
Opacity Enforcing Supervisory Control
using Non-deterministic Supervisors ?

Yifan Xie ∗ Xiang Yin ∗ Shaoyuan Li ∗

∗Department of Automation, Shanghai Jiao Tong University, Shanghai
200240, China. (E-mail: {xyfan1234,yinxiang,syli}@sjtu.edu.cn)

Abstract: In this paper, we investigate the enforcement of opacity via supervisory control in
the context of discrete-event systems. A system is said to be opaque if the intruder, which
is modeled as a passive observer, can never infer confidentially that the system is at a secret
state. The design objective is to synthesize a supervisor such that the closed-loop system is
opaque even though the control policy is publicly known. We propose to use non-deterministic
supervisors, provides a set of control decisions at each instant, to enforce opacity. Such a non-
deterministic control mechanism can enhance the plausible deniability of the controlled system
as the online control decision cannot be implicitly inferred from the control policy. We provide
an effective approach to synthesize a non-deterministic opacity-enforcing supervisor. We show
that non-deterministic supervisors are strictly more powerful than deterministic supervisors.

Keywords: Opacity, Supervisory Control, Discrete Event Systems.

1. INTRODUCTION

We investigate an information-flow security property
called opacity in the context of Discrete-Event Systems.
Opacity is a confidential property capturing whether or
not the system can always plausibly deny the execution
of a secret behavior. Due to the increasing demands for
security certification in safety-critical systems, opacity has
been extensively studied in the past years; see, e.g., Yin
and Lafortune [2017], Lafortune et al. [2018], Yin et al.
[2019]. Given a system that is verified to be non-opaque,
one important problem is to enforce opacity via some
enforcement mechanisms. For example, Cassez et al. [2012]
consider the enforcement of opacity via dynamic masks
that change the output information dynamically. Similarly,
Ji et al. [2019] uses insertion functions to enforce opacity
by adding factitious events.

One of the most widely investigated opacity enforcement
mechanism is via the supervisory control theory Badouel
et al. [2007], Saboori and Hadjicostis [2011]. In this frame-
work, a supervisor is used to restrict the system such that
the closed-loop system is opaque. For example, in Dubreil
et al. [2010], the authors solve the opacity control problem
by assuming that all controllable events are observable
and the observation of the intruder is included in the
observation of the supervisor. In Yin and Lafortune [2016],
a uniform approach is provided to solve opacity-enforcing
control problem without the assumption that controllable
events are observable by assuming the intruder and the su-
pervisor have the same observation. Recently in Tong et al.
[2018], the authors provide an algorithm for synthesizing
an opacity enforcing control without any assumption on

? This work was supported by the National Natural Science Foun-
dation of China (61803259, 61833012) and Shanghai Jiao Tong Uni-
versity Scientific and Technological Innovation Funds..

event sets. However, it needs to assume that the control
policy is not publicly known.

All existing works on opacity-enforcing supervisory control
considers deterministic supervisors. Such a deterministic
mechanism, however, may decrease the plausible deniabil-
ity of the system. In this paper, we propose to use non-
deterministic supervisors to enforce opacity. Unlike a de-
terministic supervisor that issues a specific control decision
at each instant, a non-deterministic supervisor provides a
set of control decisions and the specific control decision
applied is chosen randomly via a “coin toss” manner. In
other words, even if the intruder knows the control policy,
it still does not know the specific control decision applied
as it is decided randomly on-the-fly. Compared with the
deterministic mechanism, the non-deterministic mechanis-
m can significantly enhance the plausible deniability of the
system, and, therefore, is more likely to enforce opacity.

To synthesize a non-deterministic supervisor that enforces
opacity, we propose a new information-state that not only
contains the state-estimate from the supervisor’s point of
view, but also contains the estimate of the supervisor’s
estimate from the intruder’s point of view. In other words,
the control decision should be made not only based on
what the supervisor thinks about the plant, but also based
on what the intruder thinks about the supervisor. Based
on this information-state, we provide an effective approach
that synthesizes a non-deterministic supervisor that en-
forces opacity. In particular, we show that using non-
deterministic supervisors is strictly more powerful than us-
ing deterministic supervisors, in the sense that, there may
exist a non-deterministic opacity-enforcing supervisor even
when deterministic supervisors cannot enforce opacity. To
the best of our knowledge, non-deterministic supervisors
have only been applied to the standard supervisory con-
trol problem for safety and non-blockingness Inan [1994],

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 1789

Kumar et al. [2005]; it has not yet been applied to the
opacity-enforcement problem.

2. PRELIMINARIES

A DES is modeled as a deterministic finite-state automa-
ton G = (X,Σ, δ, x0), where X is the finite set of states,
Σ is the finite set of events, δ : X × Σ → X is the partial
transition function, where δ(x, σ) = y means that there
is a transition labeled by event σ from state x to y, and
x0 ∈ X is the initial state. For simplicity, we write δ(x, s)
as δ(s) when x = x0. The language generated by G is
denote L(G).

When the system is partially observed, Σ is partitioned
into two disjoint sets: Σ = Σo∪̇Σuo, where Σo is the set
of observable events and Σuo is the set of unobservable
events. We denote by P : Σ∗ → Σ∗o the natural projection
from Σ to Σo. The natural projection is also extended to
P : 2Σ∗ → 2Σ∗

o .

