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Abstract:
This paper proposes a new controllability index based on the Hankel singular values (HSV)
which is applicable for both single-input single-output (SISO) and multivariable processes.
The new index quantifies the inherent performance limitation in terms of closed-loop response
speed by associating it with the control effort, which is directly related to the inverse of the
HSVs. It is also shown that for specific system there is a direct linear relationship between
the inverse of the minimum Hankel singular value and desired closed loop pole locations.
The controllability index is thereafter exemplified on several SISO examples systems to show
some of its properties. Thereafter two well-known multivariable benchmark processes, quadruple
tank and two-continuous-stirring-tank-reactor are used to show the effectiveness of the index.
It is concluded that the index provides valuable insights to practitioners on the achievable
performance of processes with actuator constraints, while being easy to use and requiring little
computational effort.

Keywords: Hankel Singular Value, Gramian, Input-Output Controllability Analysis, Inherent
Performance Limitation, Pole Placement

1. INTRODUCTION

Digitalization, together with the Industry 4.0 paradigm is
leading to a radical change in the engineering and opera-
tion of industrial systems, meaning industrial automation
needs to evolve and adopt a customer oriented business
mode. In this mode, production and manufacturing sys-
tems have to respond to customer specified orders very
quickly requiring to alter operating conditions regularly.
For industrial systems with relatively large time constants
while being constraint in their actuation capabilities, the
requirement to quickly change operating conditions poses
new challenges to the engineering of industrial control
systems. In essence, control engineers simply need to have
a clear understanding what the inherent performance lim-
itation on the closed-loop response speed is.

Introduced by Morari et al. (1980), inherent control per-
formance limitation, referred to as controllability, or input-
output controllability to differentiate it from the conven-
tional state controllability, was identified having three
main causes, namely manipulated variable constraints,
non-minimum phase characteristics imposed by right-half-
plane zeros and time-delays, and plant-model mismatches.
Optimization problems can be formulated to quantify lim-
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itations in these aspects, e.g. (Cao et al., 1996). However,
to facilitate process and control designs, simple controlla-
bility indicators are more desired by practicitioner. Many
controllability indicators have been proposed and studied
in the literature, such as the minimum singular value
and its alternatives to quantify input constraints (Cao
and Biss, 1996), pole and zero directions to quantify non-
minimum phase behaviours (Skogestad and Postlethwaite,
1996) and the minimum condition number to evaluate the
effect of uncertainties on performance limitation (Skoges-
tad and Postlethwaite, 1996), just to mention a few. Many
tools have been developed to use these controllability in-
dicators for control structure design (Cao and Biss, 1997;
Cao and Saha, 2005; Cao and Kariwala, 2008).

The closed-loop response speed requirement can be con-
verted into a pole placement region. For all closed-loop
poles in this region is equivalent to a set of linear matrix
inequalities derived by Chilali and Gahinet (1996). This
result together with other design requirements are adopted
for multiple-objective controllability analysis in (Cao and
Yang, 2004). Nevertheless, the nature of LMIs creates a
trade-off between input H2 norm and pole placement, and
makes the algorithm too complicated to be suitable for
screening a large number of control structure candidates.

In this work, a new Gramian based controllability index is
proposed to link the closed-loop response speed limitation
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with manipulated variable constraints, directly. The new
index is based on the Hankel singular value (HSV) theorem
proven by Glover (1986), which states that the minimum
control effort for a controller to stabilize a linear unstable
system is the inverse of minimum HSV of the unstable
projection of the system under control. In this work, the
theorem is extended to stable systems by shifting the
imaginary axis to reflect closed-loop pole displacement,
hence, reflecting closed-loop response speed requirement.
Numerical examples are used to show this new index
indeed is able to quantify the dependence of closed-loop
response speed on the control effort, which is limited due to
manipulated variable constraints. Conventionally, a stable
pole is not considered inducing any control limitation.
However, the new index does reveal that the stable pole
location together with manipulated variable constraint
imposes a limitation on the achievable closed-loop speed.

The work is organised as follows, after introduction, the
preliminary of HSV theorem is presented in section 2.
Then, the new controllability index is proposed by ex-
tending the HSV theorem in section 3. Section 4 presents
several numerical examples using the new controllability
index. Finally, the work is concluded in section 5.

2. HANKEL SINGULAR VALUE THEOREM

Glover (1986) has proven that the minimum input usage
to stabilize an unstable plant can be quantified by the
minimum HSV of the anti-stable projection of the plant.

