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Abstract: This paper presents a novel framework of distributed learning model predictive
control (DLMPC) for multi-agent systems performing iterative tasks. The framework adopts a
non-cooperative strategy in that each agent aims at optimizing its own objective. Local state and
input trajectories from previous iterations are collected and used to recursively construct a time-
varying safe set and terminal cost function. In this way, each subsystem is able to iteratively
improve its control performance and ensure feasibility and stability in every iterations. No
communication among subsystems is required during online control. Simulation on a benchmark
example shows the efficacy of the proposed method.
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1. INTRODUCTION

The emergence of spatially distributed systems with ever
growing scales calls for distributed control methods in
which the complexity of computation and communication
does not increase with the size of the network. Distributed
model predictive control (DMPC) has stood out as an
effective way to cope with such systems due to its desired
properties of providing safety guarantees and optimized
control performance. Many DMPC methods have been
proposed (Dunbar and Murray, 2006; Stewart et al., 2010;
Farina and Scattolini, 2012; Conte et al., 2012) and devised
for real-world applications (Negenborn et al., 2009; Ma
et al., 2011; Hu et al., 2018). Among different DMPC
architectures (Scattolini, 2009), non-cooperative schemes
are of particular interest to the practitioners for its limited
computation and transmission requirements.

One shared aspect in many large-scale distributed systems
that cannot be overlooked is the repetitive execution of
a same control task, or a routinely plan. Examples in-
clude load frequency control (Riverso and Ferrari-Trecate,
2012), water level control of irrigation canals (Negenborn
et al., 2009) and building temperature control (Ma et al.,
2011). In this setting, iterative learning control (ILC) is a
powerful strategy since it exploits the fact that at each
iteration, the system starts from the same initial con-
dition pursuing the same control objectives. Information
gathered from previous iterations is incorporated into the
problem formulation at the next iteration to improve the
closed loop control performance (Bristow et al., 2006).
Many classical ILC approaches are used in conjunction
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with MPC to minimize the error in tracking a known
reference signal (Lee et al., 1999; Cueli and Bordons, 2008).
Recently, a novel reference-free MPC algorithm for ILC,
known as Learning Model Predictive Control (LMPC), has
been developed in Rosolia and Borrelli (2017a,b); Rosolia
et al. (2017). It uses closed loop trajectories from past
iterations to evaluate a terminal safe set and cost function,
which in turn guarantee safety and improve the control
performance. However, these methods are mainly designed
for single-agent systems and may not scale well for large-
scale multi-agent systems.

In this paper, we present distributed learning model pre-
dictive control (DLMPC), an ILC framework for large-
scale, dynamically coupled linear systems. Within this
framework, each subsystem maintains a reference trajec-
tory, which encapsulates its “rough” plan, and transmits
it to the neighbors. To ensure computational tractability,
the subsystem dynamics are split into a nominal part and
an error part which captures the coupling effect of the
neighbors. We assume the subsystems are non-cooperative
and seek to improve their own performance index given
neighbor’s reference trajectories. This is achieved by learn-
ing a time-varying terminal safe set and cost function that
capture information regarding the reference trajectories.
We show how to construct such sets and cost functions
only from local trajectories collected during past itera-
tions. Effect of neighbor’s deviation from the reference is
modeled as bounded disturbance. The controller is able
to guarantee that: (i) the nominal iteration cost of each
subsystem is non-increasing in the iterations; (ii) state and
input constraints are satisfied at iteration l if they were
satisfied at iteration l − 1 and (iii) the closed loop global
system converges asymptotically to the origin. Although
the actual iteration cost cannot be guaranteed to improve
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due to neighbor’s incompliance with the reference, yet we
show on a benchmark of power network systems that the
empirical control performance has improved significantly
after a few iterations.

This paper is structured as follows. Section 2 introduces
the problem setup. In Section 3, a time-varying LMPC
for an individual agent is formulated. Section 4 presents
the DLMPC framework for the global system. In Section
5 we test our algorithm on a benchmark example. Finally,
Section 6 concludes the paper.

Notation: A set of integers ranging from a to b is denoted
by Ia:b. Concatenation of vectors xi ∈ Rn is defined as

col(xa, . . . , xb) =
[
x>a , . . . , x

>
b

]>
. A sequence of vectors (or

sets) {sa, sa+1, . . . , sb} is denoted by s[a:b]. The Minkowski
sum is defined as X ⊕ Y = {x + y|x ∈ X, y ∈ Y}. The
Pontryagin difference is defined as X	Y = {z|z+Y ⊆ X}.

2. PROBLEM SETUP

We consider a discrete-time linear dynamical system

Σ : xt+1 = Axt + But, x0 = xS (1)

with state vector xt ∈ Rn, input vector ut ∈ Rm, and a
given initial state xS ∈ Rn. We refer to (1) as the global
system, with A ∈ Rn×n and B ∈ Rm×n as the system
and input matrix, respectively. We assume there exists a
partition of (1) into M state-coupled but input-decoupled
subsystems with the following dynamics

Σi : x
[i]
t+1 = Aiix

[i]
t +Biu

[i]
t +

∑
j∈Ni

Aijx
[j]
t (2)

where x
[i]
t ∈ Rni and u

[i]
t ∈ Rmi are state and input vector

of Σi such that xt = col(x
[1]
t , . . . , x

[M ]
t ),

∑M
i=1 ni = n

and ut = col(u
[1]
t , . . . , u

[M ]
t ),

∑M
i=1mi = m. The initial

state of Σi is x
[i]
S ∈ Rni . Matrices Aij ∈ Rni×mj are the

corresponding blocks in the system matrix A while the
input matrix B = diag(B1, . . . , BM ). Two sets defining
the neighbors are introduced. The predecessor set Ni =
{j ∈ I1:M\{i}|Aij 6= 0} contains indices of neighboring
subsystems of Σi, whose action affects Σi. Likewise the
follower set is N̄i = {j ∈ I1:M\{i}|Aji 6= 0}. For each
subsystem Σi a set of local state and input constraints are
required to be satisfied

x
[i]
t ∈ X[i], u

[i]
t ∈ U[i], ∀i ∈ I1:M (3)

where X[i] and U[i] are polytopic sets containing the origin.

