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Abstract: As a data-driven process monitoring method, multivariable statistics techniques have
special potentials and advantages to handle the increasingly prominent “Big data challenge”
in the complex industrial systems. However, the standard partial least square (PLS) method
and the principal component regression (PCR) method cannot maintain stable function in the
nonlinear operating environment. In order to capture the precise relation of process variables
and product variables, an approach called the revised kernel PCR (RKPCR) method is proposed
in this thesis to resolve the problems encountered in the traditional PCR method. In addition, a
brief and effective diagnosis logic is designed to decrease the difficulty of fault diagnosis. Finally,
the effectiveness of the RKPCR algorithm is illustrated utilizing the Tennessee Eastman case
(TEC) platform.
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1. INTRODUCTION

For the past quarter-century, fault detection methods have
been applied to large scale plants and processes, which
can effectively enhance the core competitiveness of the
enterprises and dramatically reduce needless costs of the
production procedures (Peng et al. (2013); Shao et al.
(2019); Yin et al. (2012)). In the real industrial process,
many types of equipment are working together to make the
systems become more complex and undetectable. With-
out considering the precise mathematical model, data-
driven approaches can directly derive the information of
the systems from an ocean of data, which cope with the
multivariable operation conditions of modern industries,
for instance, chemical process and semiconductor manu-
facturing (Luo et al. (2019); Qin and Dong (2018)). To
control these multivariable products, multivariate statis-
tical process monitoring (MSPM) is leveraged to these
increasingly complex processes. The principal component
analysis (PCA) algorithm and the partial least square
(PLS) algorithm, two common tools of MSPM, can find the
abnormal changes in the process measurements. Not like
the PCA method focusing only on process measurements,
the PLS method can interpret the relationship between
product and process variables, which fits the modern sys-
tems control (Zhang et al. (2019)).

However, the decomposition of PLS method is performed
incompletely that further influences the subsequent fault
detection results. Li et al. (2010) described a geometric
expression for the structure of the PLS method to promote
the monitoring results. In order to surmount the remaining
unexpected alarms, Zhou et al. (2010) proposed the total

PLS (T-PLS) method to enforce a follow-up operation on
the separation of the PLS approach. Sooner, Yin et al.
(2011) worked on the connection between quality variables
and process variables to shape the new form, namely the
modified PLS (M-PLS) technique. Combined with these
mentioned two techniques, Qin and Zheng (2013) drafted
a current PLS (C-PLS) approach to separate process
variables into two sections by means of the prediction
of output variables. These approaches open new avenues
for the promotion of quality-related process monitoring.
Thanks to the contributions of these scholars, the linear
process monitoring aspects have obtained enough fruits.
From the feedbacks of technicians, the PLS method cannot
be very stable when the strength of fault rapidly enhances.
What is worth mentioning, product quality occupying the
first spot in the modern production process, which cannot
be considered by the PCA algorithm like the PLS method
(Dong et al. (2015); Zhang et al. (2015b); Wang et al.
(2017)).

Motivated by improving the PCA algorithm, the principal
component regression (PCR) is adopted to the quality-
related process monitoring (Peng et al. (2015)). Compared
with these existed PLSs’ methods, the PCR approach
is very suitable to handle the industrial process with a
small number of quality variables. Nevertheless, in the real
operating procedure, the feature of nonlinear always exists
in these running data so that the aforementioned linear
methods cannot guarantee the performance of detection
results (Ge et al. (2009); Jiang et al. (2015)). Driven by this
trend, Peng et al. (2013) and Jiao et al. (2017) developed
the T-PLS method and the M-PLS method into nonlinear
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settings, respectively. Zhang et al. (2015a) analyzed and
summed up these former techniques in the paper.

Hence, more researches about the nonlinear methods
should be taken into account. What is more, from the
knowledge of engineers and workers, a concise detection
strategy is helpful and beneficial to operate (Wang et al.
(2018)). These existing techniques may confront the d-
ifficulty of incorrect results and complicated diagnosis
regimes. Similar to the PLS method, the PCR algorithm
also projects the process variables into two adverse mean-
ing subspaces or parts. For two divided portions, every
part may have some components which should belong
to another one. Hence, this imperfect structure hugely
influences the detection results so that the subsequent fault
diagnosis and fault-tolerant control are contaminated.