Let G = {A,B,C} be a linear system with nx states,
nu inputs and ny outputs, where A, B, and C are state,
input and output matrices with corresponding dimensions,
respectively. The controllability and observability Grami-
ans, Lc and Lo of the system are symmetric and can be
determined by the solution of the Lyapunov equations,
respectively, as follows.

ALc + LcA
T +BBT = 0 (1)

ATLo + LoA+ CTC = 0 (2)

The HSVs, σ = σ1 ≤ σ2 · · · ≤ σnx
= σ̄ of the system are

defined as follows,

σk(G) =
√
λk(LoLc), k = 1, 2, . . . , nx (3)

If the system is unstable, then the system can be decom-
posed into stable (Gs) and anti-stable (Ga) projections,
i.e., G = Gs + Ga (Safanov et al., 1987). Glover (1986)
indicated that the minimum control effort for a controller,
K to stabilize (G+ ∆) for all allowable perturbations ∆ is
the minimized norm of ‖KS‖∞, where S := (I −GK)−1.
The minimum norm can be calculated as follows (Glover,
1986):

min ‖KS‖∞ =
1

σ([Ga(−s)]∗)
(4)

In the next section, the HSV theorem is to be extended to
stable systems to derive a new controllability index.

3. CONTROLLABILITY INDEX

The HSV theorem established the relation between the
input usage and stabilization. Input usage is an important
controllability factor, which indicates whether or not a

required control task is achievable due to input satura-
tions. It is also well-known that the closed-loop response
is predominantly determined by closed-loop pole locations.
In order to ensure a sufficiently fast response, the closed-
loop poles have to be allocated on the left-hand side of
a certain point on the s-plane. More specifically, if the
closed-loop response is required at least as fast as e−αt,
then the real parts of all closed loop poles, pi, i = 1, . . . , nx,
have to satisfy real(pi) ≤ −α.

This problem can be converted to a stabilization problem
by introducing a shift of the imaginary axis of the s-plane
to s = −α. Thus, requiring a stable closed loop system
for the shifted imaginary axis, renders fulfillment of the
performance specification. In addition, there is no need to
specify exact pole locations, but instead an easily specified
minimum requirement on the closed loop response speed.
Most importantly, the HSV theorem can now be extended
to link the input usage and the closed-loop response speed.

Assume the controller K is to produce closed-loop re-
sponse converging faster than e−αt. Then the correspond-
ing closed-loop poles have to be allocated on the left-hand
side of the vertical line of s = −α on the s-plane. By
shifting the jω axis to s = −α, the new plane is s′ = s+α,
or s = s′ − α. The closed-loop pole allocation problem is
then equivalent to the stabilization problem on the new s′

plane. Since sI − A = s′I − A′, where A′ = A + αI, the
HSV theorem can be extended as follows.

Let G′ = {A′, B,C}, G′s and G′a are stable and anti-
stable projections of G′, i.e. G′ = G′s + G′a. Then, the
minimum control effort needed to have the closed-loop
response faster than e−αt can be determined as follows.

min ‖KS′‖∞ =
1

σ([G′a(−s)]∗)
(5)

where S′ := (I −G′K)−1 and S′ depends on α.

If G is properly scaled such that the maximum allowable
input magnitude is one, then feasible pole locations in
terms of α are given for ‖KS′‖∞ ≤ 1 for all permissible un-
certainties, such as the difference between initial condition
and steady-state. This factor makes the minimum HSV
calculated as above an appropriate controllability index.
The pole location corresponding to σ([G′a(−s)]∗) = 1 gives
the performance limitation on response speed.

For integrated process and control design, it is desired to
compare performance limitations of different designs. For
such a task, the minimum input norm, min ‖KS′‖∞, can
be plotted against the pole shift α to a desired location,
such that further adjustment or comparison of different
designs can be concluded easily. Nevertheless, in oder to
determine feasible values for α, a one dimensional search
has to be performed.

For a special case, where only one real pole, p is on the
right-side-half plane of the vertical line, s = −α, then the
minimum input norm, min ‖KS′‖∞ is a linear function of
the shifting distance, α. This can be proven as follows.
Since G′a have only one ploe, both state matrix A and
Gramians Lc and Lo are scalar. Hence, equation (1) can
be simplified as

2ALc +BBT = 0 (6)
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Shifting A with −α gives the new Gramian as L′c = Lc+δc
satisfying

2(A+ α)(Lc + δc) +BBT = 0 (7)

Combining (6) and (7) gives

δc = − αLc
A+ α

(8)

For (2), defining L′o = Lo + δo leads to as follows.

