controllability Gramian Gτ is defined by

Gτ :=

∫ τ

0

eAtBB>eA
>tdt. (2)

This positive semi-definite matrix contains rich informa-
tion about controllability of dynamical systems. For ex-
ample, Gτ is nonsingular if and only if the system is
controllable in that all the state transfer (i.e., any initial
and target states pair) is realizable by a suitable finite
energy input.

Beyond this binary (controllable or not) property, for
quantitative analysis of controllability, let us introduce
the controllability function Lτ (x̃) as the minimum input
energy required to drive the state to a target one x̃ at time
τ , i.e.,

Lτ (x̃) := inf
u

∫ τ

0

1

2
u(t)2dt s.t. x(τ) = x̃. (3)

It is well-known that, when the matrix in (2) is nonsingu-
lar, this controllability function satisfies

Lτ (x̃) =
1

2
x̃>G−1

τ x̃. (4)

This equation indicates that states on which the control-
lability function is large (i.e., states that are not reachable
by small energy input) are characterized by eigenspace
corresponding to small eigenvalue of Gτ . Elimination of
such a subspace is the central idea in control theoretic
model reduction methods and their error analysis; see
Antoulas (2005) for details.

2.2 Controllability function and noise response data

Next, we move to input-affine nonlinear systems. To the
best of our knowledge, extension of the definition in (2) is
not straightforward; see Lall et al. (2002) for a practically
useful variant. On the other hand, the definition (3) of the
controllability function does not depend on the linearity
of the dynamics, although it is challenging to compute
analytically or even numerically because it is no longer a
quadratic function. In such a situation, Kashima (2016)
utilized (4) as a definition to introduce a controllability
Gramian for nonlinear systems. To see this, consider the
input-affine nonlinear system having noise term (Kappen
(2005))

d

dt
x(t) = f

(
x(t)

)
+ g
(
x(t)

)(
u(t) +

√
Tξ(t)

)
(5)

x(0) = 0

where ξ(t) is normalized white noise 1 and T > 0. Then,
define the stochastic controllability function

Lτ (x̃) := inf
u

Eξ
[∫ τ

0

1

2
‖u(t)‖2dt+ Φ(x(τ)− x̃)

]
(6)

Φ(0) = 0, e−Φ(x) ∝ δ(x) (7)

where Eξ[·] represents expectation with respect to the
noise 2 . Furthermore, by using Gibbs distribution, define

1 More mathematically rigorous formulation requires stochastic dif-
ferential equations.
2 Intuitively, Eq. (7) represents the terminal constraint x(τ) = x̃ as
a terminal cost; see Kashima (2016).

G(L) :=

∫
φL(x̃)x̃x̃>dx̃, (8)

φL(x̃) :=
e−L(x̃)∫
e−L(x̃)dx̃

.

Then, it is verified that, for linear system (1), G(Lτ )
coincides with Gτ in (2). In view of this, we refer to
G(Lτ ) as controllability Gibbs Gramian of system (5).
While G(Lτ ) is still difficult to compute directly, the
following proposition suggests another way of computing
this matrix:

Proposition 2.1. Let x̄(t) be the solution of (5) with u(t) =
0. Then,

Gτ := Eξ[x̄(τ)x̄(τ)>] (9)

satisfies
G(Lτ/T ) = Gτ . (10)

This proposition states that Gτ can be computed by the
Monte Carlo simulation based on noise response data of
(5).

3. CONTROLLABILITY OF GAUSSIAN PROCESS
STATE SPACE MODELS

3.1 Definition

In this section, we investigate GPSSM, which is a dy-
namical system whose vector fields are probabilistically
modeled by the Gaussian process approximation (Wang
et al. (2006)). Suppose that for {xi}i=1...N , noisy obser-
vation {f i}i=1...N of f(xi) are available. In view of the
observation based on (5) in the previous section, let us
consider the following discrete-time GPSSM with noise
term:

xs+1 = f(xs) + g(xs)(us +
√
Tξs), (11)

x0 = 0

where ξs is independent and identically distributed (i.i.d.)
normalized Gaussian random variables and g : Rn → Rn
is a known function. The probability distribution of a-th
component fa(x) of f(x) is a Gaussian process whose a
posteriori probability distribution is given by

fa(x)∼N
(
k>a βa, ka − k

>
aK

−1
a ka

)
.

with

Ka := {ka(xi,xj) + δij σ̄
2
a}i=1...N
j=1...N

ka := {ka(x,xi)}i=1...N

ka := ka(x,x)

fa := {fa(xi)}i=1...N

βa :=K−1
a fa

where the kernel function is defined by

ka(x,y) = σ2
a exp

(
−1

2
(x− y)>Λ−1

a (x− y)

)
with σa > 0 and diagonal matrix Λa; see Fig. 1.