In the framework of supervisory control, we assume that
the events set is further partitioned as Σ = Σc∪̇Σuc, where
Σc is the set of controllable events and Σuc is the set
of uncontrollable events. A control decision γ ∈ 2Σ is a
set of events such that Σuc ⊆ γ, namely uncontrollable
events can never be disabled. We define Γ = {γ ∈
2Σ : Σuc ⊆ γ} as the set of control decisions. Then a
deterministic supervisor is a function S : P (L(G)) → Γ.
The language generated by the controlled system, denoted
by L(S/G), is defined recursively in the usual manner; see,
e.g, Cassandras and Lafortune [2008] (page 139).

We assume that system G has a “secret”, which is modeled
as a set of secret states XS ⊆ X. Furthermore, we consider
a passive intruder having the following capabilities:

A1 The intruder knows the system model;
A2 The intruder can observe the occurrences of observ-

able events.

Such an intruder is essentially an “eavesdropper” and we
say that system G is opaque w.r.t. XS and Σo if

(∀s∈L(G) : δ(s)∈XS)(∃t∈L(G) : δ(t) /∈XS)[P (s) = P (t)].

That is, the intruder cannot infer for sure that the system
is in a secret state based on the information flow.

When the original system is not opaque, one approach
is to design a supervisor S such that the closed-loop
system S/G is opaque; this is referred to as the opacity-
enforcing control problem. In this setting, however, the
implementation of such a supervisor may become a public
information. To capture this severe scenario, we assume:

A3 The intruder knows the functionality of the supervi-
sor, i.e., the control policy.

Note that this knowledge together with the assumption
that the intruder and the observer both observe Σo imply
that the intruder knows precisely the control decision ap-
plied at each instant. Formally, we say that a deterministic
supervisor S : P (L(G)) → Γ enforces opacity on G if for
any string s ∈ L(S/G) such that δ(s) ∈ XS , there exists a
string t ∈ L(S/G) such that δ(s) /∈ XS and P (s) = P (t).

Finally, we introduce some operators that will be used
in this paper. Given a set of states m ∈ 2X , we denote

𝒄𝟏

𝒄𝟏
𝒄𝟐

𝒄𝟐 𝒐𝟏

𝒐𝟏

𝒐𝟐

𝒐𝟑

𝒐𝟐

0

1

2

3

5 6

Fig. 1. System G with Σc = {c1, c2}, Σo = {o1, o2, o3},
XS = {0, 5}.

by URγ(m) the unobservable reach of m under control
decision γ ∈ Γ, i.e.,

URγ(m) = {δ(x,w) ∈ X : x ∈ m,w ∈ (Σuo ∩ γ)∗}. (1)

We also denote by NXσ(m) the observable reach of m upon
the occurrence of an observable event σ ∈ Σo, i.e.,

NXσ(m) = {δ(x, σ) ∈ X : x ∈ m}. (2)

3. ENFORCING OPACITY USING
NON-DETERMINISTIC SUPERVISORS

3.1 Motivating Example

Example 1. Let us consider system G shown in Fig. 1 with
Σo = Σuc = {o1, o2, o3} and XS = {0, 5}. This system is
not opaque since upon the occurrence of o3, the intruder
knows for sure that the system is at secret state 5.

For this system, we cannot even synthesize a deterministic
supervisor to enforce opacity. To see this clearly, let
us evaluate what the supervisor can do initially. We
have Γ = {∅, {c1}, {c2}, {c1, c2}}. 1 Clearly, the supervisor
cannot choose ∅ as the initial control decision; otherwise
secret state 0 will be the only reachable state. Also, the
supervisor cannot make {c1} initially. This is because,
under this control decision and by observing event o1, the
intruder knows for sure that the system is at state 5 which

is reached via 1
o1−→ 5. Note that transition 3

o1−→ 6 cannot
provide the plausible deniability as state 3 is not reachable
under {c1} as c2 is disabled initially. For the same reason,
making {c2} initially will also reveal the secret. Finally,
decision {c1, c2} is also problematic initially as it makes

state 2 reachable from which transition 2
o3−→ 5 will also

reveal the secret. Therefore, we cannot enforce opacity for
this system using a deterministic supervisor.

However, one can enforce opacity using the following con-
trol mechanism. Initially, the supervisor randomly chooses
either it decides to enable c1 or to enable c2, but not
both. In other words, the control policy initially is a set
{{c1}, {c2}} and the specific choice is made randomly on-
the-fly. Therefore, upon the occurrence of o1 or o2, the
intruder does not know whether this event is from state 1
or from state 3 since it does not know whether or not the
initial control decision is {c1} or {c2}. On the other hand,
since c1 and c2 will not be enabled simultaneously, state 2
is not reachable; hence, event o3, which reveals the secret,
will also not occur. 2

The above example shows that using non-deterministic
control mechanism is more powerful than the deterministic
1 For the sake of simplicity, uncontrollable events are omitted in each
control decision, i.e., ∅ standards for {o1, o2, o3} in this example.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1790

one for the purpose of enforcing opacity. Using a non-
deterministic decision framework will, on the one hand,
enhance the plausible deniability of the secret behavior of
the system and, on the other hand, decrease the confiden-
tiality of the intruder’s knowledge about the system.

3.2 Non-deterministic Supervisor

Compared with a deterministic supervisor that issues a
specific control decision at each instant, a non-deterministic
supervisor works as follows. At each instant, the non-
deterministic supervisor provides a set of possible control
decisions. Then it non-deterministically picks a specific
control decision from this set in a “coin-toss” manner. In
other words, the control policy only determines a set of
allowed decisions, but the specific control decision chosen
is unknown a priori, which is a realization under the policy.
Therefore, the supervisor makes decision not only based on
observable events, but also depends on the specific control
decisions chosen along the trajectory.