δo = − αLo
A+ α

(9)

Furthermore,

L′oL
′
c = (Lo + δo)(Lc + δc) = LoLc

(
1− α

A+ α

)2

Hence, the HSV of the shifted system is derived as follows.

σ′ =
√
λ(L′oL

′
c) = σ

(
1− α

A+ α

)
= σ

(
A

A+ α

)
(10)

The minimum input norm of the shifted system is then

min ‖KS′‖∞ =
1

σ′
=

1 + α/A

σ
= min ‖KS‖∞(1 + α/A)

To conclude

min ‖KS′‖∞ = min ‖KS‖∞ +
min ‖KS‖∞

A
α (11)

This means for a single real pole, the minimum input norm
will increase as the shifting distance increase with a slope

of min ‖KS‖∞
A . Hence, it is not necessary to calculate the

entire curve of input norm against the shifting distance,
but only at one shifting point of A = α0, to calculate the
corresponding min ‖KS‖∞. Then, the entire curve can be
obtained using (11).

The shifting has to be on the left of the rightmost open-
loop pole. This is because if the desired closed-loop pole
location corresponding to the desired response speed is
on the right of the rightmost pole, then it means the time
constant of the open loop system is small enough to achieve
desired response speed without any concerns. Thus, for
the one dimensional search, the initial value for α can be
chosen close to, but not equal to (to avoid A = 0 in (11)),
the right most pole location of the open-loop system in the
left half plane, and thereafter iterating towards −∞.

To conclude, the controllability index provides a link
between the response speed and control input magnitude.
Therefore, by checking the function of the control effort
against the pole location, an engineer can design an
appropriate input saturation, namely dimensioning of the
actuators, based on required closed-loop response speed.

4. EXAMPLES

In order to exemplify the usage of the new controllability
index a number of examples are used. First some numer-
ical examples for single-input and single-output (SISO)
systems are used to show the characteristics of the input
magnitude in relation to the pole shift for the cases of sys-
tems with individual real poles, systems contain complex
conjugate poles and poles with multiplicity.

Thereafter, the quadruple tank process and the two-
continuous-stirring-reactor (2-CSTR) process are used to
show the feasibility for multivariable processes and how the
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Fig. 1. Controllability index against pole shifts for three
SISO systems

effect of interactions can be observed using the proposed
controllability index. These two examples exhibit different
characteristics, as there are input constraints depending
on operating conditions.

4.1 SISO systems

Three SISO systems with individual real poles, complex
poles and multiple real poles are considered as follows.

G1(s) =
0.315

(s+ 0.9)(s+ 0.7)(s+ 0.5)
(12)

G2(s) =
0.5

(s+ 0.5)(s2 + 1.5s+ 1)
(13)

G3(s) =
1

(2s+ 1)n
(14)

The new controllability index is calculated for these three
systems for different pole shifts and is depicted in Fig. 1.

For the system with real poles (12), shown in Fig. 1a, it
can be seen that the shape of the curve representing the
relationship between the input norm and the pole shift
is changing at the individual pole locations. Between the
pole location −0.5 and −0.7, the curve adheres a linear
curve in accordance with (11), whereafter a higher order
trend is adhered. It can also be concluded that the poles
can be shifted up to −0.86, where the input norm reaches
the magnitude 1, rendering actuator saturation.
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Pump 2Pump 1
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Fig. 2. Quadruple tank system

Similarly, for the system with complex poles (13), where
the complex pole pair is located at (−0.75 ± j0.6614),
shown in Fig. 1b, change in the shape of the relationship
can be observed at −0.75, where the linear curve changes
into a higher order trend. It can also be observed that a
pole shift to −0.82 would be possible, but beyond that
point actuator saturation can be expected, rendering a
performance limitation. Moreover, the behaviour can be
considered consistent with G1(s).

For the system with repeated real poles (14), with n
indicating the multiplicity of the pole at −1/2, shown in
Fig. 1c, it is well known that increased values of n do
reduce the responsiveness of the system and a requirement
on reduced response times of the closed loop system will
render increased values for the input norm. There it can
be seen that the required input norm for a faster response
is increasing rapidly with the increased multiplicity of the
poles of the system. Moreover, it can be seen that the
single pole case results in a linear relation with the pole
shift α.