This leads to the constraints xt ∈ X =
∏M
i=1 X[i] and

ut ∈ U =
∏M
i=1 U[i] on the global system (1).

2.1 Non-Cooperative Control

In this paper, we seek to achieve distributed control of
the global system (1) in terms of the subsystems (2) with
efficient computation and communication. Thus we adopt
a non-cooperative control framework in which, as illus-
trated in Figure 1, each subsystem Σi optimizes over its
own state and input variables x[i] and u[i] while taking into
account neighbor’s effects based on their future intentions.
This is done by requiring that each subsystem Σi pre-

communicates a reference trajectory x̃
[i]
[0:∞] encapsulating
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Fig. 1. An illustration of non-cooperative control. Solid ar-
rows between Σ1 and Σ2 denote physical interactions
between those two subsystems. A local controller Ri
only optimizes over local states x[i].

its “rough” plan with the followers Σj , ∀j ∈ N̄i. Now we
can rewrite the subsystem dynamics (2) as

x
[i]
t+1 = Aiix

[i]
t +Biu

[i]
t + c

[i]
t + w

[i]
t (4)

where the offset term c
[i]
t is defined as the summation over

neighbor’s reference trajectories

c
[i]
t =

∑
j∈Ni

Aij x̃
[j]
t (5)

The discrepancy between the actual and reference trajec-
tories of the neighbors can be written as

w
[i]
t =

∑
j∈Ni

Aij(x
[j]
t − x̃[j]

t ) (6)

which is considered as a disturbance term in (4). Appar-
ently, this term is bounded only when the actual state

x
[i]
t of each subsystem does not deviate too far away from

its communicated reference state x̃
[i]
t . We formalize this

intuition by requiring the existence of a time-invariant and

bounded set E [i] such that x
[i]
t − x̃[i]

t ∈ E [i] for all t ≥ 0.

Subsequently, the disturbance term w
[i]
t in (6) satisfies

w
[i]
t ∈W[i] =

⊕
j∈Ni

AijE [j] (7)

where the disturbance set W[i] is bounded as well.

Each subsystem Σi would then solve the following infinite
horizon robust optimal control problem

min
ū
[i]
0 ,ū

[i]
1 (·),...

∞∑
k=0

hi

(
x̄

[i]
k (0), ū

[i]
k

(
x̄

[i]
k (0)

))
(8a)

s.t. x̄
[i]
k+1 = Aiix̄

[i]
k +Biū

[i]
k + c

[i]
k + w

[i]
k (8b)

x̄
[i]
k ∈ X[i], ū

[i]
k ∈ U[i], ∀w[i]

k ∈W[i] (8c)

x̄
[i]
k − x̃

[i]
k ∈ E [i] (8d)

x̄
[i]
0 = x

[i]
S , k = 0, 1, . . . , (8e)

where (̄·) denotes decision variables. Sequences x̃[0:∞]

and c
[i]
[0:∞] are given. The stage cost function hi(·, ·) is

continuous, jointly convex and satisfies

hi(0, 0) = 0 and hi(x
[i]
t , u

[i]
t ) > 0, ∀x[i]

t , u
[i]
t 6= 0. (9)

The cost function (8a) aims at minimizing the nominal
cost which assumes the disturbance sequence that affects

the state x
[i]
t is w

[i]
[0:t−1] = 0 for all t > 0, leading to

the notation x
[i]
t (0). Other types of cost functions such

as the worst-case or expected-value cost can also be used.
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Nonetheless in this paper we choose the nominal cost due
to its conceptual simplicity and practical usefulness. See
Rosolia et al. (2017) for additional discussions on this
topic. The collective solution to (8) of all subsystems

x̄?t = col(x̄
[1],?
t , . . . , x̄

[M ],?
t ), t = 0, 1, . . . ,

ū?t = col(ū
[1],?
t , . . . , ū

[M ],?
t ), t = 0, 1, . . . ,

constitutes a feasible trajectory for the global system (1)
subject to constraints xt ∈ X and ut ∈ U.

2.2 The Nominal Dynamics

In general, problem (8) is computationally intractable

because (i) the decision variable u
[i]
t (·) : X[i] 7→ U[i] lies

in an infinite-dimensional space of state-feedback policies
and (ii) the control horizon is infinite. This section focuses
on approximating control policies such that the decision
variables are in finite dimensions. Subsequent sections in
the paper will discuss how to approximately solve problem
(8) with finite horizons using the idea of ILC.

Now we review the approach in Farina and Scattolini
(2012) which is able to handle (i). Consider the disturbance-
free nominal dynamics associated with the actual subsys-
tem (4) defined as

z
[i]
t+1 = Aiiz

[i]
t +Biv

[i]
t + c

[i]
t (10)

in which the state and input are z
[i]
t and v

[i]
t , respectively.

The control law for each subsystem Σi, for all t ≥ 0, is
parameterized by

u
[i]
t = v

[i]
t +Ki(x

[i]
t − z[i]

t ) (11)

which, along with (4) and (10), defines the error dynamics

e
[i]
t+1 = Φie

[i]
t + w

[i]
t (12)

where
e

[i]
t = x

[i]
t − z[i]

t (13)

Assumption 2.1. There exists matrices Ki ∈ Rmi×ni and
K = diag(K1, . . . ,KM ) such that: (i). Φ = A + BK is
Schur, (ii). Φi = Aii +BiKi is Schur for all i ∈ I1:M .