To define the “history” of the supervisor, we introduce
the notion of the extended string which is an alternating
sequence of control decisions and events in the form of

ρ = γ1σ1γ2σ2 . . . γnσn ∈ (ΓΣ)∗,

where γi ∈ Γ is the ith selected control decision and σi ∈ γi
is the ith event. Since some events are unobservable for the
supervisor, we define a mapping

O : (ΓΣ)∗ → (ΓΣo)
∗,

such that, for any extended string, it erases

• each unobservable event together with its successor
control decision; and
• the successor control decision of the last observable

event.

Formally, for any extended string

ρ = γ1σ1γ2σ2 . . . γnσn,

let 1 ≤ i1 < i2 < · · · < ik ≤ n be all indices such that
σij ∈ Σo, then we have

O(ρ) = (3){
ε if {i1, . . . , ik} = ∅
γ1(σi1γi1+1) · · · (σik−1

γik−1+1)σik if {i1, . . . , ik} 6= ∅
Such an projected extended string is also referred to as a
decision history. We force a projected extended string to
also end up with an (observable) event as this is the instant
where the supervisor needs to make a new decision.

The non-deterministic supervisor is defined as a function

SN : (ΓΣo)
∗ → 2Γ

that maps a decision history O(ρ) ∈ (ΓΣo)
∗ to a set of

possible control decisions. This definition essentially says
that, although the control policy is non-deterministic, the
supervisor knows the realization history, i.e., which specific
decision was picked at each previous instant.

Definition 1. Let SN be a non-deterministic supervisor.
The set of extended strings generated by the closed-loop
system, denoted by Le(SN/G), is defined recursively by:

• ε ∈ Le(SN/G);
• γ1σ1 ∈ Le(SN/G) if γ1 ∈ SN (ε) and σ1 ∈ γ1;
• For any ρ = γ1σ1 . . . γnσnγn+1σn+1 ∈ (ΓΣ)∗, n ≥ 1,

we have ρ ∈ Le(SN/G), if and only if

· γ1σ1 . . . γnσn ∈ Le(SN/G); and
· σ1 . . . σnσn+1 ∈ L(G); and
· σn+1 ∈ γn+1; and

· γn+1∈
{
{γn} if σn∈Σuo
SN (O(γ1σ1 . . . γnσn)) if σn∈Σo

The intuition of the above definition is as follows. At each
instant, if no observable event occurs, then the applied
control decision should not change. On the other hand,
if a new observable event occurs, then the supervisor may
choose a specific control decision from the set of all possible
control decisions provided by SN .

For any extended string ρ = γ1σ1 . . . γnσn ∈ (ΓΣ)∗, we
denote by ρ|Σ the projection to Σ∗, i.e., ρ|Σ = σ1 . . . σn.
A string s ∈ Σ∗ is said to be generated by SN/G if there
exists an extended string ρ ∈ Le(SN/G) such that ρ|Σ = s.
We define L(SN/G) = {ρ|Σ ∈ Σ∗ : ρ ∈ Le(SN/G)} as the
language generated by the closed-loop system.

Therefore, when an extended string ρ ∈ Le(SN/G) is
generated, the supervisor observes O(ρ). Then for any
observable extended string ρ ∈ O(Le(SN/G)), we define

ÊSN
(ρ)=

{
δ(ρ′|Σ):

∃ρ′ ∈ Le(SN/G) ∩ ({ε} ∪ (ΓΣ)∗(ΓΣo))
s.t. O(ρ′) = ρ

}
(4)

ESN
(ρ)={δ(ρ′|Σ) : ∃ρ′ ∈ Le(SN/G) s.t. O(ρ′) = ρ}. (5)

That is, ÊSN
(ρ) is the state-estimate of the supervisor

immediately after observing an observable event, while
ESN

(ρ) is the state-estimate of the supervisor with the
observable tile included. These state estimates can be
computed recursively as follows Yin and Lafortune [2016]:

• ÊSN
(ε) = {x0};

• For any ρ = ρ′γσ ∈ O(Le(SN/G)), we have

· ESN
(ρ′) = URγ(ÊSN

(ρ′)); and

· ÊSN
(ρ) = NXσ(ESN

(ρ′)).

3.3 Opacity of Non-deterministic Control Systems

In the definition of opacity of control systems, the intruder
model has been specified by A1-A3. Here, we still consider
the same intruder model, but we explain A3 more clearly
in the non-deterministic setting.

A3’ The intruder knows the functionality of the supervi-
sor. This means that it knows the set of all possible
control decisions the supervisor may pick according to
the control policy. However, it does not know which
specific control decision the supervisor picks online.

This assumption is reasonable in many applications as long
as the communication channel between supervisor and the
actuator is reliable. Then under this setting, when the
supervisor observes ρ ∈ O(Le(SN/G)), the intruder can
only observes ρ|Σ ∈ P (L(SN/G)). Therefore, the state
estimate of the intruder essentially is more uncertainty,
which needs to estimate all possible realizations consistent
with the control policy and the observation. Then for any
observable string s ∈ P (L(SN/G)), we define XI(s) as the
state estimate of the intruder, i.e.,

XI(s) = {δ(s′) : ∃s′ ∈ L(SN/G) s.t. P (s′) = s}. (6)

Then opacity of control systems under non-deterministic
supervisors is defined as follows.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1791

Definition 2. Let SN : (ΓΣo)
∗ → 2Γ be a non-deterministic

supervisor. We say the closed-loop system SN/G is opaque
(w.r.t. Σo and XS) if ∀s ∈ P (L(SN/G)):XI(s) 6⊆ XS .