4.2 Quadruple tank process

The quadruple-tank (QT) is an interacting system where
two pumps deliver their flow to four interconnected tanks
as depicted in Fig. 2 and discussed in Johansson (2000).
The inputs uj are the voltage applied to pump j, and the
outputs hi are the level in tank i. The flow from the pumps
is then split into two flows using the ratio γj set by the
respective split valve. The linearized model is known to be

G(s) =


γ1c1

1 + sT1

(1− γ2)c1
(1 + sT3)(1 + sT1)

(1− γ1)c2
(1 + sT4)(1 + sT2)

γ2c2
1 + sT2

 (15)

where Ti = Ai

ai

√
2h0i /g are the time constants of the tanks,

h0i is the level of the tank i at the considered working point
and ci = Tiki/Ai. The considered process parameters are
summarized in Table 1. For the assessment of the new
controllability index the operating point as described in
Table 2 is used.

The controllability index can now be calculated for a
range of pole shifts which represent potential performance

Table 1. QT process parameters.

Parameter Value Description

A1, A3 28 cm2 Cross section of tanks 1 and 3

A2, A4 32 cm2 Cross section of tanks 2 and 4

a1, a3 0.071 cm2 Area of the bottom hole of Tanks 1, 3

a2, a4 0.057 cm2 Area of the bottom hole of Tanks 1, 3

g 981 cm/s2 Gravity acceleration

k1 3.33 Flow from Pump 1 for a voltage unit

k2 3.35 Flow from Pump 1 for a voltage unit

γ1 0.59 Flow fraction from Pump 1 into Tank 1

γ2 0.45 Flow fraction from Pump 1 into Tank 2

Table 2. QT operating conditions

Variable u0
1 u0

2 h0
1 h0

2 h0
3 h0

4

Value 3 V 3.2 V 14.1 cm 12.5 cm 3.5 cm 2.6 cm
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Fig. 3. Controllability index for a range of pole shifts of
the complete quadruple tank process

requirements. In Fig . 3, the controllability index for the
complete quadruple tank process is shown. There it can
be seen that pole shifts of up to −0.02 can be considered
before the closed loop system would exhibit actuator
saturations. Interestingly, in Fig. 4, when assessing the
controllability index for the individual subsystems of the
quadruple tank, it can be seen that the possible pole
shift is exceeding −0.02. Thus, the interaction effect in
the quadruple tank limits the attainable performance for
a closed loop control system significantly. The depicted
trends can also be confirmed with the shifted input norm
equation derived in (11). The difference in behaviour of
the individual subsystems and for the complete process
also motivates the question if and how a control structure
design could be determined on the basis of the difference.
A future study should investigate that research question.

4.3 Two continuous stirring tank reactor process

Consider the two stage continuous stirring tank reactor
system, shown in Fig. 5. An eight-state nonlinear model
of the system was presented in (Cao et al., 1996). The
model was then reduced to six states by assuming constant
volumes in both reactors in (Cao and Yang, 2004). The 6-
state model is adopted in this work. Three possible control
configurations are considered in (Cao and Yang, 2004):

S1: u = [QI1, QI2]T , two feed flowrates and y =
[To1, To2]T , two tank outlet temperatures. To cope with

the input constraint 0.05 ≤ QI1 + QI2 ≤ 0.8 [m
3
/s],

these inputs are converted to total throughput, QI =
QI1 + QI2 and second inlet ratio, R2 = QI2/Q, i.e.
u = [QI , R2]T .

S2: u = [Qcw1, Qcw2]T , two cooling-water flowrates and y
is the same as S1.
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Fig. 4. Controllability index for a range of pole shifts of the
individual transfer functions in the transfer matrix of
the quadruple tank
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Fig. 5. Two stage CSTR system

S3: u is the same as S2, but y has two extra secondary
measurements, cooling-water outlet temperatures, i.e.
y = [To1, To2, Tcwo1, Tcwo2]T .

After appropriate input and output scaling to consider
both input constraints and operating range, the linear
state space models of these configurations adopted from
(Cao and Yang, 2004) are as follows

ẋ = Ax+Biu, y = Cix (16)

where Bi and Ci are B and C are matrices for configura-
tions Si, respectively.