Remark 2.1. A necessary and sufficient condition for the
existence of decentralized feedback gain K satisfying As-
sumption 2.1 can be found in Wang and Davison (1973).
In Betti et al. (2014) an LMI-based approach is proposed
to effectively design the block-diagonal matrix K.

By Assumption 2.1 and that W[i] is bounded, it is shown
in Rakovic et al. (2005) that there exists a minimal robust
positive invariant (mRPI) set Z[i] for the error dynamics
(12) such that

e
[i]
t ∈ Z[i], ∀w[i]

t ∈W[i], ∀t ≥ 0 (14)

In addition, we define the deviation set E[i] which satisfies

0 ∈ E[i] and E[i] ⊕ Z[i] ⊆ E [i] (15)

and enforce that
z

[i]
t − x̃[i]

t ∈ E[i] (16)

for all t ≥ 0. In other words, the deviation between
the nominal and the reference trajectories is required
to be bounded. We refer interested readers to Farina
and Scattolini (2012); Betti et al. (2014) for details on
synthesizing sets E [i], Z[i] and E[i].

Now we are in place to introduce for the nominal dynamics
(10) of each subsystem Σi the following infinite horizon
optimal control problem

min
v̄
[i]

[0:∞]

∞∑
k=0

hi(z̄
[i]
k , v̄

[i]
k ) (17a)

s.t. z̄
[i]
k+1 = Aiiz̄

[i]
k +Biv̄

[i]
k + c

[i]
k (17b)

z̄
[i]
k ∈ X̄[i], v̄

[i]
k ∈ Ū[i] (17c)

z̄
[i]
k − x̃

[i]
k ∈ E[i] (17d)

z̄
[i]
0 = x

[i]
S , k = 0, 1, . . . , (17e)

where sequences x̃
[i]
[0:∞], c

[i]
[0:∞] are given. Local state and

input constraints (3) are tightened in (17c) according to

X̄[i] = X[i] 	 Z[i], Ū[i] = U[i] 	KiZ[i] (18)

From (11) we have that the optimal cost of (17) is an upper
bound on that of (8), i.e.
∞∑
k=0

hi(z̄
[i],?
k , v̄

[i],?
k ) ≥

∞∑
k=0

hi

(
x̄

[i],?
k (0), ū

[i],?
k

(
x̄

[i],?
k (0)

))
Remark 2.2. The DMPC scheme in Farina and Scattolini
(2012) produces for each subsystem a closed loop (nomi-
nal) trajectory which is a feasible but sub-optimal solution
to (17). In this paper, we take a step further to search for
the optimal solution to (17).

3. LMPC WITH REFERENCE TRAJECTORY

This section discusses an iterative learning control scheme
that exploits previous data to optimally solve problem (17)
for an individual subsystem Σi. The next section extends
the method to deal with the global system (1).

In this paper, we assume that problem (17) is to be
solved over and over again for the same initial condition

x
l,[i]
0 = z

l,[i]
0 = x

[i]
S for each subsystem Σi and all iterations

l ≥ 0. At iteration l, let the sequences of vectors

z
l,[i]
[0:∞] = {zl,[i]0 , z

l,[i]
1 , . . . , z

l,[i]
t , . . .} (19a)

v
l,[i]
[0:∞] = {vl,[i]0 , v

l,[i]
1 , . . . , v

l,[i]
t , . . .} (19b)

denote the realized state and input trajectories of the
nominal dynamics (10) associated with subsystem Σi.

Likewise, define x
l,[i]
[0:∞] and u

l,[i]
[0:∞] for actual model (2).

It is assumed that the reference trajectory x̃
[i]
[0:∞] is given

and remains fixed for all l ≥ 1. Moreover, Σi has access to

the reference trajectories of its neighbors x̃
[j]
[0:∞], j ∈ Ni to

compute the offset term c
[i]
[0:∞] using (5). Finally, we make

the following assumption on the reference trajectories.

Assumption 3.1. There exists a finite time t′ ≥ 0 such that

x̃
[i]
t = 0, c

[i]
t =

∑
j∈Ni

x̃
[j]
t = 0, ∀t ≥ t′. (20)

Remark 3.1. The above assumption facilitates the devel-
opment of our ILC algorithms in subsequent sections.
Such reference trajectories can be generated via DMPC
proposed in Farina and Scattolini (2012) by setting the
origin as the terminal constraint, at the cost of a smaller
region of attraction. Better methods for generating refer-
ence trajectories are left for future research and are beyond
the scope of this paper.
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3.1 Time-varying Safe Sets

Recall in Rosolia and Borrelli (2017b) the definition of
sampled safe set

SSl,[i] =

{
l⋃

h=0

∞⋃
t=0

z
h,[i]
t

}
(21)

which collects all nominal state trajectories of Σi up to
iteration l. The convex hull of its elements

CSl,[i] = conv(SSl,[i]) (22)

also known as the convex safe set, is a control invari-
ant set for constrained linear systems (Borrelli et al.,
2017). It is the usage of convex safe sets that leads to a
computationally efficient LMPC problem formulated as a
quadratic program (Rosolia and Borrelli, 2017a). However,

in our case, the convex safe set CSl,[i] is no longer control
invariant for (10). The reason is twofold:

(1) System (10) is nonlinear due to the time-varying

offset c
[i]
t , results in Rosolia and Borrelli (2017a)

which build upon linearity cannot be directly used,
(2) Constraint (16) is time-varying and at each time only

a subset of realized states satisfies it.

In the next we show how to split SSl,[i] into subsets
indexed by time and use them to construct a time-varying,
yet convex LMPC problem.

Definition 3.1. (Time-varying sampled safe set).

SSl,[i]t :=



{
l⋃

h=0

z
h,[i]
t

}
if t < t′

SSl,[i]∞ =


l⋃

h=0

⋃
t≥t′

z
h,[i]
t

 otherwise

(23)

Definition 3.2. (Time-varying convex safe set).