Then the opacity-enforcing control synthesis problem is
formulated as follows.

Problem 1. Given system G and secret states XS ⊆ X,
synthesize a nondeterministic supervisor SN : (ΓΣo)

∗ →
2Γ such that SN/G is opaque.

The estimate of the supervisor and the estimate of the
intruder can be related as follows. Since the intruder
observes strictly less than the supervisor, its estimate
of the system is essentially the union of its estimate
of all possible supervisor’s knowledge about the system.
To see this more clearly, for any observable string s ∈
P (L(SN/G)), we also define

ÊI(s) = {ÊSN
(ρ) ∈ 2X : ρ ∈ O(Le(SN/G)) s.t. ρ|Σ = s}

(7)

EI(s) = {ESN
(ρ) ∈ 2X : ρ ∈ O(Le(SN/G)) s.t. ρ|Σ = s}

(8)

as the intruder’s estimate of the state-estimations of the
supervisor. Then we have the following result.

Proposition 1. For any s ∈ P (L(SN/G)), we have

XI(s) = ∪EI(s).

4. INFORMATION STATE AND ITS FLOW

4.1 Proposed Information Structure

In the deterministic control problem, it is known that 2X is
sufficient to realize an opacity-enforcing supervisor. That
is, a supervisor can be represented as S : 2X → Γ which
recursively estimates the state of the system and makes
decision based on the estimate.

In the non-deterministic control problem, the supervisor
and the intruder observe different information. Hence, the
supervisor needs to make decision based on both the state
estimates of itself and that of the intruder. To separate the
observation of the supervisor and the intruder, we propose
the following information-state space

I := 2X × 22X

.

Intuitively, the first component aims to represent the state
estimate of supervisor, while the second component aims
to represent intruder’s knowledge of the supervisor.

Formally, given a non-deterministic supervisor SN and let
ρ ∈ O(Le(SN/G)) be a decision history observed by the
supervisor. We define

I(ρ) = (ÊSN
(ρ), ÊI(ρ|Σ)) ∈ 2X × 22X

as the information-state reached by ρ under SN . Clearly,
we have ÊSN

(ρ) ∈ ÊI(ρ|Σ) by definition.

Definition 3. We say that a non-deterministic supervisor
SN : (ΓΣo)

∗ → 2Γ is information-state-based (IS-based) if

∀ρ, ρ′ ∈ O(Le(SN/G)) : I(ρ)=I(ρ′)⇒ SN (ρ)=SN (ρ′).

In other words, an IS-based non-deterministic supervisor
can be represented as

SN : I → 2Γ

which makes control decision based on the proposed infor-
mation state. Hereafter, we will restrict our attention to
IS-based supervisors.

As we discussed earlier, the first component can be com-
puted recursively based on ρ. However, the question is
how to compute the second component. To this end, we
should not only know the control decision for ρ, but should
also know the control decisions for those ρ′ such that
ρ|Σ = ρ′|Σ. In the remaining part of this section, we will

elaborate on how ÊI(ρ|Σ) can be computed recursively and
by what information.

4.2 Micro/Macro States and Decisions

Before we proceed further, we define some necessary con-
cepts. First, we introduce the notion of micro-state, which
is used to represent the knowledge of supervisor.

Definition 4. (Micro-State) A micro-state m ∈ 2X is a
set of states and we define M = 2X as the set of micro-
states. An augmented micro-state m+ = (m, γ) ∈ 2X × Γ
is a micro-state augmented with a control decision and we
define M+ = 2X×Γ as the set of augmented micro-states.

Then, we define the notion of macro-state, which is used to
represent the knowledge of intruder about the supervisor.

Definition 5. (Macro-State) A macro-state m = {m1,m2,
. . . ,mn} ⊆ 2X is a set of micro-states and and we define

M = 22X

as the set of macro-states. An augmented macro-
state m+ = {(m1, γ1), (m2, γ2), . . . , (mn, γn)} ⊆ 2X × Γ
is a set of augmented micro-states and we define M+ =

22X×Γ as the set of augmented macro-states.

In order to estimate the knowledge of the intruder, we
should not only know the decision of the supervisor at a
specific micro-state, but also should know the decisions at
other micro-states in the same macro-state, which means
that these micro-states are indistinguishable from the
intruder’s point of view. This leads to the notion of macro-
control-decision.

Definition 6. (Macro-Control-Decision) A macro-control-
decision is a set in the form of

d = {(m1,Γ1), (m2,Γ2), . . . , (mn,Γn)} ⊆ 2X × 2Γ,

where each (mi,Γi) is a pair of micro-state and a non-
deterministic control decision (a set of control decisions).

We denote byD=22X×2Γ

the set of macro-control-decisions.

Let m = {m1,m2, , . . . ,mn} ∈ M be a macro-state and
d ∈ D be a macro-control-decision. We say that d is
compatible with m if it is in the form of

d = {(m1,Γ1), (m2,Γ2), . . . , (mn,Γn)} ⊆ 2X × 2Γ,

i.e., d essentially assigns each micro-state mi ∈ m a non-
deterministic control decision Γi ∈ 2Γ.