In this paper, prompted by the aforementioned flaws, a
novel method exploiting the connection between quality
measurements and process measurements is proposed to
induct an accurate division, which is called the revised
kernel PCR (RKPCR) approach. The reliability of the pro-
posed RKPCR is demonstrated on the Tennessee Eastman
case (TEC) by comparing the monitored results of the T-
KPLS method and the KPLS method.

The main contributions of this paper are listed as follows.

a. The RKPCR algorithm complements the monitoring
approaches ground on the nonlinear circumstances, and it
is more appropriate to the progress of the real complex
industry.

b. The proposed method rewrites the separation of the
process variables which can be employed to detect the fault
met in the running process more exactly.

c. A concise diagnosis logic is provided that can effectively
reduce the computation and difficulty of online manipula-
tion.

The rest of this paper is organized as follows. In Section II,
the intrinsic drawbacks of the PCR method is discussed.
Section III reveals the detailed proving process of the
proposed approach. In the TE case of Section IV, the
availability of the RKPCR approach is illustrated with the
comparisons of two methods. Eventually, the conclusions
are drawn in Section V.

2. REVIEWS OF THE PCR METHOD

2.1 Presentation of the PCR method

Firstly, let’s define the collected process variables as X ∈
RN×m and quality variables as Y ∈ RN×j (the definition
of symbols is detailed as Appendix A).

Through projecting the variables into latent spaces with a
lower dimension, the PCA method has ability to monitor
the abnormal alterations in the running conditions. Com-
bined with the defined X and Y, and the PCA method
can be expressed as:{

X = TPT +E,
P = XTT,

(1)

Fig. 1. Decomposition plot of X by the PCR method.

Algorithm 1 The procedure of the PCR method

Step 1: Normalize the data sets.
Step 2: Calculate the covariance matrix S.
Step 3: Perform eigenvalue decomposition (EVD) on S.
Step 4: Array the eigenvalue in the descending order.
Step 5: Select the first A eigenvalue.
Step 6: Group the corresponding eigenvector of A eigen-

value as P.
Step 7: Calculate the score matrix T, T = XP.
Step 8: Obtain the score matrix of Y based on (2).
Step 9: Acquire the further elaborated X as (4).

where P ∈ Rm×A andT ∈ RN×A denote projected loading
and score matrix of X, respectively. A is the number of
principal components, and E represents the residual part.

However, the PCA method only concerns fault and the
affected process variables. Therefore, the PCR algorithm
is improved to solve the problem of the PCA method that
cannot obtain the link of product properties and faults
(Jolliffe (1982)). Here, the PCR approach is applied to
perform decomposition of X according to the prediction
of quality variables. Before performing the PCR method,
the important step is to normalize the data collected from
the sensors of the real systems.

The least squares (LS) algorithm is used to construct the
relationship between T and Y.

QT = (TTT)(−1)TTY, (2)

where Q means the score variables of Y.

Then

Ŷ = TQT . (3)

The PCR algorithm can be constructed as follows:{
X = D+E = TPT +E,

Ŷ = TQT = XPQT ,
(4)

where D and E represent quality-related part and quality-
unrelated part of X. The procedure of the PCR method is
shown as Algorithm 1.

2.2 Drawbacks of the PCR method

Although X is decomposed by the relationship with Y,
the separated procedure is not very consummate that
further compromises the detection results in the process
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monitoring. The so-called quality-related part may have
the components of quality-unrelated. By the same token,
the quality-unrelated part may not only contain itself. The
inhered defects of the PCR method are as displayed in
Fig.1. Besides, the PCR method and the PLS method are
utilized under an implicit assumption that all operations
are in the linear conditions. Consequently, these above
techniques will lead to poor monitoring performance when
they are employed in the nonlinear environment. For the
purpose of solving these issues, in the next section, the
revised kernel PCR approach is proposed.