CSl,[i]t = conv(SSl,[i]t ), CSl,[i]∞ = conv(SSl,[i]∞ ) (24)

Remark 3.2. For all t ≥ t′, the set CSl,[i]∞ is a control
invariant set for system (10) since, by Assumption 3.1,

the system is now a linear system with c
[i]
t = 0 and time-

invariant constraints z
[i]
t ∈ E[i] and v

[i]
t ∈ Ū[i].

3.2 Terminal Cost

At time t of the l-th iteration, the empirical (realized)
cost-to-go associated with the closed loop state and input
trajectories (19) is defined as

J
l,[i]
t→∞(z

l,[i]
t ) =

∞∑
k=t

hi(z
l,[i]
k , v

l,[i]
k ) (25)

Subsequently we define the l-th nominal iteration cost as
the cost (25) along the l-th trajectory with t = 0, i.e.

J
l,[i]
0→∞(z

l,[i]
0 ) =

∞∑
k=0

hi(z
l,[i]
k , v

l,[i]
k ) (26)

The iteration cost is a quantification of the control perfor-
mance at iteration l and, obviously, a lower cost represents
a better control performance.

Given a state zt of system (10), its associated (optimal)
cost-to-go is approximated by the barycentric function
(Jones and Morari, 2010).

Definition 3.3. (Time-varying barycentric function).
For all t < t′,

P
l,[i]
t (zt) :=

{
pl,?t (zt) if zt ∈ CSl,[i]t

+∞ if zt /∈ CSl,[i]t

(27)

and

pl,?t (zt) := min
λh≥0

l∑
h=0

λhJ
h,[i]
t→∞(z

h,[i]
t ) (28a)

s.t.

l∑
h=0

λh = 1,

l∑
h=0

λhz
h,[i]
t = zt (28b)

For all t ≥ t′,

P l,[i]∞ (zt) :=

{
pl,?∞ (zt) if zt ∈ CSl,[i]∞
+∞ if zt /∈ CSl,[i]∞

(29)

and

pl,?∞ (zt) := min
λh
k
≥0

l∑
h=0

∞∑
k=t′

λhkJ
h,[i]
k→∞(z

h,[i]
k ) (30a)

s.t.

l∑
h=0

∞∑
k=t′

λhk = 1,

l∑
h=0

∞∑
k=t′

λhkz
h,[i]
k = zt (30b)

Remark 3.3. For all t ≥ 0, P
l,[i]
∞ (·) is a time-invariant

function defined on the set CSl,[i]∞ .

Intuitively, the function P
l,[i]
t (·) assigns to each point zt

in CSl,[i]t the minimum cost-to-go along the trajectories

contained in the tube {CSl,[i]t , CSl,[i]t+1, . . . , CS
l,[i]
t′−1, CSl,[i]∞ }.

3.3 Learning MPC for Subsystem Σi

During the l-th iteration, at each time t, subsystem Σi
solves the following finite horizon optimal problem

J
l,[i],?
t→t+N (z

l,[i]
t ) =

min
v̄
l,[i]

[t:t+N−1]

t+N−1∑
k=t

hi(z̄
[i]
k , v̄

[i]
k ) + P

l−1,[i]
t+N (z̄

[i]
t+N ) (31a)

s.t. z̄
[i]
k+1 = Aiiz̄

[i]
k +Biv̄

[i]
k + c

[i]
k (31b)

z̄
[i]
k ∈ X̄[i], v̄

[i]
k ∈ Ū[i] (31c)

z̄
[i]
k − x̃

[i]
k ∈ E[i] (31d)

z̄
[i]
t = z

l,[i]
t , z̄

[i]
t+N ∈ CS

l−1,[i]
t+N (31e)

k = t, . . . , t+N − 1

Upon solving (31), the controller applies

v
l,[i]
t = v̄

l,[i],?
t (32)

to the nominal system (10) and

u
l,[i]
t = v̄

l,[i],?
t +Ki(x

l,[i]
t − zl,[i]t ) (33)

to the actual system (2). We make the following assump-
tions on the initial feasibility of (31).

Assumption 3.2. The initial trajectory z
0,[i]
[0:∞], the refer-

ence trajectory x̃
[i]
[0:∞] and the offset sequence c

[i]
[0:∞] are

given and satisfy (31b)-(31c)-(31d). Moreover, x̃
[i]
[0:∞] sat-

isfies Assumption 3.1 and z
0,[i]
[0:∞] is convergent to the origin.
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3.4 Feasibility, Stability and Convergence Properties

Theorem 3.1. Consider subsystem Σi with the nominal
dynamics (10) in closed loop with LMPC (31), (32). Let
Assumption 3.2 hold. Then problem (31) is feasible for all
times t ≥ 0 and all iterations l ≥ 1. Moreover, the origin
is asymptotically stable.

Proof. See Appendix A.

Theorem 3.2. Consider subsystem Σi with the nominal
dynamics (10) in closed loop with (31), (32). Let Assump-
tion 3.2 hold. Then the iteration cost does not increase
with iteration l: J

l,[i]
0→∞(z

l,[i]
0 ) ≤ J l−1,[i]

0→∞ (z
l−1,[i]
0 ).

Proof. See Appendix B.

Theorem 3.3. Consider subsystem Σi with the nominal
dynamics (10) in closed loop with (31), (32). Let Assump-
tion 3.2 hold. If (31) converges to a steady state trajectory

z
∞,[i]
[0:∞] as l →∞, then (z

∞,[i]
[0:∞], v

∞,[i]
[0:∞]) is the global optimal

solution to the infinite horizon control problem (17).

Proof. Follows Theorem 3 in Rosolia and Borrelli (2017b),

convexity of (17), (31) and decreasing of J l,?t→t+N (zlt) as
proven in (A.3).