The unobservable reach of a macro-control-decision d ∈ D
is defined by

�(d) = {(m′, γ) : ∃(m,Γ) ∈ d, γ ∈ Γ s.t. m′ = URγ(m)}.

Let m+ be an augmented macro-state and σ ∈ Σo be an
observable event. Then the observable reach of m+ upon
the occurrence of σ is defined as

N̂Xσ(m+) = {m′ : ∃(m, γ)∈m+ s.t. m′=NXσ(m)∧σ∈γ}.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1792

4.3 Information-Flow Analysis

Now, suppose that an IS-based non-deterministic supervi-
sor SN : I → 2Γ is given and let m = {m1, . . . ,mk} be
a macro-state representing the intruder’s estimate of the
supervisor’s knowledge. We define

dSN
(m) = {(m1, SN (m1,m)), . . . , (mk, SN (mk,m))}

as the macro-control-decision made by IS-based supervisor
SN at macro-state m.

Initially, the state-estimate of the supervisor is m0 = {x0}
and the intruder believes that this is the unique estimate
of the system with estimate m0 = {m0}.
Then the supervisor allows non-deterministic control de-
cision Γ0 = SN (ε) = SN (m0,m0). Note that, we have
pre-specified that the supervisor is IS-based. Therefore, we
denote the control decision information at this instant by
a macro-control-decision dSN

(m0) = {(m0, SN (m0,m0))},
which means that “the supervisor will make control deci-
sion if its state-estimate is m0”. Note that, at this instant,
dSN

(m0) is a singleton as the intruder does not yet have
ambiguity about the supervisor, i.e., m0 = {m0}.
Once the allowed decision set Γ0 is specified, the supervisor
will pick a concrete control decision in it. The intruder
does not know which decision is chosen while the super-
visor knows. Suppose that Γ0 = {γ1

0 , . . . , γ
k
0} contains k

control decisions. Then the intruder’s knowledge about the
supervisor is

m+
0 =� (dSN

(m0)) (9)

={(URγ1
0
(m0), γ1

0), . . . , (URγk
0
(m0), γk0)}

={(m1
0, γ

1
0), . . . , (mk

0 , γ
k
0)},

which means that the supervisor’s estimate (with the
unobservable tile) is possibly URγi

0
(m0) and the control

decision applied is γi0. Note that, the supervisor knows
which augmented micro-state (mi

0, γ
i
0) it is at precisely.

Then when a new observable event σ ∈ Σo occurs, and the
intruder updates its knowledge to

m1 = N̂Xσ(m+
0) = {m1

1, . . . ,m
p
2}. (10)

Now, let us assume that, after some steps, the intruder’s
knowledge about the supervisor (immediately after the
occurrence of an observable event) is

mn = {m1
n, . . . ,m

k
n}, (11)

Note that the supervisor knows the exact state estimate,
i.e., mi

n ∈mn, and for each mi
n, it allows control decisions

Γi = SN (mi
n,mn). Therefore, the corresponding marco-

control-decision is

dSN
(mn)={(m1

n, SN (m1
n,mn)), . . . , (mk

n, SN (mk
n,mn))}.

(12)

Then the intruder’s knowledge about the supervisor by
adding this control information becomes

m+
n = �(dSN

(mn)), (13)

which is an augmented marco-state containing at most∑k
i=1 |S(mi

n,mn)| augmented micro-states.

Based on the above discussion, suppose that the intruder
observes σ1 . . . σn ∈ P (L(SN/G)) and by knowing the fact
that SN is an IS-based supervisor, it induces the following
sequence

m0
d0−→m+

0
σ1−→m1

d1−→ . . .
σn−−→mn

dn−→m+
n , (14)

where m0 = {{x0}}, di = dSN
(mi), m+

i = �(di) and

mi+1 = N̂Xσi+1
(m+

i).

For any augmented macro-state m+, we define Ξ(m+) =
{m ∈ M : (m, γ) ∈ m+} as the macro-state obtained by
removing the control decision components from m+. Then
the following theorem reveals that the above defined states
mn and Ξ(m+

n) are indeed ÊI(σ1 . . . σn) and EI(σ1 . . . σn),
respectively.

Theorem 1. Let SN be an IS-based non-deterministic su-
pervisor and σ1 . . . σn ∈ P (L(SN/G)) be an observable
string available to the intruder. Let mn and m+

n be states
induced by σ1 . . . σn and SN according to Equation (14).

Then we have (i) mn = ÊI(s); and (ii) Ξ(m+
n) = EI(s).

Example 2. Let us consider system G in Figure 1. We
consider a non-deterministic supervisor SN defined by
∀ρ ∈ (ΓΣo)

∗ : SN (ρ) = {{c1}, {c2}}. Clearly. SN is IS-
based. Initially, the supervisor’s estimate is m0 = {0}
and the intruder’s estimate of the supervisor is m0 =
{{0}}. The first macro-control decision is dSN

(m0) =
{({0}, {{c1}, {c2}})}. Then the intruder’s knowledge is
updated to m+

0 = {({0, 1}, {c1}), ({0, 3}, {c2})} according
to Eq. (9). If event o1 is observed, then the intruder
update its knowledge to m1 = {{5}, {6}} according to
Eq. (10), which means that the intruder guesses that the
supervisor’s state-estimate is either {5} or {6} based on
the information available.

