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Abstract: Constrained predictive control has emerged as a viable candidate for generating
optimal real-time charging strategies for lithium ion batteries. Able to conform to hard
constraints on problem variables, model predictive control (MPC) formulates an optimal 2-
norm solution at each time step and can thus assure safe and reliable fast-charge operation.
Standard MPC implementations make certain simplifying assumptions regarding future control
actions beyond a specified control horizon. This paper demonstrates the potential gains that
can be realized for the battery charge problem by relaxing these assumptions.
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1. INTRODUCTION

A growing desire for ever-shorter charging times presents
an important challenge and remains a key obstacle to EV
market penetration, Chan and Wong (2004). The ability to
bring a battery to a specified state-of-charge in the shortest
possible time is ultimately limited by internal electrochem-
ical processes. Indeed, exceeding certain current rates and
cell voltages can cause irreversible damage and capacity
loss; hence, ensuring operation within a carefully bounded
operating window is critically important for battery health
and safety.

The well-known constant-current constant-voltage charge
profile (CCCV), although easy to apply, cannot take full
advantage of the true operating range of the battery, Klein
et al. (2011). Alternative charging strategies can be found
in the literature with the most promising motivated by
optimal control theory, e.g., Remmlinger et al. (2014),
Suthar et al. (2015), and Abdollahi et al. (2016). In
general, these approaches are limited by either infeasibility
for real-time applications, sub-optimality of the computed
control policy, or the inability to handle hard constraints.

Model predictive control (MPC) has emerged as an attrac-
tive solution to the constrained optimal control problem
designed to achieve critical cell-level performance objec-
tives, where respecting certain design limits can be shown
to influence both instantaneous and long-term cell per-
formance, as shown by Klein et al. (2011), Xavier and
Trimboli (2015), and Zou et al. (2018), for example. Em-
ploying a ‘look-ahead’ approach, MPC can foresee dy-
namic changes before they happen and efficiently com-
pute stepwise-optimal input control to achieve a quadratic
performance objective. More importantly, MPC is able

to conform to hard (as well as soft) constraints imposed
on designated problem variables, allowing the system to
operate in a safe manner close to its constraints boundaries
while driving the controlled variables to desired set-points
along optimal trajectories.

Standard MPC makes certain simplifying assumptions re-
garding future control actions beyond a specified control
horizon. More specifically, it assumes that all future con-
trol inputs within the interval bounded by the control and
prediction horizons are held constant. In the context of
the receding horizon principle governing MPC algorithms,
this is an important factor, as the solution of the en-
tire optimal sequence of future control inputs is heavily
influenced by this assumption. Different approaches that
relax this assumption have been proposed. For example,
in Kouvaritakis et al. (1998) and Rossiter et al. (1998)
the authors proposed a dual-mode MPC in which the first
‘mode’, called near-future, comprises a standard set of
predicted control actions defined as control perturbations,
whereas the second mode, referred to as far-future, relies
on an infinite-horizon linear quadratic control solution.
This dual-mode algorithm brings a stability guarantee and
will always give a well-posed and meaningful optimiza-
tion, irrespective of horizon choices, therefore overcoming
a known limitation of finite-horizon MPC. Wang (2004)
proposed the design of discrete-time MPC using a set of
Laguerre functions where the future control trajectory is
expressed using an orthonormal expansion. In this frame-
work, the problem of finding the future control trajectory
is converted into one of finding a small set of optimal
coefficients for the expansion. As with standard MPC,
accuracy and stability are improved as the number of
terms increase.
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In this paper we propose a different approach for dealing
with the far-future control predictions. In order to inves-
tigate the hypothesis of achieving a more aggressive input
current profile, and therefore reduce the time required to
charge the battery from an initial SOC to a desired final
value, we propose a modification to the standard MPC
algorithm by zeroing the remaining prediction values of
the control input. Simulation results are then compared
against standard linear MPC which shows that the new
framework indeed delivers a shorter time-to-charge. The
remainder of this paper is organized as follows: in Section
2 we present the battery model used in the simulations;
in Section 3 we review the standard MPC algorithm
and derive the modified MPC algorithm; the fast-charge
problem is defined in Section 4; simulation results and
accompanied discussion are presented in Section 5 followed
by conclusions in Section 6.

