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Abstract: Deterministic dynamic models play a crucial role in elucidating the function of
biological networks. However, the underlying biological mechanisms are often only partially
known, and different biological hypotheses on the unknown molecular mechanisms lead to
multiple potential network topologies for the model. Limitations in generating comprehensive
quantitative data often prevent identification of the correct model topology and additionally
leave substantial uncertainty about a model’s parameter values. Here, we introduce an experi-
ment design method for model discrimination under parameter uncertainty. We focus on genetic
perturbations, such as gene deletions, as our possible experimental interventions. We start from
an initial dataset and a single model whose topology includes all different hypotheses. We obtain
the set of models compatible with the initial dataset, their posterior probabilities, and the
distribution of compatible parameter values using our previously published topological filtering
approach. We then employ a fully Bayesian approach to identify the genetic perturbation
that yields the maximal expected information gain in a subsequent experiment. This approach
explicitly accounts for parameter uncertainty; it also naturally allows comparing an arbitrary
number of candidate models simultaneously. In contrast to previous approaches, our intervention
alters the topology of the dynamic system rather than selecting optimal inputs, observables, or
time-points for measurements. We demonstrate its applicability with an in-silico study based
on a published real-world biological example.

Keywords: Systems biology; Experimental design; Model selection; Uncertainty quantification;
Gene networks.

1. INTRODUCTION

Compared to engineered systems, models of biological
systems are associated with substantially higher uncer-
tainties, both regarding mechanisms and their quantita-
tive characteristics. For example, high uncertainties arise
because experimental characterization methods in biology
are usually imprecise or not comprehensive, such that
systems become often non-identifiable; quantitative char-
acteristics of biological components can also vary signif-
icantly depending on the context, such as the cell type
they operate in. Model development for biological systems
therefore relies critically on uncertainty quantification and
model selection to deal with uncertain model parameters
and model structures, respectively (Hug et al., 2016; Sun-
nåker and Stelling, 2016).
To reduce such uncertainties by conducting experiments
with high information content, various optimal experi-
mental design (OED) methods have been developed and
applied in systems biology. Classical methods rely on lo-
cal approximations of the effect of parameter variations
on system behavior, usually via first-order sensitivities
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and the Fisher Information Matrix for dynamic systems
models (Chakrabarty et al., 2013). However, for highly
non-linear biological systems, these approximations are
often ill-suited; in addition, corresponding experimental
design methods nearly exclusively address the parameter
identification, and not the model selection problem.
Alternative, more recent methods therefore aim at a
full characterization of uncertainties by relying on the
Bayesian framework. It allows for systematic updating of
prior distributions on parameters and models through the
integration of new (observational or in-silico) data, and for
quantification–and thus optimization–of the information
gain due to the update (Liepe et al., 2013). Because of its
computational efficiency, Approximate Bayesian Compu-
tation (ABC; Beaumont (2019); Vyshemirsky and Giro-
lami (2008); Ryan et al. (2016)) has gained increased at-
tention as a basis for developing experimental design meth-
ods. When combined with guarantees on near-optimal
design results that allow for greedy searches of the design
space, ABC-based methods can also become computation-
ally feasible for detailed, medium-scale models of biological
systems (Busetto et al., 2013).
Current ABC-based OED for biological systems, however,
is limited in two important aspects. First, as for classical
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approaches, only few methods exist that perform OED for
model selection (Toni et al., 2009; Vanlier et al., 2014;
Busetto et al., 2013) and OED methods designed for
improving parameter estimation are known to perform
poorly for model selection (Ryan et al., 2016). Second,
the experimental design space of current OED methods
includes selection of inputs, observables, or parametric
perturbations, but not structural perturbations to the
network topology. While the former clearly have relevance
due to technological advances, for example, in microflu-
idics to generate complex dynamic inputs (Braniff and
Ingalls, 2018), the latter are powerful tools for inferring the
structure of biological networks, for example, by studying
the effects of single or multiple gene deletions (Costanzo
et al., 2016).
To address this gap, here we therefore suggest a Bayesian
method for the design of genetic perturbation experi-
ments, such as gene deletions, that aims at model selec-
tion. Specifically, we present a computationally efficient
ABC-based design method that determines the expected
information gain of such experiments. We evaluate the
approach for a gene regulatory network in budding yeast,
for which alternative models have been established and
selected previously (Milias-Argeitis et al., 2016). This ex-
ample application demonstrates feasibility of our proposed
approach for perturbation design that accounts for model
topology and parameter uncertainties.