5. SUPERVISOR SYNTHESIS PROCEDURE

5.1 Bipartite Transition System

By the analysis in the previous section, we see that the
update of the intruder’s knowledge consists of two steps:
one is when the supervisor picks a macro-control-decision
and the other is when a new observable event occurs. To
separate these two steps, we adopt the idea of the bipartite
transition system proposed in Yin and Lafortune [2016].

Definition 7. A generalized bipartite transition system
(G-BTS) T w.r.t. G is a 7-tuple

T = (QY , QZ , hYZ , hZY ,Σo, D, y0).

where

• QY ⊆M is a set of macro-states;
• QZ ⊆M+ is the set of augmented macro-states;
• hYZ : QY ×D → QZ is the transition function from
Y -states to Z-states satisfying: for any hYZ(m, d) =
m+, we have
· d is compatible with m; and
· m+ = �(d).

• hZY : QZ ×Σo → QY is the transition function from
Z-states to Y -states satisfying: for any hZY (m+, σ) =
m, σ ∈ Σo, we have

· m = N̂Xσ(m+).
• D is the set of macro-control-decisions;
• Σo is the set of observable events of system G;
• y0 = {{x0}} ∈ QY is the initial Y -state.

The G-BTS essentially captures the information-flow ana-
lyzed in Section 4. Specifically, at each Y -state, the IS-
based supervisor makes a macro-control-decision d and

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1793

{{0}}
{5}

{6}

{{5}}{{6}}

𝒅𝟏

𝒅𝟑 𝒅𝟐

𝒅𝟓

𝛾1 = {𝑜1, 𝑜2, 𝑜3}
𝛾2 = {𝑜1, 𝑜2, 𝑜3, 𝑐1}
𝛾3 = {𝑜1, 𝑜2, 𝑜3, 𝑐2}
𝛾4 = {𝑜1, 𝑜2, 𝑜3, 𝑐1, 𝑐2}

𝒐𝟏

𝑇𝑡𝑜𝑡𝑎𝑙

(0 , 𝛾1)

(0,1 , 𝛾2)(0,3 , 𝛾3)

(5 , 𝛾1)(6 , 𝛾1)

(0,1,2,3 , 𝛾4)

{{5,6}}

(5,6 , 𝛾1)

𝒅𝟒

(0,1 , 𝛾2)

(0,3 , 𝛾3)

(5 , 𝛾1)

(6 , 𝛾1)
𝒐𝟐 𝒐𝟐

𝒐𝟏
𝒐𝟑

𝒐𝟐 𝒐𝟏

𝒐𝟐

𝒐𝟏

𝒅𝟕

𝒅𝟔

𝒅𝟗𝒅𝟖

𝑑1 = { 0 , 𝛾1 }
𝑑2 = { 0 , 𝛾2 }
𝑑3 = { 0 , 𝛾3 }
𝑑4 = { 0 , 𝛾4 }
𝑑5 = 0 , 𝛾2, 𝛾3

𝑑6 =
(5 , {𝛾1})

(6 , {𝛾1})

𝑑7 = { 6 , 𝛾1 }
𝑑8 = { 5 , 𝛾1 }
𝑑9 = { 5,6 , 𝛾1 }

𝒔𝟏 𝒔𝟐

𝒔𝟑

𝒔𝟕

𝒔𝟏𝟏𝒔𝟏𝟐

𝒔𝟖𝒔𝟗

𝒔𝟏𝟑

𝒔𝟓

𝒔𝟔

𝒔𝟒

𝒔𝟏𝟎

𝒔𝟏𝟒

(a)

{𝛾2, 𝛾3}

{𝛾1}

{𝛾1}

(b)

𝛾2

𝛾3

𝒐𝟏

𝒐𝟐

𝒐𝟐

𝒐𝟏

𝑇∗

{0},
{{0}}

{0},

(0,1 , 𝛾2)

(0,3 , 𝛾3)

0,1 , 𝛾2 ,

(0,1 , 𝛾2)

(0,3 , 𝛾3)

0,3 , 𝛾3 ,

(0,1 , 𝛾2)

(0,3 , 𝛾3)

{5},

5

6

{6},

5

6

{5},

(5 , 𝛾1)

(6 , 𝛾1)

{6},

(5 , 𝛾1)

(6 , 𝛾1)

5 , 𝛾1 ,

(5 , 𝛾1)

(6 , 𝛾1)

6 , 𝛾1 ,

(5 , 𝛾1)

(6 , 𝛾1)

𝛾1

𝛾1

Fig. 2. (a) An Example of the G-BTS, where rectangular
states represent Y -states and oval states represent Z-
states. (b) Decision diagram of the synthesized non-
deterministic supervisor.

then moves to a Z-state by updating of the intruder knowl-
edge via unobservable reaches under the issued macro-
control-decision d. When a new observable event σ ∈ Σo
occurs at a Z-state, we move to a Y -state by computing
the observable reach, and so forth.

Example 3. Again, we consider system G in Figure 1.
An example of the G-BTS is shown in Figure 2(a), in
which rectangular states represent Y -states and oval states
represent Z-states. States are named by s1, . . . , s14. The
initial Y -state is s1 = {{0}}, from which macro-control-
decisions d1, . . . , d5 that are compatible with s1 can be
made. For example, if the macro-control-decision made
is d5 = {({0}, {{c1}, {c2}})}, then we move to Z-state
s6 = �(d5). From this state, observable events o1 and o2

can occur, and both lead to the same Y -state s10.