2. BATTERY CELL MODELING

State-of-the-art battery management systems (BMS) rely
on model-based methods of state of charge (SOC), state
of health (SOH), state of power (SOP) and capacity es-
timation. The mathematical models employed in battery
management algorithms must be simple enough for real-
time embedded applications, yet sufficiently accurate to
describe lithium ion cell behavior in order to extend bat-
tery life, increase performance and guarantee safe opera-
tion. Lithium ion battery models may be divided into two
broad categories: (i) physics-based, and (ii) empirical. The
physics-based approach employs a set of partial differential
equations (PDEs) coupled with an algebraic expression
that together describe the underlying electrochemical re-
actions that occur within the cell structure. Such models
are not suitable for embedded applications, however, as
their solution requires significant computational power.

On the other hand, empirical approaches using equivalent-
circuit models (ECM) rely on electrical circuit elements
to mimic cell behavior. The ECM method is the most
widely applied in xEV applications due to its fundamen-
tal simplicity and computational efficiency. ECM model
parameters are normally obtained by data fitting of in-
put/output relationships using a physical cell in laboratory
experiments. As a proof of concept, we shall use in this
paper a first-order RC model (also known as a Thevenin
model), Liaw et al. (2004). Figure 1 depicts the Thevenin
model and its components.

Fig. 1. The Thevenin model.

The open-circuit voltage (OCV) is SOC and temperature
dependent and models the difference of equilibrium electri-
cal potential between the positive and negative electrode.
The OCV is computed from a lookup table which is gener-
ated using lab data. Since BMSs are implemented in digital

computers, we present the model equations in discrete time
with an intersample period 4t in seconds. If we assume
ik > 0 for discharge, the SOC is computed by integrating
the input current as

zk+1 = zk −
η∆t

3600Q
ik, (1)

where Q represents the cell capacity in ampere-hours, and
η is an efficiency factor which is assumed to be η = 1
for discharge and η < 1 for charge. The resistor-capacitor
pair models the diffusion voltage. This phenomenon is
observed when a cell is allowed to rest after polarization
and the voltage decays gradually instead of returning im-
mediately to OCV. This voltage decay occurs due to slow
diffusion processes inside the cell. The diffusion voltage
phenomenon can be represented by one or more resistor-
capacitor pairs and its equation is given by

iR,k+1 = exp (−β) iR,k +
(
1− exp (−β)

)
ik, (2)

where β = ∆t
R1C1

. The output voltage equation the OCV,

the diffusion voltage, and the voltage drop (when the cell
is under load) as follows

vk = OCV (zk)−R1iR,k −R0ik, (3)

where R0 is the cell ohmic resistance. Thevenin model
parameters for the present study were obtained for a 25Ah
lithium nickel manganese cobalt oxide (LiNiMnCoO2 or
NMC) cell using the identification methodology presented
by Plett (2015). The identified parameters are provided in
Table 1 for 25 ◦C. Figure 2 depicts the voltage estimate
obtained using experimental data in which the cell was
discharged from 95 % to 5 % SOC using the UDDS
(Urban Dynamometer Drive Schedule) cycles. Excellent
model accuracy is observed.

Table 1. Model identification results.

Cell Parameters

Q 24.88 Ah

R0 0.0011 Ω

R1 0.282 mΩ

C1 12.93 kF

Fig. 2. Output voltage estimation using the identified
Thevenin model parameters.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12639



3. MODEL PREDICTIVE CONTROL

Predictive control refers to a general “approach” to control
design rather than a specific algorithm; MPC is one
particular predictive method of this type. More precisely,
MPC comprises a class of real-time computer control
algorithms that make use of an explicit process model to
predict the future responses of a plant.

Optimal control inputs are computed as those that min-
imize a performance index normally described in terms
of a 2-norm quadratic measure. An MPC algorithm con-
tinuously updates the predictions and resulting decisions
to take account of the most recent measurement data.
Loosely speaking, at each control interval MPC attempts
to optimize future plant behavior by computing a se-
quence of future manipulated variable adjustments. The
first input in the optimal sequence is used according to
the receding horizon principle; the entire calculation is
repeated at subsequent sample-time intervals.

3.1 Standard MPC With Feedthrough Term

Standard forms of MPC generically assume a strictly
proper system, which implies D = 0 in the state-space
description. However, mathematical models of battery
dynamics must include a non-zero feedthrough term in
order to correctly account for ohmic resistance, required to
model cell voltage as seen in (3) and subsequently used for
constraint handling. For this reason, the standard MPC
formulation must be modified to account for a non-zero
state-space D-term.