2. PERTURBATION DESIGN METHOD

In the following, we first give a precise definition of
the experimental design problem, and then describe the
theory (and some aspects of computation) underlying our
proposed method.

2.1 Problem definition

Assuming that molecular copy numbers are sufficiently
high to neglect stochastic effects in biochemical reactions,
we can capture the dynamic behavior of cellular networks
by a parametric system of nonlinear ordinary differential
equations (ODEs). We consider a set M of such models,
with each model M ∈ M of the form:

M :
dx(t)

dt
= f(x(t), u(t), θ), x(t0) = x0 , (1)

where x(t) ∈ IRnx

≥0 is the vector of the dynamic, non-
negative concentrations of the nx molecular species,
f(x(t), u(t), θ) is a system of nx functions that define the
rate of change of the species concentrations depending
on the current system state x(t) and on the parameter
vector θ ∈ Θ ⊆ IR

np

≥0 capturing the np physical constants
associated with the biochemical reactions in parameter
space Θ, and on the nu inputs u(t) ∈ IRnu . We will write,
for example, np(M) and θ(M) if the model is not clear
from the context.
Experimental observations then relate to system states
via a measurement model. For simplicity (and motivated
by noise sources in microarray experiments as in our
application study; see below), we assume it to be of the
form:
y(tj) = Hx(tj)(1+ϵm)+ϵa, ϵm ∼ N(0,Σm), ϵa ∼ N(0,Σa)

(2)

where the matrix H maps system states to observations
y(tj) at time points tj , and we assume multiplicative
measurement noise ϵm and additive measurement noise ϵa
drawn from multivariate Normal distributions with mean
zero and covariance matrices Σm and Σa, respectively. A
dataset D is a collection of such measurements at one or
more timepoints.
Here, we consider experimental design for genetic inter-
ventions, such as deletions of genes, that structurally
change the biochemical reaction network. For each model
M , an intervention ∆ is given as a subset ∆(M) ⊆
{1, . . . , np(M)} of parameters set to zero, and we define
the resulting parameter vector with elements θ∆(i) as:

θ∆(i) :=

{
0, if i ∈ ∆(M)

θ(i), else. (3)

For example, by setting the maximal transcription rate
parameter for a gene to zero, the model’s steady-state
represents the effect of a gene deletion (mRNA and protein
for this gene are not present).
Given a set M of candidate models together with known
initial conditions (x0), an input function (u(t)), a set of
already acquired experimental observations D that each
of the models can describe, and a set of possible interven-
tions I, we aim to find the intervention that maximizes
the expected information gain for model selection if this
intervention experiment was performed next.

2.2 Theory

To systematically represent uncertainties, we cast model
selection and experimental design in a Bayesian frame-
work. Using Bayes’ theorem, we first determine the poste-
rior probability of each model M ∈ M given D as

Q(M) := P (M |D) = P (D|M)P (M) /P (D) , (4)
where P (D|M) and P (M) are the model’s likelihood and
prior probability, respectively, and P (D) is the Bayesian
evidence. We obtain this posterior by marginalizing over
the parameters θ:

P (D|M) =

∫
Θ(M)

P (D|M, θ)P (θ|M) dθ . (5)

To determine these quantities computationally, we use
approximate Bayesian computation (Toni et al., 2009),
which relies on defining a viable region(s) in parameter
space

V(M,D) = {θ | P (D|M, θ) ≥ τ} (6)
using a threshold τ derived, for example, by a χ2-test.
We approximate the viable region(s) of M using samples
from its parameter space and we say a sample is viable
if it fulfills the condition on the likelihood (Eq. 6). We
then use an efficient Monte-Carlo method (Zamora-Sillero
et al., 2011) to generate N viable parameter samples θ(l),
with l ∈ [1, N ], distributed uniformly over the region(s),
which allows us to approximate the probabilities in Eq. 5
based on a uniform prior on the parameters. We used the
estimated Monte Carlo integration accuracy to choose N
for accurate approximation of the viable region(s). The
normalizing constant P (D) (from Eq. 4) is determined by
the relation