For this system, having Proposition 2.1 in our mind, let us
define its controllability Gramian as follows:
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Fig. 1. Gaussian process approximation (dashed: function
to be estimated, circle: noisy observation, solid: mean
of a posteriori distribution, envelope: 1σ-confidence
interval)

Definition 3.1. Let x̄s be the solution for (11) with us = 0.
Then, the controllability Gramian of the Gaussian Process
State Space Model (11) is defined by

Gs := Eξ,f [x̄sx̄
>
s ], (12)

where Eξ,f [·] represents the expectation with respect to
the noise process ξ and the probabilistic uncertainty of
the vector field f .

Remark 1. Although the input-affine structure is assumed
only because the theoretical result has been obtained for
this class. Actually, the GPSSM does not need to be in
this form.

3.2 Approximate computation via moment matching

Although it may seem possible to compute (12) via Monte
Carlo simulation as in the case of Proposition 2.1, it is
not realistic due to the need for random sampling of
the vector field f(·). To circumvent this difficulty, we
propose to utilize moment matching; Girard et al. (2003).
The moment matching is a method to perform Gaussian
process prediction with uncertain (normal distribution)
input data. It should be noted that this moment matching
often has enough accuracy for control and have been
utilized for reinforcement learning; see e.g., Deisenroth and
Rasmussen (2011) for PILCO.

The detailed formula is given as follows: Assume that the
probability distribution of x̄ at time k can be approxi-
mated by a normal distribution

N (µs,Σs)

with a suitable µs and Σs. Then, we have

µs+1 = E [f(x̄s)]

Σs+1 = var [f(x̄s)] + T E
[
g(x̄s)g(x̄s)

>] .
In order to compute this update in the right hand side, let
us define q,Q in an elementwise manner as follows:

qa := E[ka]

(qa)i = σ2
a

∣∣ΣsΛ
−1
a + I

∣∣−1/2 G(xi;µs,Σs + Λa)

Qab := E[kak
>
b ]

(Qab)ij =
∣∣Σs(Λ

−1
a + Λ−1

b ) + I
∣∣−1/2 ×

ka(xi,µs)kb(xj ,µs) exp

(
1

2
z>ijT

−1zij

)
G(x;y,Σ) := exp

(
−1

2
(x− y)>Σ−1(x− y)

)
zij := Λ−1

a (xi − µs) + Λ−1
b (xj − µs)

T := Λ−1
a + Λ−1

b + Σ−1
s

for 1 ≤ a, b ≤ n , 1 ≤ i, j ≤ N , Then, we obtain

E [fa(x̄)] = β>a qa

var[fa(x̄)] = ka − Tr[K−1
a Qaa]

+β>a (Qaa − qaq>a )βa

cov[fa(x̄), fb(x̄)] = β>a (Qab − qaq>b )βb

Based on this recurrent formula, we can approximately
compute the controllablity Gramian of GPSSM directly
from available data {xi} and {f i}.
The definitions and characteristics of several controllabil-
ity Gramian are summarized in Table 1.

3.3 Numerical example

In order to perform comparison with the true value of
the controllability Gramian of the real dynamics, let the
system to be modeled be the discrete-time linear system
such as

xs+1 = Axs +B(us + ξs), x0 = 0 (13)

with

A =

[
0.86 0.06
0.08 0.94

]
,

B =

[
0.01
0.01

]
.

Suppose that the matrix B is known and that the vector
field is estimated through the Gaussian process approxi-
mation by {xi} and f i := Axi + εi with i.i.d. observation
noise εi ∈ R2 generated by

εi ∼ N (0, 0.012I).

In this example, we generated xi according to the uniform
distribution over

S := [−0.5, 0.5]2. (14)

The parameter in the kernel function is σ̄2 = 10−4, σ2
a = 10

and Λa = 10 · I.

For comparison purpose, we calculate the conventional
controllability Gramian for linear systems:

Gτ :=

τ∑
s=0

AsBB>(A>)s. (15)

The controllability Gramian Gτ defined in Definition 3.1
and approximately computed via the recurrent formula
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Table 1. Comparison of definitions and computation of controllability Gramians

System description Modeling from data Definition Calculation

Linear system (1) linear regression (2) Lyapunov equation

Nonlinear system (5) nonlinear regression (8) Monte Carlo simulation of noise response
data and principal component analysis
(Proposition 2.1)

Gaussian process state
space models (11)

kernel method Definition 3.1 Analytic recurrent formula for approxi-
mated calculation (Section 3.2)

based on moment matching and Gτ in (15) are shown in
Fig. 2 for

N = 20, 100, 500.

This results, as expected, indicates that the gap between
the calculated controllability Gramian Gτ and Gτ becomes
smaller as N increases, which should be a consequence of
the fact that the obtained GPSSM becomes closer to (13)
in a probalistic sense.

4. APPLICATION TO MODEL SPARSIFICATION

Sparse Gaussian process is an approximation method to
reduce the computation complexity of prediction based on
the Gaussian process (Snelson and Ghahramani (2006)). In
this section, we propose to determine parameters required
for the sparsification based on the controllability Gramian.
For this purpose, we here provide a brief review of standard
idea of sparse Gaussian process. For the computation of
the Gaussian process, the inverse of the kernel matrix,
which is O(N3) with the data size N , is needed. The
motivation of the sparsification is to reduce this operation
with reasonable approximation error.