4. DISTRIBUTED LEARNING MPC

In this section we extend results in Section 3 and propose
an ILC framework: distributed learning model predictive
control (DLMPC) for the the global system (1).

4.1 Implementation of DLMPC

Similar to (26), we define the actual iteration cost

J̄
l,[i]
0→∞(x

[i]
0 ) =

∞∑
k=0

h(x
l,[i]
k , u

l,[i]
k ) (34)

associated with (x
l,[i]
[0:∞], u

l,[i]
[0:∞]), the state and input trajec-

tories of Σi with dynamics (2) at iteration l. To evaluate
the control performance of the proposed algorithm on the
global system (1), we look at two metrics:

(1) Metric 1: Iteration cost J̄
l,[i]
0→∞(x

[i]
0 ) of a particular

subsystem Σi
(2) Metric 2: Plant-wide performance defined by the

summation of iteration costs over all subsystems, i.e.

J̄ l,sum
0→∞(x0) =

∑
i∈I1:M

J̄
l,[i]
0→∞(x

[i]
0 ) (35)

The procedure of implementing DLMPC is provided in
Algorithm 1. Note that during online control (Line 9-24),
no communication is required among subsystems.

4.2 Properties of the DLMPC Controller

Theorem 4.1. Let Assumption 2.1, 3.1 and 3.2 hold. The
global system (1) in closed loop with DLMPC (31) and
(33) satisfies state and input constraints xt ∈ X, ut ∈ U
for all t ≥ 0 and all l ≥ 1. The state trajectory xt converges
asymptotically to the origin for all iterations l ≥ 1.

Proof. See Appendix C.

Algorithm 1 DLMPC for the global system Σ

1: Given (for all subsystems Σi, i ∈ I1:M ):

2: Initial state x
[i]
0 and desired iterations ld

3: Initial trajectories (z
0,[i]
[0:∞], v

0,[i]
[0:∞])

4: Ego reference trajectory x̃
[i]
[0:∞] and offsets c

[i]
[0:∞]

5: Sets computed offline: X̄[i], Ū[i] and E[i]

6: Initialization:
7: Find t′ following (20)

8: Construct sets CSl,[i][0:∞] using (23), (24) for all i ∈ I1:M

9: Set the iteration counter: l← 1
10: Learning Iterations:
11: while l ≤ ld do
12: Reset initial state xl0 ← x0 and time index t← 0
13: while xlt 6= 0 do
14: for subsystem index i← 1 to M do

15: Solve LMPC (31) and obtain v
l,[i],?
[t:t+N−1]

16: Update state: z
l,[i]
t+1 ← Aiiz

l,[i]
t +Biv

l,[i],?
t +c

[i]
t

17: Compute u
l,[i]
t using (33)

18: end for
19: Set current input: ult ← col(u

l,[1]
t , . . . , u

l,[M ]
t )

20: Update state: xlt+1 ← Axlt + Bult
21: t← t+ 1
22: end while
23: Update sets CSl−1,[i]

[0:∞] for all i ∈ I1:M

24: l← l + 1
25: end while
26: Determining Output:
27: if Using Metric 1 for Σi then

28: Choose l? = argminl=0,...,ld
J̄
l,[i]
0→∞(x

[i]
0 )

29: else
30: Choose l? = argminl=0,...,ld

J̄ l,sum
0→∞(x0)

31: end if
32: Output the trajectory xl

?

[0:∞] and ul
?

[0:∞]

Remark 4.1. The properties of non-increasing iteration
cost and convergence to the optimal solution as we

proved for (z
∞,[i]
[0:∞], v

∞,[i]
[0:∞]), in general, do not hold for

(x
∞,[i]
[0:∞], u

∞,[i]
[0:∞]) due to neighbor’s incompliance with their

reference trajectories. Nevertheless, we show in the numer-
ical example that the control performance of the actual
subsystems (2) appears to improve dramatically as the
DLMPC is applied for the nominal subsystems (10).

5. NUMERICAL EXAMPLE

In this section, we apply the proposed DLMPC scheme to
a benchmark example of power network systems (Saadat
et al., 1999; Riverso and Ferrari-Trecate, 2012). The sys-
tem is composed of four power generation areas coupled
through tie-lines. The network is configured according
to Scenario 1 in Riverso and Ferrari-Trecate (2012) and
sketched in Figure 2. The control objective is to keep
the frequency at a nominal level when the load of power
changes. In addition, we seek to iteratively improve the
control performance of the considered system.

Following Zeilinger et al. (2013) we consider for each
subsystem (area) Σi, i ∈ I1:4 the LTI dynamics in form of
(2), which is linearized around equilibrium and discretized
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with a sampling time of 1 second. The state x[i] ∈ R4

is defined as the deviation from the desired state x
[i]
r =

[0, 0,∆P
[i]
L ,∆P

[i]
L ]> and similarly the desired input u

[i]
r =

∆P
[i]
L , where ∆P

[i]
L is the change in local power load. For

simplicity we consider a step change of ∆P
[1]
L = 0.15,

∆P
[2]
L = −0.15, ∆P

[3]
L = 0.12 and ∆P

[4]
L = 0.28 at t = 0

of the simulation. To solve a regulation problem in form
of (31), we define the initial state of both the nominal

and actual subsystem to be z
[i]
0 = x

[i]
0 = −x[i]

r . For each

subsystem Σi, sets E [i], Z[i] and the decentralized state-
feedback gain matrix Ki are synthesized following Betti
et al. (2014). DMPC in Farina and Scattolini (2012) with
zero terminal constraint is designed and served as the
baseline. It is also used to generate a reference trajectory

x̃
[i]
[0:∞] and a feasible closed loop trajectory to initialize

P
0,[i]
[0:∞](·) and CS0,[i]

[0:∞]. We use a prediction horizon N = 5

for (31) and N = 6 for the baseline. Subsequently, t′

in (20) is found to be t′ = 6. The rest of model and
controller parameters are chosen identical to Scenario 1
in Riverso and Ferrari-Trecate (2012). Quadratic programs
(31) are solved in MATLAB using the solver quadprog and
the YALMIP interface Löfberg (2004). The termination
criterion is chosen to be ‖xt‖2 ≤ 10−8.