∑
M∈M P (M |D) = 1.
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Fig. 1. Schematic overview of obtaining a model posterior
probability for an intervention. (A) Starting from a
prior model probability distribution, we want to iden-
tify the intervention that yields a highly informative
update such as intervention I in this example. Here we
use a simple model with two hypothesized interactions
(dashed lines leading to 3 candidate models), well
defined interactions are represented by solid lines. In-
terventions are represented with node-headed colored
lines. (B) For a given intervention, the explanatory
model Me is simulated for each parameter sample
(left). The remaining candidate models in the set
are treated as generator models Mg (right). For each
generator model the mean and standard deviation
at specific time points for the assumed observable is
obtained (center) using its parameter samples. The
likelihood of each explanatory model Me with a given
parameter sample of generating the data from Mg is
then calculated. The marginal likelihoods of Me are
averaged over all generating models (bottom) and Q∆

is calculated by Eq. 8.

In analogy to Busetto et al. (2013), we quantify the infor-
mation gain of an intervention ∆ ∈ I by the Kullback-
Leibler divergence between the updated posterior distri-
bution Q∆ on M after applying the intervention and a
reference distribution π:

DKL [Q∆||π] =
∑

M∈M
Q∆(M) log2

(
Q∆(M)

π(M)

)
. (7)

The KL-divergence corresponds to the expected number
of additional bits of information that would be lost if
the intervention experiment was not performed, and infor-
mative experiments for model selection should have high
divergence (see Fig. 1A). For π(M), we use either (i) the
posterior distribution Q to favor exploration of the model
space, or (ii) a uniform distribution U to favor convergence
to one model.
To estimate Q∆, we in turn consider each model as the
’correct’ model, and generate a corresponding in-silico

dataset from it as follows (see Fig. 1A): let Mg ∈ M
be the generator model; we modify its N parameter
samples θ(l) to θ

(l)
∆ by applying intervention ∆ according

to Eq. 3. For each of these modified parameter samples,
we first simulate the system to obtain trajectories x(t) and
apply a measurement model (Eq. 2), leading to predicted
observations y(tj). The elements of the dataset D∗

g are then
constructed by averaging the resulting N observations
for each timepoint and using their standard deviation as
’measurement noise’. This accounts for both measurement
uncertainty and parametric uncertainty in Mg.
Next, we evaluate how well D∗

g is captured by each of the
remaining models (see Fig. 1B). For each such explana-
tory model Me ∈ M\{Mg}, we calculate the likelihood
P
(
D∗

g |Me

)
by marginalizing the likelihood P

(
D∗

g |Me, θ∆
)

similar to Eq. 5. Let θ(l) be N uniform samples of the
original viable region(s) V(Me,D), and let θ

(l)
∆ be the

corresponding samples after applying the intervention ∆.
Further, let θ

∗(l)
∆ be the N∗ samples of θ(l) that are also

viable in the new dataset D∗ with appropriately adapted
τ to account for different dimensionalities. Then,

P
(
D∗

g |Me

)
=

1

N∗

N∗∑
l=1

P
(
D∗

g |Me, θ
∗(l)
∆

)
P
(
θ
∗(l)
∆

)
,

with P
(
θ
∗(l)
∆

)
= N∗/N being an estimate of the marginal

likelihood. Note that N∗/N is an under-approximation:
samples that are not viable in one of the datasets could be
viable in the joint dataset.
To determine the updated posterior model probabilities
after the perturbation experiment, we use Bayes’ formula
(Eq. 4) to determine the posterior for each pair of gen-
erating and explanatory models, and average over the
generating models (see Fig. 1B). Specifically, we calculate
for each model Me the posterior probability

Q∆(Me)∝
∑

Mg∈M
P
(
D∗

g |Me

)
P (Me|D)P (Mg|D,Mg ̸= Me) .