A =
−17.9751 −295.8655 0 0 0 0

0.0207 0.1889 0.0704 0 0 0

0 0.3879 −0.8000 0 0 0

0.0977 0 0 −18.0088 −295.8655 0

0 0.0617 0 0.0131 0.0433 0.0589

0 0 0 0 0.3787 −0.6220

 (17)

[B1 B2 ] =


17.8996 −13.7811 0 0

−0.0131 0.0101 0 0

0 0 −0.0294 0

17.8636 17.8636 0 0

−0.0082 −0.0082 0 0

0 0 0 −0.0235

 (18)

B3 = B2 (19)

C3 =

[
0 362.9950 0 0 0 0

0 0 0 0 362.9950 0

0 0 327.5600 0 0 0

0 0 0 0 0 335.4470

]
(20)

C1 = C2 = the first two rows of C3 (21)

Open-loop poles and transmission zeros of these configu-
rations are listed as follows.
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Fig. 6. Minimum input norm of three control configura-
tions of the 2-CSTR system versus closed-loop pole
location requirement.

poles: −17.8, −17.6, −0.84, −0.67, −0.13 −0.11

zeros of S1: 10.33, 10.31, −0.8, −0.62

zeros of S2: −18.01, −17.98

zeros of S3: none

Note, configuration S3 is a non-square system, hence does
not have any transmission zeros. It is included in this work
on purpose to investigate how the new controllability index
works for non-square systems. After calculating the new
controllability index, results of the minimum control effort
required against desired closed-loop pole location for these
three configurations are shown in Fig. 6

In Fig. 6, non-zero input norm values for all configurations
start from the rightmost open-loop pole, α = −0.11.
These norm curves change their slopes at the second
rightmost pole α = −0.13, but the change is too close to
the first right pole to be observed clearly. At the third
rightmost pole, α = −0.67 these curves have another
change of slopes. Other changes are beyond the range of
the graph, and hence, not observable. It is interesting to see
that although the first scheme S1 has two non-minimum
phase zeros, requires the least input norm amongst these
three schemes. A theoretical explanation of this counter-
intuitive behaviour will be subject to future research.
Finally, the non-square configuration, S3 with extra sec-
ondary measurements, does improve controllability from
the S2 configuration by extending the feasible closed-
loop pole range with the given input constraints. These
results are consistent with those concluded from the multi-
objective controllability analysis conducted in (Cao and
Yang, 2004), where a much more complicated algorithm,
solving several linear matrix inequalities was adopted.
Therefore, the simplicity of the proposed controllability
index in this work is very compelling and better suited for
the design of control policy, and particularly to screen a
large number of possible policies.

Using a nonlinear closed-loop dynamic simulation the
predictions by the controllability index are cross-verified.
Both To1 and To2 loops are controlled by PI controllers
for both S1 and S2 configurations. For S3, a distributed
cascade control configuration is adopted, where Tcwo1
and Tcwo2 are treated as secondary controlled variables
and controlled by proportional controllers in addition to
the primary controlled variables, To1 and To2, controlled
by PI controllers, respectively. Controller parameters are
shown in Table 3. Nonlinear closed-loop simulations are
conducted for tank temperature set points change by
±0.1K, respectively. The simulation results for the output
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Table 3. 2-CSTR controller parameters

To1 To2 Tcwo1 Tcwo2

KP τI KP τI KP KP

S1 0.5112 0.4764 0.7006 1.0395

S2 −1.0824 3.9419 −0.9139 4.8641

S3 68.5767 1.2337 56.6181 2.5045 −0.05 −0.05
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responses are shown in Fig. 7 and input responses in Fig 8.
Fig. 7 shows that the response time with control scheme
S1 indeed is the shortest, followed by that of S2, then S3,
while all inputs are not saturated as can be seen in Fig. 8.
These results match the controllability ranking predicted
by the new controllability index stated above.

5. CONCLUSIONS

A new controllability index to quantify the effect of input
constraint on closed-loop response speed is proposed by
extending the HSV theorem proven by Glover (1986).
The original theorem was proven for unstable system.
In the proposed extension, the imaginary axis of the s-
plane is shifted according to closed-loop pole locations
which determine the closed-loop response speed desired.
The shifting of the pole location from open-loop poles
to desired closed loop poles converts stable systems to

unstable ones such that the HSV theorem can be applied.
Numerical studies demonstrate the effectiveness of the new
index despite its simplicity of use it does provide a reliable
indication on achievable closed-loop response speed. It also
provides an approach which is computational efficient.

Future work, will target efficient control structure design
algorithms which can directly relate achievable closed loop
performance with the selected control structure, motivated
by the outcome of the quadruple tank process example.
Moreover, the relationship between number of unstable
poles and the curvature of the input magnitude curve
depending on α is worth while investigating, which could
imply the existence of a closed form solution for the input
magnitude. Finally, the effect of zeros on the input norm
need to be further investigated.
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