⌃1
<latexit sha1_base64="0z1523skpLagyKnWwEMsbJudYK4=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9mtBT0WvXisaD+kXUo2zbahSXZJskJZ+iu8eFDEqz/Hm//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcpP5nSeqNIvkg5nG1Bd4JFnICDZWeuzfs5HAA680KFfcqjsHWiVeTiqQozkof/WHEUkElYZwrHXPc2Pjp1gZRjidlfqJpjEmEzyiPUslFlT76fzgGTqzyhCFkbIlDZqrvydSLLSeisB2CmzGetnLxP+8XmLCKz9lMk4MlWSxKEw4MhHKvkdDpigxfGoJJorZWxEZY4WJsRllIXjLL6+Sdq3qXVRrd/VK4zqPowgncArn4MElNOAWmtACAgKe4RXeHOW8OO/Ox6K14OQzx/AHzucPzMqPvw==</latexit>

⌃2
<latexit sha1_base64="ES/xSmPh5NF59L9X9mm1zDRr+7k=">AAAB8XicbVBNS8NAEJ34WeNX1aOXxSJ4KkkV9Fj04rGi/cA2lM120y7d3YTdjVBC/4UXD4p49d9489+4aXPQ1gcDj/dmmJkXJpxp43nfzsrq2vrGZmnL3d7Z3dsvHxy2dJwqQpsk5rHqhFhTziRtGmY47SSKYhFy2g7HN7nffqJKs1g+mElCA4GHkkWMYGOlx949Gwrcr7luv1zxqt4MaJn4BalAgUa//NUbxCQVVBrCsdZd30tMkGFlGOF06vZSTRNMxnhIu5ZKLKgOstnFU3RqlQGKYmVLGjRTf09kWGg9EaHtFNiM9KKXi/953dREV0HGZJIaKsl8UZRyZGKUv48GTFFi+MQSTBSztyIywgoTY0PKQ/AXX14mrVrVP6/W7i4q9esijhIcwwmcgQ+XUIdbaEATCEh4hld4c7Tz4rw7H/PWFaeYOYI/cD5/AAVij9Q=</latexit>

⌃3
<latexit sha1_base64="NUq6GTTlUiIc+H1E1+Klm+5Im+U=">AAAB8nicbVBNS8NAEJ3Urxq/qh69LBbBU0laQY9FLx4r2lpIQ9lsN+3S3U3Y3Qil9Gd48aCIV3+NN/+NmzYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rb7s7u3v5B5fCoo5NMEdomCU9UN8KaciZp2zDDaTdVFIuI08dofJP7j09UaZbIBzNJaSjwULKYEWysFPTu2VDgfsN13X6l6tW8OdAq8QtShQKtfuWrN0hIJqg0hGOtA99LTTjFyjDC6cztZZqmmIzxkAaWSiyoDqfzk2fozCoDFCfKljRorv6emGKh9UREtlNgM9LLXi7+5wWZia/CKZNpZqgki0VxxpFJUP4/GjBFieETSzBRzN6KyAgrTIxNKQ/BX355lXTqNb9Rq99dVJvXRRxlOIFTOAcfLqEJt9CCNhBI4Ble4c0xzovz7nwsWktOMXMMf+B8/gA9+Y/p</latexit>

⌃4
<latexit sha1_base64="xLHRVKaLSKDfaau7jgYeloC27vM=">AAAB8nicbVBNS8NAEJ34WeNX1aOXxSJ4Kkkt6LHoxWNF+wFpKJvtpl26mw27G6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSjnTxvO+nbX1jc2t7dKOu7u3f3BYPjpua5kpQltEcqm6EdaUs4S2DDOcdlNFsYg47UTj25nfeaJKM5k8mklKQ4GHCYsZwcZKQe+BDQXu113X7ZcrXtWbA60SvyAVKNDsl796A0kyQRNDONY68L3UhDlWhhFOp24v0zTFZIyHNLA0wYLqMJ+fPEXnVhmgWCpbiUFz9fdEjoXWExHZToHNSC97M/E/L8hMfB3mLEkzQxOyWBRnHBmJZv+jAVOUGD6xBBPF7K2IjLDCxNiUZiH4yy+vknat6l9Wa/f1SuOmiKMEp3AGF+DDFTTgDprQAgISnuEV3hzjvDjvzseidc0pZk7gD5zPHz+Aj+o=</latexit>
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Fig. 2. Power network with four coupled generation areas

5.1 Learning Nominal Trajectories

Table 1 summarizes the nominal iteration costs J
l,[i]
0→∞(z

[i]
0 )

of Σi in closed loop with (31), (32) over learning iterations
l = 0, . . . , 28. As suggested by Theorem 3.2, the iteration
cost is non-increasing for all Σi, i ∈ I1:4 as the iteration
index increments. In addition, we obtain the solution to the
infinite horizon control problem (17) by solving it using
a finite horizon T = 50, long enough to ensure that the
terminal state reaches the origin. The associated iteration

costs J
?,[i]
0→∞(z

[i]
0 ) are listed on the last line of Table 1. One

may observe that J
l,[i]
0→∞(z

[i]
0 ) converges to J

?,[i]
0→∞(z

[i]
0 ) after

l = 28 iterations for all four subsystems.