5.2 Synthesis of Nondeterministic Supervisors

Now, we present how to synthesize non-deterministic
opacity-enforcing supervisors. Given a G-BTS T , for any
Y -state y ∈ QY , we define

CT (y) := {d ∈ D : hYZ(y, d)!}
as the set of macro-control-decisions defined at y in T .
Also, we say that a Y -state y is consistent if CT (y) 6= ∅;
and a Z-state z is consistent if, for any σ ∈ Σo, we have

hZY (z, σ)!⇔ (∃(m, γ)∈z)[NXσ(m) 6= ∅ ∧ σ∈γ}].
Intuitively, a Y -state is consistent if at least one macro-
control-decision is defined and a Z-state is consistent if
all feasible events are defined. Consistency is required for
the purpose of control as the supervisor should be able to
provide a control decision for any observation. We denote
by QTconst the set of consistent states in T and we call T
consistent if all reachable states are consistent.

Then given an IS-based non-deterministic supervisor SN ,
we say that SN is included in a consistent G-BTS T if

∀ρ ∈ P (L(SN/G)) : dSN
(I(ρ)) ∈ CT (I(ρ))

As discussed earlier, we restrict our attention to IS-
based supervisors. Our approach for synthesizing non-
deterministic opacity-enforcing supervisors is to (i) first
construct a G-BTS that includes as many opacity-
enforcing supervisor as possible; and (ii) then extract one
IS-based supervisor from it.

More specifically, if an IS-based supervisor is included in a
G-BTS T , then by Theorem 1, we know that the Z-state z
reached is essentially the set of all possible state-estimates
of the supervisor. Moreover, by Proposition 1, we know
that ∪Ξ(z) = XI(s), where s is the observation leading to
the Z-state. Therefore, to make sure that the closed-loop
system SN/G is opaque, it suffices to guarantee that, for
any Z-state z reached, we have

∪Ξ(z) * XS .

To this end, we define

Qreveal = {z ∈M+ : ∪Ξ(z) ⊆ Xs}
as the set of secret-revealing Z-states.

In order to synthesize an IS-based supervisor, first, we
construct the largest G-BTS w.r.t G that enumerates all
the feasible transitions satisfying the constraints of hYZ
and hZY . We denote such a largest G-BTS by Ttotal. Then,
we need to delete all secret-revealing Z-states in Ttotal and
obtain a new G-BTS

T0 = Ttotal� (QY ∪QZ)\Qreveal
,

where T�Q denotes the G-BTS obtained by restricting the
state-space of T to Q ⊆ QY ∪QZ .

However, by deleting secret-revealing states, the resulting
G-BTS may become inconsistent. Hence, we also need to
delete inconsistent states recursively. Specifically, we define
an operator F that maps a G-BTS to a new G-BTS by:

F : T 7→ T�QT
const

,

and we define T ∗ = limk→∞ F k(T0) as the largest con-
sistent G-BTS in which there is no secret-revealing state.
The correctness of the iteration is similar to the determin-
istic case in Yin and Lafortune [2016]. We illustrate the
procedure by the following example.

Example 4. Consider again system G in Figure 1. First,
we construct the largest G-BTS Ttotal which is in fact the
structure shown in Figure 2(a). For sake of simplicity, some
macro-control-decisions with redundant information are
omitted in Ttotal. For example, d = {({0}, {γ1, γ2})} is not
listed at state s1, since γ1 ⊂ γ2 and macro-control-decision
d2 is sufficient enough to carry this information. Note
that Z-states s2 and s12 are secret-revealing states since
∪Ξ(s2) = {0} ⊆ XS and ∪Ξ(s12) = {5} ⊆ XS . Therefore,
we need to deleted states s2 and s12. However, this creates
inconsistent states s8, which needs to be deleted. Again,
this further creates inconsistent states s3, s4 and s5. So
we also need to delete them and obtain the final structure
T ∗ containing states s1,s6,s10 and s14, which is the largest
G-BTS having no secret-revealing state.

Based on T ∗, we synthesize an IS-based non-deterministic
supervisor as follows. First, we construct a sub-system of
T ∗ such that at each Y -state, there is only one macro-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1794

control decision defined. This can be done by a depth-
first-search or a breath-first-search starting from the initial
Y -state. Since we do not consider any other design objec-
tive in this work, e.g., maximally-permissiveness or non-
blockingness, we can just arbitrarily pick a macro-control
decision for each Y -state encountered, until we traverse the
entire reachable space. We denote by Tsolu the resulting G-
BTS, which includes a unique IS-based supervisor. Such
an included supervisor can be “encoded” as follows. The
supervisor tracks its state estimate E(·) and Ê(·) as well
as Y - and Z-states in Tsolu. At each decision making
instant, suppose the state estimate is m ∈ M and the
Y -state is m, where we have m ∈m. Then the supervisor
allows a a non-deterministic control decision Γ′ such that
(m,Γ′) ∈ d, where d is the unique macro-control decision
defined at m in Tsolu. Then supervisor will randomly pick
a control decision γ ∈ Γ′ to apply and wait for the next
observation. The state tracked in T then moved to the
unique successor state and the estimate of the supervisor
is updated more precisely based on the specific control
decision γ applied. This decoding procedure is formally
summarized by Algorithm 1.