3. THE REVISED KERNEL PCR METHOD

3.1 Kernel techniques

These above linear methods are only playing a part as
they running near the operating points. Hence, there are
inevitable that these above linear methods cannot work
well in the nonlinear aspects. If the nonlinear features in
the collected data sets cannot be solved that further limit
the application of the PCR method and the PLS method.
Rosipal and Trejo (2001) proposed the kernel PLS (KPLS)
method to give a connection between quality variables and
process variables under the nonlinear conditions, which
introduced the kernel technique to the area of MSPM.
Not only the KPLS method can excavate the detailed
information of obtained measurements but also it can
enhance the precision of monitoring performance. The core
of the kernel techniques is to project the process data into
the high dimensions to obtain an approximation of the
linear model.

The three kernel techniques are:

1) Polynomial kernel

fk(x, y) =< x, y >d, (5)

2) Sigmoid kernel

fk(x, y) = tanh(βo < x, y > +β1), (6)

3) Gaussian kernel

fk(x, y) = exp(−∥ x− y ∥2

c
). (7)

3.2 The RKPCR method

According to the many applications of scholars and engi-
neers, the Gaussian kernel is the most useful in these three
kernel methods as it has the lower computation burden
and the higher convenience. Therefore, the Gaussian kernel
is adopted in this part. Firstly, the process variables are
projected into feature space with high dimension,

X ∈ RN×m → Φ ∈ RN×M , (8)

where Φ is the infinite dimension, M ∈ ∞.

Then {
Φ = TPT +Φe

P = ΦTT
. (9)

From (4) and (9), Φ and Ŷ can be deduced as

Ŷ = TQT = ΦPQT = ΦHk , (10)

where Hk denotes the coefficient matrix between Φ and
Ŷ.

Theorem. Notice that before applying the PCR method,
zero-mean step must be first considered.

Φ̄ =


ϕ(x1)− ϕ̄
ϕ(x2)− ϕ̄

...
ϕ(xN )− ϕ̄

 = Φ− 1

N
1N1T

NΦ , (11)

where 1N = 1
N

 1 . . . 1
...
. . .

...
1 . . . 1

, ϕ̄ is the mean value of ϕ.

However, the number of columns can be infinity, Φ̄ cannot
be calculated directly. So f̄k is utilized to substitute for Φ̄
(Rosipal and Trejo (2001)).

f̄k = Φ̄Φ̄T . (12)

Assumption. Based on (9), assuming a division as (13)
that provides a detailed expression to make sense of
process variables with quality.{

f̄k = f̄ka + f̄kb,

Ŷ = f̄kaHk,
(13)

where f̄ka and f̄kb mean the correct quality-related project-
ed subspace and correct quality-unrelated one, respective-
ly.

Proof. On the basis of (9), (10), and (12), the link

between Ŷ and f̄k can be calculated as

Ŷ = f̄kPQT ,
= f̄kHk,

(14)

where Hk represents the new connection between Ŷ and
f̄k.

Firstly, the singular value decomposition (SVD) is per-
formed on the matrix HkH

T
k ,

HkH
T
k =

[
⨿k ⨿̃k

] [Λk 0
0 0

] [
⨿T

k

⨿̃T

k

]
, (15)

where ⨿k ∈ RN×j , ⨿̃k ∈ RN×(N−j) and Λk ∈ Rj×j .

Then the projection matrices of Φ̄ is defined

B
k
=⨿k⨿T

k ∈ RN×N (16)

B⋆
k = ⨿̃k⨿̃

T

k ∈ RN×N (17)

For these two parts, two score matrixes are constructed as

Ta = f̄k⨿k ∈ RN×j (18)

Tb = f̄k⨿̃k ∈ RN×(N−j) (19)

Hence, f̄k can be separated into two parts, f̄ka and f̄kb,
based on B⋆

k
and Bk.

f̄ka = f̄B
k
= Ta⨿T

k ∈ SΦ̄a
(20)

f̄kb = f̄B⋆
k = Tb⨿̃

T

k ∈ SΦ̄b
(21)
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Then according to the feature of SVD, (22) and (23) can
be obtained.

B⋆
k
+Bk = IN , (22)

⨿T
k ⨿̃k = ⨿̃T

k⨿k = 0,

⨿̃T

kHk = 0,
(23)

then

f̄k = f̄ka + f̄kb = f̄(B⋆
k
+Bk) , (24)

and then

Ŷ= f̄kHk = f̄k(B
⋆
k
+B)Hk, (25)

= f̄k(⨿k⨿T
k + ⨿̃k⨿̃

T

k )Hk,

= f̄k⨿k⨿T
kHk,

= f̄kaHk.