We presented in Xavier and Trimboli (2015) a state-
space predictive control formulation that accommodates
a lithium-ion battery cell equivalent circuit model by in-
corporating a non-zero direct feedthrough term in the al-
gorithm development. The resulting ’modified’ augmented
model retains an embedded integrator and like its standard
counterpart, admits a cost function in terms of the rate of
change of the control input. This ’modified’ standard MPC
algorithm with feedthrough term is summarized next.

Practical MPC relies on digital implementations and
discrete-time representations of dynamic systems, thus we
consider a linearized, discrete-time, state-space model of a
SISO system:

xk+1 = Axk +Buk
yk = Cxk +Duk,

where x ∈ Rnx , and (u, y) ∈ R, are, respectively, the
system state, control input, and system output, nx is the
number of system states, and A, B, C, and D are the
matrices defining the state-space model. The sub-index k
is the time sampling instant.

Re-defining the state vector as χk =
[
xT
k uTk

]T
, allows us

to define the following augmented state-space

χk+1 = Ãχk + B̃∆uk+1 (4)

yk = C̃χk, (5)

where ∆uk+1 = uk+1 − uk, and

Ã =

[
A B

01×nx
1

]
, B̃ =

[
0nx×1

1

]
, C̃ =

[
C D

]
.

The state and output equations in (4) and (5) can be
propagated resulting in the following compact notation for
the predicted outputs at a given sampling instant ki:

y
−→k+1 = ΦÃχki +G∆u−→k+1. (6)

The matrices Φ ∈ Rnp×(nx+1) , and G ∈ Rnp×nc , here
denoted MPC gains, are defined as

Φ =

[ (
C̃
)T (

C̃Ã
)T (

C̃Ã
2
)T
· · ·

(
C̃Ã

np−1
)T ]T

,

G =


C̃B̃ 0 · · · 0

C̃ÃB̃ C̃B̃ · · · 0

C̃ÃB̃ · · · 0
...

...
. . .

C̃Ã
np−1

B̃ C̃Ã
np−2

B̃ · · · C̃Ãnp−nc
B̃

 ,

and the vectors containing the predicted outputs and
control input rates of change as

y
−→k+1 =

[
yki+1|ki yki+2|ki · · · yki+np|ki

]T
, (7)

∆u−→k+1 =
[

∆uki+1|ki ∆uki+2|ki · · · ∆uki+nc|ki
]T
, (8)

respectively. The subscripts nc and np denote the control
and prediction horizons, respectively. Note that because
the system is non-strictly proper this formulation assumes
that at the current time sample ki the current control
input uki was computed previously (at time sample ki−1)
and uses this information and the current states xki to
compute the future rate of change of the control ∆uki+1

according to the receding horizon control principle.

The control law is determined from the optimization of a
quadratic measure of predicted performance,

Jki =

∥∥∥∥ r−→k+1 − y−→k+1

∥∥∥∥2

Q

+
∥∥∥∆u−→k+1

∥∥∥2

R̄
, (9)

where the first term aims to minimize errors between
the predicted output and the reference while the second
term penalizes the size of ∆u−→k. Note that prediction and

control horizons are implicit via equations (7) and (8).
Q is a positive semi-definite matrix assumed here to be
an appropriately dimensioned identity matrix. The control
step penalty R̄ ∈ R may be used as a tuning parameter.
The solution of the optimization problem

min
∆u−→k+1

Jki , s.t M∆u−→k+1 ≤ γ (10)

can be found by solving the corresponding dual quadratic
programming problem. The present work implements an
iterative Gauss-Seidel variant to generate the quadratic
program solution (see Hildreth (1957)). The method uti-
lizes a primal-dual approach (see Fiacco and McCormick
(1964)) to solve a linear system of equations using an
element-by-element reduction which avoids matrix inver-
sion. The algorithm has been shown to be robust in prac-
tice.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12640



3.2 MPC Incorporating Split-Future Control Dynamic

The standard MPC construction of ∆u−→ki+1, for the case

nc < np, assumes that all future control input increments
beyond the control horizon up to the prediction horizon
are equal to zero. This implies that all future control
inputs within the interval (ki + nc + 1) ≤ k ≤ np are held
constant, i.e., uj = uki+nc

for j = ki + nc + 1, ki + nc +
2, . . . , ki + np. This is an important observation, as the
solution of the entire optimal sequence of future control
inputs is heavily influenced by this assumption. Loosely
speaking, the ’far-future’ interval of constant control in-
puts is taken into account by the optimization, which pro-
duces a resulting sequence ∆u−→ki+1 that may not achieve

the optimal battery fast-charge objective we seek. For the
case nc = np, all future input increments are computed
explicitly (at higher computational cost), and the proposed
technique is not applicable.