Algorithm 1 Encode-ND-Sup-BTS(Tsolu)

1: ρ← ε, Ê(ρ)← {x0} and y ← {{x0}}.
2: Define d be the macro-control-decision such that
CTsolu

(y) = {d}
3: Define Γ′ ∈ 2Γ be the non-deterministic control deci-

sion such that (Ê(ρ),Γ′) ∈ d
4: Randomly pick γ ∈ Γ′ and apply this control decision
5: E(ρ)← URγ(Ê(ρ)) and z ← hYZ(y, d)
6: while A new event σ ∈ (Σo ∩ γ) is observed do

7: Ê(ρ)← NXγ(E(ρ)) and y ← hZY (z, σ)
8: ρ← ργσ
9: Define d be the macro-control-decision such that
CTsolu

(y) = {d}
10: Define Γ′ ∈ 2Γ be the non-deterministic control

decision such that (Ê(ρ),Γ′) ∈ d
11: Randomly pick γ ∈ Γ′ and apply this control

decision
12: E(ρ)← URγ(Ê(ρ)) and z ← hYZ(y, d)
13: end while

Example 5. In our running example, we have T ∗ = Tsolu
since the macro-control-decision at each Y -state in T ∗

is already unique. Then we decode a non-deterministic
supervisor from Tsolu by Algorithm 1 as follows. Initial-
ly, we have Ê(ε) = {0}, y = {{0}}, and d = d5 =
{({0}, {γ2, γ3})}. Therefore, we have Γ′ = {γ2, γ3}, i.e., the
supervisor can randomly choose to apply γ2 or γ3. Then,
first, we update the state in Tsolu to s6 = hYZ(s0, d5) =
{({0, 1}, γ2), ({0, 3}, γ3)}. If γ2 is applied, then the state-

estimate is to E(ε) = URγ2
(Ê(ε)) = {0, 1}; otherwise,

it is updated to E(ε) = URγ3
(Ê(ε)) = {0, 3}. Suppose

that decision γ2 is chosen. Then by observing o1, first, we
update the state-estimate to Ê(γ2o1) = NXo1(E(ε)) = {5}.
Also, we update the state in Tsolu to s10 = hZY (s6, o1) =
{{5}, {6}}. Again, we need to decode the control de-
cision for each information-state based on the unique
macro-control-decision d6 defined at s10. Here, note that
for both (5, {γ1}), (6, {γ1}) ∈ d6, {γ1} is a singleton.
This means that we will apply deterministic control de-

cision γ1 for both information-states ({5}, {{5}, {6}}) and
({6}, {{5}, {6}}). The overall decision diagram of the su-
pervisor included in Tsolu is shown in Figure 2(b).

6. CONCLUSION

In this paper, we proposed to use non-deterministic con-
trol mechanism to enforce opacity. We showed that non-
deterministic supervisors may successfully enforce opacity
even when deterministic supervisors fail to do so. Effective
approach was provided to synthesize a non-deterministic
opacity-enforcing supervisor based on both the informa-
tion of the supervisor and the information of the intruder.
This work makes the first step towards the enforcement
of opacity using non-deterministic supervisors. Note that,
in this paper, we restrict a priori the structure of the
solution to IS-based supervisors. We conjecture that such a
restriction is without loss of generality, but it still requires
further investigation.

REFERENCES

Badouel, E., Bednarczyk, M., Borzyszkowski, A., Caillaud,
B., and Darondeau, P. (2007). Concurrent secrets.
Discrete Event Dynamic Systems, 17(4), 425–446.

Cassandras, C. and Lafortune, S. (2008). Introduction to
Discrete Event Systems. Springer, 2nd edition.

Cassez, F., Dubreil, J., and Marchand, H. (2012). Synthe-
sis of opaque systems with static and dynamic masks.
Formal Methods in System Design, 40(1), 88–115.

Dubreil, J., Darondeau, P., and Marchand, H. (2010).
Supervisory control for opacity. IEEE Trans. Automatic
Control, 55(5), 1089–1100.

Inan, K. (1994). Nondeterministic supervision under
partial observations. In 11th Int. Conf. Analysis and
Optim. Systems Discrete Event Systems, 39–48.

Ji, Y., Yin, X., and Lafortune, S. (2019). Enforcing opacity
by insertion functions under multiple energy constraints.
Automatica, 108, 108476.

Kumar, R., Jiang, S., Zhou, C., and Qiu, W. (2005).
Polynomial synthesis of supervisor for partially observed
discrete-event systems by allowing nondeterminism in
control. IEEE Trans. Auto. Control, 50(4), 463–475.

Lafortune, S., Lin, F., and Hadjicostis, C. (2018). On the
history of diagnosability and opacity in discrete event
systems. Annual Reviews in Control, 45, 257–266.

Saboori, A. and Hadjicostis, C. (2011). Opacity-enforcing
supervisory strategies via state estimator constructions.
IEEE Trans. Automatic Control, 57(5), 1155–1165.

Tong, Y., Li, Z., Seatzu, C., and Giua, A. (2018). Current-
state opacity enforcement in discrete event systems un-
der incomparable observations. Discrete Event Dynamic
Systems, 28(2), 161–182.

Yin, X. and Lafortune, S. (2016). A uniform ap-
proach for synthesizing property-enforcing supervisors
for partially-observed discrete-event systems. IEEE
Trans. Automatic Control, 61(8), 2140–2154.

Yin, X. and Lafortune, S. (2017). A new approach for
the verification of infinite-step and k-step opacity using
two-way observers. Automatica, 80, 162–171.

Yin, X., Li, Z., Wang, W., and Li, S. (2019). Infinite-step
opacity and K-step opacity of stochastic discrete-event
systems. Automatica, 99, 266–274.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1795