Accordingly, this assumption is proved. This Assumption
will offer valuable detection results to the quality-related
process monitoring.

3.3 Implement of the RKPCR method

When a new data xnew is going to perform the RKPCR
method, data needs to extend into the high dimensional
space as ϕnew. Next, ϕnew is calculated by zero-mean step
described in Theorem. Similar to underlying properties of
Φ̄ that cannot be straightly measured, based on (12), it
can be depicted as

f̄knew = Φ̄newΦ̄
T
new

. (26)

For each online sample f̄knew , it can be divided into two
mutually orthogonal portions by the RKPCR method,
f̄kanew and f̄kbnew ,{

f̄knew = f̄kanew + f̄kbnew ,
ŷ = f̄kanewHknew.

(27)

Then the score vectors of f̄kanew and f̄kbnew are

ta = f̄knew⨿knew (28)

tb = f̄knew⨿̃knew (29)

The T2 statistics is chosen to depict the varies of f̄kanew

and f̄kbnew , and they are listed as described below,

T2
a = tTa

(
TT

aTa

N − 1

)−1

ta, (30)

T2
b = tTb

(
TT

b Tb

N − 1

)−1

tb. (31)

Then the thresholds of T2
a and T2

b can be worked out as
the significance level α is given, and

Jth,T 2
a
=

m
(
N2 − 1

)
N (N −m)

Fm,N−m,α, (32)

Jth,T 2
b
=

(A−m)
(
N2 − 1

)
N (N −A+m)

FA−m,N−A+m,α. (33)

The fault diagnosis strategy based on the RKPCR method
is presented as

Algorithm 2 Process monitoring based on the RKPCR
algorithm

Training phase :
Step 1: Calculate f̄k according to (11) and (12).
Step 2: Carry out Algorithm 1 on new data set (f̄k, Y) to

acquire Hk.
Step 3: Perform SVD on the matrix HkH

T
k .

Step 4: Obtain the projection matrices B⋆
k
and Bk on the

basis of (16) and (17).
Step 5: Calculate score matrixes Ta and Tb based on (18)

and (19).
Step 6: Set α and compute the control thresholds by (32)

and (33).
Testing phase:
Step 1: Form the collected new data xnew into f̄knew by

(11), (12) and (26).
Step 2: Calculate the score matrix vectors ta and tb ac-

cording to (28) and (29).
Step 3: Obtain T2

a and T2
b based on (30) and (31).

Step 4: Distinguish the kind of fault condition based on
the fault diagnosis strategy logic.

(1) T2
a ≥ Jth,T 2

a

=⇒ A fault related with quality is detected and
judged;

(2) T2
a < Jth,T 2

b
and T2

b ≥ Jth,T 2
b

=⇒ A fault unrelated with quality is detected and
judged;

(3) T2
a < Jth,T 2

a
and T2

b < Jth,T 2
b

=⇒ Detected no-fault;

The procedure of quality-related process monitoring based
on the RKPCR method is shown as Algorithm 2.

4. APPLICATION ON THE TE CASE

The Tennessee Eastman Case (TEC) is a simulation
benchmark created by the Eastman company in 1993
based on the real industrial process (Downs and Vogel
(1993)). The TEC is a continuous process applied to test
and verify the effectiveness of some monitoring and opti-
mization algorithms. The reacted procedure of the TEC is
as presented as (34), including 8 components (A-G), where
4 gas components, A, C, D, and E are reacted together to
produce liquid products G and H, and also accompanying
with liquid side stuff F and gas B. 21 faulty data sets and
a no-fault one is supplied by the TEC, where every set
consists of 500 training samples and 960 testing samples.