We propose here an alternative formulation that permits
far-future control actions to assume a simple and com-
putationally manageable form. By permitting additional
flexibility in the future control profile, it is conjectured
the algorithm can better address highly dynamic system
response without the additional computational burden
of increasing nc. The formulation is based on an expo-
nential time series, uki+m = ukie

−αm∆t, where m =
{0, 1, 2, . . . , np − nc} and α is chosen to deliver a desired
decay rate. This functional form is extremely simple, yet
provides a wide range of suitable future control profiles (see
Fig. 3). In order to investigate the hypothesis of achieving
a more aggressive input current profile, we shall examine
here only the bounding case where α → ∞, which brings
the far-future control inputs immediately to zero.

The proposed modification to the standard MPC algo-
rithm can be achieved by augmenting the control incre-
ment vector ∆u−→ki+1 one time step beyond the control hori-

zon, in order to introduce a zero-dynamic to the remaining
prediction values of the control input. A comparison of
this modified MPC approach, which we denote here by
“split-future” MPC, and the standard MPC formulation
is depicted in Fig. 3

Fig. 3. Comparison of MPC methods.

We begin by defining the augmented control increment

vector ∆U−−→k+1 =
[

∆u−→
T
k+1,n ∆u−→

T
k+1,f

]T
and the aug-

mented MPC gain G̃ =
[
Gn Gf

]
, where the subscripts

‘n’ and ‘f’ denote “near-future” and “far-future”, respec-
tively, ∆u−→k+1,n = ∆u−→k+1, ∆u−→k+1,f ∈ R, Gn = G, and

Gf ∈ Rnp . The near-future interval is defined as (ki + 1) ≤
k ≤ nc, whereas the far-future interval is bounded as
(ki + nc + 1) ≤ k ≤ np.
Using these partitioned matrices, we can define an expres-
sion for the predicted outputs similar to (6). Multiplying
out the terms yields the following result:

y
−→k+1 = ΦÃχki +Gn∆u−→k+1,n +Gf∆u−→k+1,f . (11)

Given the decision variable for the optimization problem
described in (10) is ∆u−→k+1 = ∆u−→k+1,n, the tasks are now:

(i) to formulate ∆u−→k+1,f in terms of ∆u−→k+1,n, and (ii) to

define Gf . We begin with the former.

Since we wish to bring uj|ki to zero for j = ki+nc+1, ki+
nc + 2, . . . , ki + np, we proceed by first writing

∆u−→k+1,f = ∆uki+nc+1|ki = −uki+nc|ki . (12)

Next, we must define an expression for uki+nc|ki in terms of
the elements in ∆u−→k+1,n. Recall that ∆uk+1 = uk+1 − uk,

where uk is the last implemented control signal according
to the receding horizon principle. If we propagate this
expression up to the control horizon nc we obtain

uk+nc
= ∆uk+nc

+ ∆uk+nc−1 + . . .+ ∆uk+1 + uk,

which can be organized in the following compact form:

uk+nc
=

 nc∑
j=1

∆uk+j

+ uk. (13)

Since the elements in the summation are the future pre-
dictions of the input increments within the near-future
prediction window, and hence, are not available yet, we
need to write (13) in vector form such that

uk+nc
= 1∆u−→k+1,n + uk, (14)

where 1 is a row vector of ones of appropriate length.

We can build Gf by extending the original G matrix by
one more column, and then make Gf equal to this extra
column. If we use the result in (14), we can re-write (11)
as

y
−→k+1 = ΦÃχki + (Gn −Gf1) ∆u−→k+1,n −Gfuk. (15)

The expression above is used in (9) to solve for ∆u−→k+1,n

in the optimization problem defined in (10).

4. FAST-CHARGE PROBLEM FORMULATION

The fast-charge problem involves finding the control policy
over the input current required to bring a battery cell from
an initial SOC to a final SOC in the shortest possible time,
i.e., min

Iapp

{time− to− charge}
SOC0→SOCf

.