Suppose that we attempt to calculate the a posteriori
probability distribution of the output y∗ for a new input
x∗ by using N sets of available data x = {xi}i=1...N ,y =
{yi}i=1...N . In order to reduce the computation complex-
ity, an inducing variable (or pseudo input) x̂ = {x̂i}i=1...M

is introduced. Given the output ŷ for the inducing variable,
assume that y, y∗ is conditionally independent. Then, the
probability distribution of y∗ is given by

y∗ | y ∼ N
(
k>M∗Q

−1KNMΛ−1y,

k∗∗ − k>M∗(K
−1
MM −Q

−1)kM∗

)
.

Here, we define

KNN := {k(xi, xj) + δijσ
2}i=1...N
j=1...N

KNM := {k(xi, x̂j)}i=1...N
j=1...M

KMM := {k(x̂i, x̂j)}i=1...M
j=1...M

kM∗ := {k(x̂i, x∗)}i=1...M

k∗∗ := k(x∗, x∗)

Λ := diag[KNN −KNMK
−1
MMK

>
NM ]

Q :=KMM +K>NMΛ−1KNM

with kernel function k(·, ·). This calculation is O(M2N),
which significantly decreases the computation burden if
M � N . Note that the choice of the inducing variable
x̂ largely affects the approximation accuracy. It is empir-
ically known that the sparse Gaussian process provides

better approximation around inducing variables. This mo-
tivates us to take inducing variables in “important” region.

As in the case of model reduction of linear systems based
on the controllability Gramian, let us assume that states
that are reachable by a less energy input are more impor-
tant. In other words, it seems reasonable that inducing
variables are taken in accordance with the probability
distribution given by the controllability function.

4.1 Numerical simulation (continued)

Let us revisit the GPSSM constructed in Section 3.3 with
N = 500. Then, we generate two sparse Gaussian pro-
cesses with M = 50; inducing variables x̂i are generated
randomly with

• the uniform distribution over S in (14),
• the probability density function given by the following

Gaussian Mixture:

1

100

99∑
k=0

N (x; 0,Gτ ). (16)

Figs. 3 and 4 show the probability density and generated
inducing variables of the proposed method.

In order to compare the resulting accuracy, let µf (x)
and Σf (x) be the mean vector and covariance matrix of
the a posteriori distribution obtained by the original and
sparsified Gaussian processes of f . In other words, the
likelihood function of the vector field at x is given by

N (f ;µf (x),Σf (x)). (17)

Figs. 5 to 7 show the likelihood of the real dynamics,
i.e., N (Ax;µf (x),Σf (x)). Roughly speaking, larger like-
lihood implies that the obtained model generates the real
dynamics with higher probability. Since M is much smaller
thanN , it is inevitable that the accuracy deteriorates upon
the sparsification. However, the proposed method provides
a model whose accuracy on the effectively reachable region
retains relatively high in comparison to the sparsification
by the uniform distribution, compromising the accuracy
on other domain.

5. CONCLUSION

In this paper, following the discussion in Kashima (2016),
we newly introduced a novel controllability Gramian, and
proposed its approximate computation method. The char-
acteristic of several definitions of controllability Gramian
are summarized in Table 1. At the moment, we have not
yet obtained rigorous theoretical underpinnings for Defini-
tion 3.1; see also Todorov (2009) for discrete-time linearly
solvable Markov decision processes. It is remarkable fea-
ture of Gaussian process state space models that the pro-
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(a) (1, 1)-element (b) (1, 2)-element (c) (2, 2)-element

Fig. 2. Comparison of the controllability Gramians; horizontal axis: τ , red (solid): Gτ , blue: Gτ for N = 20 (dotted),
100 (dashed), 500 (solid).

(a) τ = 5 (b) τ = 10 (c) τ = 20 (d) τ = 100

Fig. 3. Effectively reachable region estimated by the cotrollability Gramian: Heat map of N (x; 0,Gτ ) for τ =
5, 10, 20, 100.

Fig. 4. Inducing variables of the proposed method: scat-
tering plot with heat map of the probability density
function in (16).

posed method is computationally efficient and requires no
Monte Carlo sampling despite the dynamics’ nonlinearity.

In linear control system theory, controllability (and ob-
servability) plays a crucial role for model reduction. In
Section 4, the newly introduced controllability Gramian
was utilized for model sparsification. The numerical results
performed suggests this is promising direction. Theoret-
ical justification of the usefulness of the controllability
Gramian-based sparsification, including the effect of the
moment matching approximation and overconfidence issue

Fig. 5. Heatmap of likelihood of real dynamics: original
GP.

(Quiñonero-Candela et al. (2007)) and introduction of
observability Gramian are currently under investigation.
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