A+ C +D → G
A+ C + E → H
A+ E → F
3D → 2F

(34)

From prior knowledge (Yin et al. (2012)), 21 faults can
be divided into 2 classes, quality-related faults (IDV(1),
IDV(2), IDV(5), IDV(6), IDV(10), etc), and quality-
unrelated faults (IDV(3), IDV(4), IDV(9), IDV(11), ID-
V(14), and IDV(19)). The operating procedure of the TEC
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comprises 12 control measurements (XMV(1-12)) and 41
measured variables (XMEAS(1-41)), in which XMEAS(23-
41) are components measurements. In this study, XMV(1-
11) and XMEAS(1-22) are selected to compose the process
variables X. The components measurement XMEAS(35),
the product G, is selected as Y. Here, the training data of
IDV(3), IDV(4), IDV(9), IDV(11), IDV(14), and IDV(19)
is adopt to train the models of the T-KPLS method (Peng
et al. (2013)), the KPLS method, and the RKPCRmethod,
respectively. These three approaches are utilized to detect
the preset fault in the testing data (faults are added in the
165th sample).

Table 1. FD rates of the KPLS method, the
T-KPLS method, and the RKPCR method for

6 kinds of faults (%)

Faults
KPLS T-KPLS RKPCR

T2
kpls Qkpls T2

ko&T2
kr T2

ky&Qr T2
a T2

b

IDV(3) 2.63 0.88 64.62 1.88 6.50 24.5

IDV(4) 99.87 0 58.47 99.87 0 96.5

IDV(9) 1.51 0.25 26.98 1.38 5.25 21.5

IDV(11) 73.9 39.4 97.49 73.78 9.50 84.25

IDV(14) 100 97.74 100 100 3.62 100

IDV(19) 54.58 9.03 91.84 50.44 1.00 91.75

The detection results of three methods under IDV(14) are
shown as Fig. 2, Fig. 3, and Fig. 4. In Fig. 2, quality-related
T2

kpls and quality-unrelated Qkpls all exceed the thresh-
olds, indicating that the KPLS approach cannot depict
running condition affected by fault IDV(14). As displayed
in Fig. 3, the T-KPLS method provides false alarms that
four statistical magnitudes are topper than the red line,
where T2

ko&T2
kr represents quality-related subspace and

T2
ky&Qr denotes quality-unrelated subspace. Beginning

from the 165th sample in Fig. 4, it is clear that T2
a is

almost under the set threshold, andT2
b exceeds the red line

to raise an alarm. From the FD strategy of the RKPCR
approach, it can come to a point that the fault IDV(14) is
diagnosed as a quality-unrelated kind, which is accorded
with the prior knowledge.

Fault detection (FD) rate, a common measured index, is
employed to judge the detection property of methods as
(35),

FD rate =
No.of detected samples

total samples
× 100%. (35)

The FD rates of IDV(3), IDV(4), IDV(9), IDV(11), ID-
V(14), and IDV(19) are exhibited in Table 1. From the
presented detection results of quality-unrelated faults, the
higher FD rates are submitted by the corresponded sub-
space of the RKPCR method than the KPLS method and
the T-KPLS method.

Consequently, based on the monitoring results, it can be
clearly concluded that the RKPCR approach is more ben-
eficial to monitor the faults in the running conditions com-
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Fig. 2. Detection plot of the RKPCR method of IDV(14)
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Fig. 3. Detection plot of the T-KPLS method of IDV(14)
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Fig. 4. Detection plot of the KPLS method of IDV(14)

pared with the KPLS approach and the T-KPLS approach.
Different from four statistical variables of the T-KPLS
technique, the RKPCR approach can depict the changing
conditions with only two ones. Hence, the RKPCR tech-
nique also provides a more simple and better strategy than
the KPLS method and the T-KPLS approach.
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5. CONCLUSION

In this thesis, the RKPCR technique has been devised to
improve the quality-related monitoring performance of the
standard PCR method by employing the reconstructed
relationship between quality measurements and process
measurements. Meanwhile, the designed diagnosis logic
has been testified reliable and with less computation
burden than the compared approaches. The proposed
method has outperformed these compared approaches in
light of the accorded experiment results of the TEC.
Hence, the designed approach can be implemented to deal
with the nonlinear behaviors in the running process.
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Appendix A. THE SYMBOLIC MEANING

Rj j response variables

RN×M N observations and m variables

F(a, b, α) F distribution

IN N dimensions unit matrix

S span
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