This is a minimum-time optimal control problem which
is notoriously difficult to solve; so instead we fashion a
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Table 2. Test sets to verify the influence of the
tuning parameters

Test set nc np λ

1 2 [10, 30] 10−7

2 [2, 6] 10 10−7

3 2 20 [10−4, 10−7]

’pseudo’ min-time problem as in (10) designed to give es-
sentially the same result (see Xavier and Trimboli (2015)).
In this framework, the cost is defined as in (9), where
we make z−→k+1 = y

−→k+1, r−→k+1 = 1Tzfinal, and ∆i−→k+1 =

∆u−→k+1. In order to achieve a near-optimal solution that

admits large step-wise input increments, the input current
is penalized by de-tuning the control weight R̄. The linear
constraints are grouped as followsMi

Mv

Mz


︸ ︷︷ ︸

M

∆i−→k+1 ≤

 γiγv
γz


︸ ︷︷ ︸
γ

,

where we define

Mi =

[
Cu
−Cu

]
, Mv =

(
Gv,n −Gv,f1

)
,

Mz =
(
Gz,n −Gz,f1

)
, γi =

[
1 (imax − iki)
−1 (imin − iki)

]
,

γv = 1Tvmax − ΦvÃχki − 1TOCV (zki) +Gv,f iki ,

γz = 1Tzmax − ΦzÃχki +Gz,f iki ,

and Cu ∈ Rnc×nc is a lower triangular matrix with all
non-zero entries equal to one.

5. SIMULATION RESULTS

In order to show the viability of achieving a more aggres-
sive control policy – and therefore a shorter time-to-charge
– using the split-future MPC approach, we compare sim-
ulation results against standard MPC. For the simulation
study, we aim to drive the battery SOC from an initial
value of 10% to a final value of 90%. For simplicity, we
assume full state information; hence no estimators are
employed. The operating constraints are defined as follows:
−150 A ≤ iki ≤ 0 A, vki ≤ 4.2 V, and zki ≤ 90 %.

In addition, we investigate the influence of the MPC design
parameters on the resulting charge profile. For this we ran
three different test sets; these are summarized in Table 2.
The effect of varying the prediction horizon is verified by
test set 1 and is shown in Figs. 4 and 5. For this test set,
both control horizon and control weight are kept fixed. It
can be seen that split-future MPC yields a more aggressive
input profile as it displays sharper transitions towards the
end of the charging event. Also, it is noted that split-future
MPC is independent from the prediction horizon, while
standard MPC slows down as np increases.

The effect of varying nc is verified by test set 2 and can
be seen in Figs. 4 and 6. For this set, the prediction
horizon and control penalty are kept fixed. Here we note,
as nc increases, the difference in charging time between
the approaches decreases. This is due to the fact that
a longer control horizon reduces the slack time between

Fig. 4. nc = 2, np = 10 and R̄ = 10−7. (a) Charging
current, (b) Voltage, (c) SOC, (d) Zoomed SOC.

the control and prediction horizons, hence reducing the
effect of zeroing the predicted control inputs within this
prediction window. Also, a larger nc reduces overall charge
time regardless of MPC approach.

Fig. 5. nc = 2, np = 30 and R̄ = 10−7. (a) Charging
current, (b) Voltage, (c) SOC, (d) Zoomed SOC.

Finally, the effect of varying the control penalty while vary-
ing the control and prediction horizons can be observed in
Figs. 7 and 8. The trend here is that a larger penalty will
decrease the total charging time for both approaches. Note
that in Fig. 7, although a larger penalty would delay the
split-future MPC to compute maximum input current, it
is still able to deliver a shorter charging time.

6. CONCLUSIONS

We propose a modification to the standard MPC algorithm
that introduces flexible, yet simple, far-future control pre-
dictions in order to achieve a more aggressive input current
profile, and thus reduce time-to-charge a battery from an
initial SOC to a desired final value. Split-future MPC
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Fig. 6. nc = 6, np = 10 and R̄ = 10−7. (a) Charging
current, (b) Voltage, (c) SOC, (d) Zoomed SOC.

Fig. 7. nc = 2, np = 20 and R̄ = 10−4. (a) Charging
current, (b) Voltage, (c) SOC, (d) Zoomed SOC.

assumes prediction values of the control input between the
control and prediction horizons are set to an exponential
decay, as opposed to standard MPC which keeps the future
control inputs constant. Simulations showed that split-
future MPC out-performs standard MPC by delivering
faster charging times via more aggressive input current
profiles, despite choice of design parameters.
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