(8)
Here, the last two terms account for the prior (with respect
to D) probabilities of the explanatory and generating
models, respectively. Again, we can derive the normalizing
constant from

∑
M∈M Q∆(M) = 1.

3. APPLICATION STUDY

3.1 GATA factor network

We evaluated our approach for a model of ordinary differ-
ential equations (ODEs) representing the gene regulatory
network of the GATA factors in the yeast Saccharomyces
cerevisiae from (Milias-Argeitis et al., 2016). The GATA
factor network is composed of several feedback loops be-
tween the four transcription factors (Fig. 2) and responds
to changes in nitrogen availability. The presence of a poor
nitrogen source in the cells’ environment results in trans-
port of the activators (Gln3 and Gat1) into the nucleus.
This enables the transcription of genes that will help utilize
non-preferred nitrogen sources, a phenomenon known as
nitrogen catabolite repression.
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Fig. 2. The GATA factor network under low nitrogen
availability. Gln3 and Gat1 mediate the signal by
translocation from the cytoplasm to the nucleus. They
act as activators by transcriptionally activating the
repressors Dal80, Gzf3, among others. The active
forms of Dal80 and Gzf3 (represented with asterisks)
can repress the transcription of gzf3, gat1 and dal80
genes (wiggled lines). Black solid lines represent well-
established interactions and dashed lines represent
hypotheses, with numbers in brackets identifying the
individual hypotheses for use in model nomenclature.
The three inputs to the model are shown in yellow.
The colored arrows indicate the interventions used
in the application of our experiment design method
(and represent that the transcription of the gene is
prohibited).

The model with 13 dynamical states and 37-42 sampled
parameters used in our application can capture, for all
species involved, the mRNA, protein, and protein complex
dynamics and it has three input variables reflecting nitro-
gen quality. The well-established GATA factor interactions
characterize the core model (shown as solid black lines in
Fig. 2). Interactions between species that are not conclu-
sively justified throughout the literature are represented as
extensions of the core model (Fig. 2, black dashed arrows).
These hypothesized interactions are not mutually exclu-
sive and create a set of 26-1 candidate model topologies.
The main difference to Milias-Argeitis et al. (2016) is that
we do not evaluate the repression of the Gzf3 transcription
factor by Dal80, since their analysis demonstrated very
low posterior probabilities for the candidate topologies
missing this interaction. Another difference concerns the
cooperativity between the transcription factors Gat1 and
Gln3 targeting the promoter sequences of the gat1, dal80,
and gzf3 genes. Specifically, the additional hypotheses
4, 5 and 6 evaluate the interaction of Gln3 and Gat1
targeting the promoter sequence of gat1, dal80 and gzf3,
respectively. We adapted this as three different potential
hypotheses (instead of one), considering that cooperation
between Gat1 and Gln3 for one promoter region does
not imply cooperation for another promoter sequence. In
a similar manner as in the original publication (Milias-
Argeitis et al., 2016), we designate the various models by
the interactions they are missing. For example, model 12
is missing the hypotheses number 1 and 2 (see Fig. 2 for
corresponding interactions).
For this application, we considered three genetic perturba-
tions as possible interventions that alter the structure of
the model topologies: gene deletions of the transcription
factors Gat1, Dal80 and Gzf3. Each gene deletion is defined
by setting the corresponding production rate constant for

its mRNA to zero (Fig. 2), eliminating the corresponding
protein levels simultaneously. Our in silico experiment of
gene deletions represents a shift, at timepoint 0 (when cells
are in steady state), from a good nitrogen source to a poor
one (conditions mimicked experimentally by rapamycin
inhibition when yeast cells are growing on glutamin. Fi-
nally, we assume that the measurements we can obtain are
the mRNA fold-change values of the transcription factors
at specific time points under conditions of low nitrogen
availability.