5.2 Control Performance of the Actual Systems

Now we examine the control performance of DLMPC
for the actual subsystems (2) and the global system (1)
through the two metrics defined in Section 4.1. Table 2

shows Metric 1: J̄
l,[i]
0→∞(x

[i]
0 ) and Metric 2: J̄ l,sum

0→∞(x0) over
learning iterations l = 0, . . . , 11. For all iterations l ≥ 1
the DLMPC successfully steers xt to the origin, which
empirically validates Theorem 4.1. As pointed out by
Remark 4.1, non-increasing property of the actual iteration

cost J̄
l,[i]
0→∞(x

[i]
0 ) does not hold due to the coupling effect

from the neighbors. The costs selected by Metric 1 are
highlighted in boldface in column 2-5 of Table 2. For

Table 1. Nominal iteration cost

Iteration
Iteration cost J

l,[i]
0→∞(z

[i]
0 )

Σ1 Σ2 Σ3 Σ4

l = 0 0.48156 0.32609 0.18844 1.52845
l = 1 0.40011 0.29701 0.17509 1.36560
l = 2 0.35381 0.28352 0.17219 1.26562
l = 3 0.32999 0.27668 0.17080 1.21154
· · · · · ·

l = 25 0.30121 0.26827 0.16923 1.15885
l = 26 0.30120 0.26826 0.16923 1.15884
l = 27 0.30120 0.26826 0.16922 1.15884
l = 28 0.30120 0.26826 0.16922 1.15883

J
?,[i]
0→∞(z

[i]
0 ) 0.30119 0.26824 0.16922 1.15881

example, if the DLMPC aims at improving the control
performance of Σ2, then Algorithm 1 would output the
trajectories x6

[0:∞] and u6
[0:∞] from iteration l = 6. On

the other hand, if Metric 2 is chosen, then trajectories
from iteration l = 10 would be selected since it yields the
lowest plant-wide cost J̄10,sum

0→∞ (x0) = 1.90806. Comparing

with the cost from DMPC J̄0,sum
0→∞ (x0) = 2.51864, the cost

J̄10,sum
0→∞ (x0) achieves a percentage decrease of 24.24%.

We also compare our result with the solution obtained
by a centralized MPC (CMPC) controller designed for
the global system (1) with terminal set and cost syn-
thesized following Borrelli et al. (2017). Surprisingly, the

cost J̄10,sum
0→∞ (x0) = 1.90806 of DLMPC chosen by Met-

ric 2 is only 0.2675% higher than the CMPC solution
JCMPC

0→∞ (x0) = 1.90297. Interestingly, we observe that the

iteration cost J
CMPC,[3]
0→∞ (x

[3]
0 ) = 0.17231 of subsystem Σ3

from CMPC is higher than J̄
3,[3]
0→∞(x

[3]
0 ) = 0.16923, the

cost chosen by Metric 1 for Σ3. This explains the non-
cooperative nature of the proposed DLMPC algorithm:
each subsystem is acting selfishly to optimize their own
performance, but in CMPC there must be some subsys-
tems (in this case Σ3) that sacrifice their own performance
to achieve the optimality for the global system.

Table 2. Actual iteration cost of subsystem Σi
and the global system

Iter. Iteration cost J̄
l,[i]
0→∞(x

[i]
0 )

l Σ1 Σ2 Σ3 Σ4 J̄ l,sum
0→∞(·)

0 0.47871 0.31987 0.18944 1.53063 2.51864
1 0.39814 0.29101 0.17355 1.36619 2.22888
2 0.35275 0.27864 0.17005 1.26567 2.06712
3 0.32970 0.27332 0.16923 1.21172 1.98397
4 0.31728 0.27118 0.16953 1.18564 1.94364
5 0.31056 0.27051 0.17006 1.17283 1.92396
6 0.30701 0.27050 0.17055 1.16675 1.91480
7 0.30512 0.27073 0.17097 1.16381 1.91063
8 0.30414 0.27105 0.17130 1.16235 1.90885
9 0.30364 0.27138 0.17156 1.16163 1.90820
10 0.30337 0.27168 0.17176 1.16126 1.90806
11 0.30324 0.27193 0.17191 1.16108 1.90815

CMPC 0.30261 0.26915 0.17231 1.15890 1.90297

Figure 3 compares the inputs obtained by DMPC with the
ones given by DLMPC using Metric 2 (l = 10) for all four
subsystems. One may observe that DLMPC uses much less
control efforts to reach the origin than DMPC does.
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Fig. 3. The actual input (solid lines) and nominal input
(dashed lines) produced by DMPC (black lines) and
DLMPC (red lines) with Metric 2 (l = 10) in all four
generation areas.

6. CONCLUSIONS

In this paper, distributed learning model predictive control
(DLMPC) is introduced for large-scale dynamically cou-
pled linear systems performing iterative tasks. Each agent
makes decisions locally and improves its control perfor-
mance by repetitively solving a learning MPC problem of
which the terminal set and cost function are learned from
past iterations. Stability and feasibility are guaranteed.
Numerical simulation on a benchmark example demon-
strates the usefulness of the proposed control framework.
Future work includes co-learning the reference trajectories
and extending the approach to the setting of cooperative
DMPC methods such as Stewart et al. (2010).
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Appendix A. PROOF OF THEOREM 3.1

In the following (and subsequent) proofs we drop the
superscript (·)[i] for brevity of notation and refer every
quantities to subsystem Σi unless otherwise specified.

We start by showing recursive feasibility. By Assumption
3.2, the initial state sequence z0

[0:N ] and input sequence

v0
[0:N−1] is a feasible solution to the LMPC (31) at t = 0 of

the l-th iteration. Assume that LMPC (31) is feasible at

time t of the l-th iteration. Denote zl,?[t:t+N ]|t and vl,?[t:t+N−1]|t
as the optimal solution. In the next, we consider two cases.