3.2 Results

To evaluate the candidate topologies we generated in silico
experimental data (45 datapoints) by simulating the model
13456 that has highest predictive ability in Milias-Argeitis
et al. (2016) under poor nitrogen conditions to generate a
ground truth. Similar to the original publication, we used
Σm = diag(0.12) and Σa = 0 in Eq. 2.
The initial round of discriminating between candidate
topologies was implemented by employing our previously
published method of Bayesian topological filtering (Sun-
nåker et al., 2013) using a uniform prior on the candidate
models. In brief, the topological filtering algorithm starts
by defining a model that incorporates all the candidate
hypotheses (root model). Through a combination of out-
of-equilibrium adaptive Monte Carlo and multiple ellipsoid
based sampling (Zamora-Sillero et al., 2011) it explores the
parameter space of the root model. For each parameter set
found, the algorithm advances by evaluating if projections
of a single parameter still pass the viability criterion given
above, until no further projections are feasible. The result
is a set M of reduced models that are compatible with the
experimental data D initially used, and their respective
viable regions V(·,D).
Here, the priors of the parameters were kept in agreement
with the original article by Milias-Argeitis et al. (2016).
The observables in D∗

g are the same as for generating D in
this application, but we additionally assume, for numerical
reasons, that Σa = diag(0.12) in Eq. 2; this additive
noise can be thought of as the limit of our detection in
mRNA microarray experiments. The residuals between the
experimental data and the simulations are assumed to be
normally distributed and the likelihood is thus calculated
based on squared errors as in Toni et al. (2009). We
used the 95% quantile of the chi-square distribution with
degrees of freedom equal to the number of data points
minus the number of parameters to define the threshold
τ in Eq. 6. The worst estimated viable region(s) had a
relative error of 8%, all others had 1-4%. Interestingly,
the true model was within the reduced set of candidate
models, but had only second-highest posterior probability
after model 1245, with model 12435 having almost equal
probability (Fig. 3B). This indicates that, if we were to
stop the model selection process at this point, we would
have inferred incorrect mechanistic details of the GATA
factor network.
This first selection step determined 32 of 63 candidate
model topologies as viable, and we next introduced struc-
tural changes ∆ in a brute force manner to further discrim-
inate between these topologies. For example, the second-
and third-ranked models 13456 and 12345 initially showed
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Fig. 3. Results for the GATA factor example network.
(A) Trajectories of the Gzf3 mRNA for the initially
second- and third-ranked models, after a shift from a
rich to a poor nitrogen source. Dashed lines represent
the mean trajectories, and the continuous lines refer to
the 90% and 10% quantiles, respectively. Trajectories
for the wild type, using parameter samples from
the first model selection round with D, are shown
in gray, while trajectories after performing a gat1
or dal80 deletion are shown in green and orange,
respectively. (B) Posterior model probabilities before
and after a gene deletion experiment; color coding
for the experiments corresponds to the legend. Only
models with prior probability greater than 8.35e-05
are shown for readability.

similar mRNA fold-changes of Gzf3 (Fig. 3A, gray lines).
Their dynamic behavior becomes distinct, however, when
setting the production constant of Gat1 to zero (green
lines) or similarly deleting the dal80 gene (orange lines).
Next, we calculated the updated posteriors for each of
the three gene deletion experiments by implementing the
theory outlined previously (Eq. 8) using the posteriors
Q(M) from the initial round of model discrimination as
model priors. Using forward simulations, we evaluated if
the parameters that were identified as viable in the first
model selection round were still viable under the new

Table 1. Expected information gain for gene
deletion experiments (in bits).