Case 1: t+N < t′. Note that (31e) enforces that zl,?t+N |t ∈
CSl−1

t+N . Define the input v̂t+N =
∑l−1

h=0
λh,?vht+N ∈ Ū and

the state ẑt+N+1 =
∑l−1
h=0 λ

h,?zht+N+1 ∈ CSl−1
t+N+1. Note

that ẑt+N+1 − x̃t+N+1 ∈ E. Consider the following pair of
state and input trajectory

[zl,?t+1|t, z
l,?
t+2|t, . . . , z

l,?
t+N−1|t, z

l,?
t+N |t, ẑt+N+1] (A.1a)

[vl,?t+1|t, v
l,?
t+2|t, . . . , v

l,?
t+N−1|t, v̂t+N ] (A.1b)

which satisfies constraints (31b)-(31c)-(31d)-(31e) at t+ 1
and therefore it is a feasible solution to the MPC problem
(31) of Σi to be solved at t+ 1.

Case 2: t + N ≥ t′. From Remark 3.2 problem (31) is
now time-invariant as considered in Rosolia and Borrelli
(2017a). Therefore the same argument as in Case 1 is
provided by Theorem 1 in Rosolia and Borrelli (2017a).
The reminder of the proof is completed by induction.

Asymptotic stability is established by showing that the

optimal cost J l,?t→t+N (·) from LMPC (31) is a Lyapunov
function. Note that if t + N ≥ t′, the proof directly
follows Rosolia and Borrelli (2017a). Therefore, we focus
on the case when t + N < t′. From (9) we have that

J l,?t→t+N (z) � 0, ∀z ∈ Rni \ {0} and J l,?t→t+N (0) = 0. The
optimal cost at time t is

J l,?t→t+N (zlt) = h(zl,?t|t , v
l,?
t|t ) +

t+N−1∑
k=t+1

h(zl,?k|t, v
l,?
k|t)

+

l−1∑
h=0

λh,?h(zht+N , v
h
t+N ) +

l−1∑
h=0

λh,?
∞∑

k=t+N+1

h(zhk , v
h
k )

≥ h(zl,?t|t , v
l,?
t|t ) +

t+N−1∑
k=t+1

h(zl,?k|t, v
l,?
k|t)

+ h(

l−1∑
h=0

λh,?zht+N ,

l−1∑
h=0

λh,?vht+N ) +

l−1∑
h=0

λh,?Jht+N+1→∞ (·)

≥ h(zl,?t|t , v
l,?
t|t ) + J l,?t+1→t+N+1(zl,?t+1|t)

(A.2)
We conclude from (A.2) that for all zlt ∈ Rni \ {0}
J l,?t+1→t+N+1(zlt+1)− J l,?t→t+N (zlt) ≤ −h(zlt, v

l
t) < 0 (A.3)

Appendix B. PROOF OF THEOREM 3.2

By (26) the iteration cost of the l − 1-th iteration is

J l−1
0→∞(zl−1

0 ) ≥ min
v̄[0:N−1]

[
N−1∑
k=0

h(z̄k, v̄k) + P l−1
N (z̄N )

]
= J l,?0→N (zl0)

(B.1)

By (A.3) we can show that J l,?0→N (zl0) is lower bounded by

J l,?0→N (zl0) ≥ lim
t→∞

[
t−1∑
k=0

h(zlk, v
l
k) + J l,?t→N+t(z

l
t)

]
(B.2)

From Theorem 3.1 we have that limt→∞ zlt = 0. By
continuity of h(·, ·) we have that

J l,?0→N (zl0) ≥
∞∑
k=0

h(zlk, v
l
k) = J l0→∞(zl0) (B.3)

Finally from (B.1) and (B.3) we conclude that

J l0→∞(zl0) ≤ J l,?0→N (zl0) ≤ J l−1
0→∞(zl−1

0 ) (B.4)

Appendix C. PROOF OF THEOREM 4.1

The proof relies on Theorem 3.1. Since it holds over all
iteration l ≥ 1, we drop the iteration index l for simplic-
ity of notation. Define a set of collective vectors: zt =

col(z
[1]
t , . . . , z

[M ]
t ), similarly for wt and et. In addition, let

AD = diag(A11, . . . , AMM ) and AC = A−AD.

By feasibility of (31) and boundedness of e
[i]
t (14) we have

x
[i]
t ∈ X̄[i] ⊕ Z[i] ⊆ X[i], u

[i]
t ∈ Ū[i] ⊕KiZ[i] ⊆ U[i] (C.1)

for all t ≥ 0. It follows from (C.1) and (3) that

xt ∈ X[i], ut ∈ U[i], ∀t ≥ 0 (C.2)

Note that for all t ≥ t′ we have that w
[i]
t =

∑
j∈Ni

Aijx
[j]
t

since x̃
[j]
t = 0, t ≥ t′ as defined (20). Consequently,

wt = col(
∑
j1∈N1

A1j1x
[j1]
t , . . . ,

∑
jM∈NM

AMjMx
[jM ]
t )

= ACxt, ∀t ≥ t′
(C.3)

Recall that the global state xt is decomposed as

xt = zt + et (C.4)

From (12), (C.3) and (C.4) we have that

et+1 = (AD + BK)et + ACxt
= (AD + BK)et + ACet + ACzt
= Φet + ACzt

(C.5)

By Theorem 3.1 the collective nominal state zt satisfies

lim
t→∞

zt = 0 and lim
t→∞

ACzt = 0 (C.6)

Therefore (C.5) is a linear system with diminishing input

and initial condition et′ ∈
∏M
i=1 Z[i]. The state equation is

et = Φt−t
′
et′ +

t−1∑
k=t′

Φt−1−kACzk, t > t′ (C.7)

By Assumption 2.1 and (C.6) we have that

lim
t→∞

Φt−t
′
et′ = 0 and lim

t→∞
Φt−1−kACzk = 0 (C.8)

for all k ≥ t′. It then follows that

lim
t→∞

et = 0 (C.9)

Combining (C.4), (C.6) and (C.9) we conclude with

lim
t→∞

xt = 0 (C.10)

This completes the proof.
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