π(M) Deleted gene 45 Datapoints 90 Datapoints 135 Datapoints

Q
gat1 0.7481 2.0371 2.0913
dal80 1.159 1.7665 1.7979
gzf3 0.809 2.1687 2.7163

U
gat1 3.1026 4.8301 4.9151
dal80 2.2986 3.3938 3.9713
gzf3 2.1114 2.4590 2.5562

threshold established by the relation between the corre-
sponding Me and Mg for a given perturbation experiment,
indicating that the modified model Me can demonstrate
both behaviors of the initial dataset and the prospective
perturbation experiment.
We found the highest posterior probabilities for the (true)
13456 model when applying the gat1 and dal80 gene
deletions, while this model has equal probability with the
12345 model for the Gzf3 experiment. In addition, the pos-
terior probability of the previous top-ranked model 1245
dropped substantially for all perturbation experiments.
This demonstrates that our perturbation design experi-
ments can further discriminate between candidate model
topologies. The information gains (Table 1) indicate: (i)
with increasing data (45 datapoints were the minimum for
the χ2-test), the information gain increases, but appears
to saturate (the gain was 2.629 bits for the initial dataset);
(ii) for the reference distribution Q based on prior data, 45
datapoints with low information gain may be insufficient
for selecting the intervention (yet higher data density is
not realistic for microarray measurements), (iii) in contrast
to the uniform distribution favoring model selection.
Our results partially confirm those of Milias-Argeitis et al.
(2016): we found that hypotheses 1 and 3 (inhibition of
dal80 transcription by Dal80, respectively Gzf3) are absent
in most of our high-ranked models. We cannot directly
compare results for the original hypothesis 5 (Gln3-Gat1
interactions), which we split into three individual inter-
action hypotheses. We found, however, that our partial
hypothesis 4 is absent from most of the highly-ranked
models. This means that the transcription factors Gln3
and Gat1 do not interact, but rather compete for the same
sequence promoter of Gat1, a new result supported by the
experimental biology literature (Stanbrough et al., 1995).

4. DISCUSSION

We introduced an experimental design method that is
distinct from existing methods by the combination of
two main features: first, it uses the Bayesian framework
to systematically represent parametric and structural un-
certainties in biological networks due to limited biologi-
cal knowledge, relatively sparse data, and frequent non-
identifiability. The Bayesian updating of model probabili-
ties also implies that the method can consider sequential
experiments. Second, our method relies on structural inter-
ventions such as gene knockouts to define the experimental
design space. This aligns well with the practical imple-
mentation of designed experiments: genetic interventions
have become easy to conduct. In addition, we assume only
a limited set of specific measurements to be performed,
which essentially obviates the need to establish new mea-
surement or stimulation techniques in the laboratory for
conducting experiments proposed by other design meth-
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ods. In principle, the method is also not limited to gene
deletions; other types of interventions such as applications
of small interfering RNA, protein inhibitors, or protein
over-expression could be represented by appropriate map-
pings to perturbations of model parameters.
The application to the GATA factor network of S. cere-
visae demonstrates that our design method can be applied
to models of a size that is typical for detailed, dynamic
systems biology models; we are only aware of Busetto et al.
(2013) addressing models of similar or larger size. This
application also indicates how designed genetic interven-
tion experiments can reduce experimental effort: with one
gene deletion it was possible to identify the correct model
structure in our example.
However, the proposed approach comes with conceptual
and computational limitations: First, we assume that the
true model is in the model set; if observations from the
proposed experiment differ significantly from model pre-
dictions, we should reconsider the biological hypotheses.
Second, to establish prior model probabilities for experi-
mental design, we rely on topological filtering (Sunnåker
et al., 2013) to initially generate a reduced model set. Due
to its greedy approach to model selection, we may miss
viable models given the initial experimental observations
D. If the number of models is fairly small, however, this
step can be eliminated and we can use standard methods
for Bayesian model selection to obtain the corresponding
posteriors and parameter distributions. Third, for compu-
tational efficiency we require that parameter vectors are
viable with respect to both D and D∗, and not D

∪
D∗,

which may be too restrictive. This approach, fourth, can
lead to a low number of viable parameter vectors after
an in silico intervention, which reduces the accuracy of
estimates for the expected model posteriors. Re-sampling
of parameter vectors, either from a larger parameter space
or within the ellipsoid approximations used, could solve
this problem, yet with increased computational efforts.
Future improvements of the method could therefore in-
clude re-sampling schemes that balance accuracy (evalu-
ated by standard approaches for Monte-Carlo integration)
and computational effort with respect to the method’s
aim, experimental design for model selection. We believe,
however, that more important advances could be possible
by exploiting the nested structure of models in the topolog-
ical filtering framework. For our application here, the sets
of hypotheses (generating models as subsets of the root
model) and of interventions were orthogonal to each other.
In general, reduced models may correspond to the appli-
cation of interventions to non-reduced models, and this
relation could be used to avoid re-estimation of relevant
quantities for the reduced models by an optimized order
of model evaluations. Ultimately, however, experimental
validations of model selection with predicted experimental
designs will be essential to evaluate the performance of our
experimental design method.
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