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Abstract: By maximizing manipulability, the coordination of multi-arm can be enhanced. In
this paper, a method to optimize the manipulability index of cooperative manipulation for
a free-floating multi-arm space robot is proposed. Firstly, the manipulability optimization is
formulated as a nonlinear optimize problem at position level which is hard to solve online.
By redefining constraint equation and manipulability index, it is transformed to a constrained
quadratic program problem at velocity level incorporating joint velocity physical limits, which
generates joint velocity commands to control the multi-arm to complete predefined tasks. Owing
to dynamic coupling effects and closed chain constraints formed by cooperative manipulation,
the manipulability index is more complex than that of fixed-base or mobile-base manipulators.
Hence, the gradient of the index is approximated by numerical algorithms. Simulations based
on a dual-arm space robot model are conducted and the results prove that the proposed method
is efficient to optimize the manipulability index.

Keywords: motion control, space robots, multi-arm, cooperative manipulation, manipulability
optimization

1. INTRODUCTION

Space robots are playing a vital role in on-orbit service
missions (Flores-Abad et al., 2014). Compared with single
arm, multi-arm space robots can employ more complex
tasks due to its bigger capacity and better stability (Wang
et al., 2018). Thus, it has been receiving increasing atten-
tion from the robotics research community. When carrying
out a cooperative task, multi-arm cooperatively grasp a
common object and closed kinematic chains are formed.
Due to the closed chain constraints, trajectory planning of
arm is usually executed in task space. For control of robotic
systems, the desired trajectory needs to be mapped from
the task space to the joint space in which the actuators
provided their input. Hence, this topic falls within the
inverse kinematics control problem.

For redundant manipulator, the inverse kinematics may
have infinite solutions for a given primary task, making
it possible to choose the best solution for a certain per-
formance index of interest so as to facilitate the kine-
matic control with high quality (Zhang et al., 2018). A
classical method for the inverse kinematics of a redun-
dant manipulator is called the pseudoinverse method min-
imizing a quadratic function of joint velocities (Whitney,
1969). However, this method cannot handle the kinematic
singularity problems (Klein and Huang, 1983, Baillieul
et al., 1984). To deal with such problems, a damped least-
squared inverse of the Jacobian matrix was proposed by
Wampler (1986). Furthermore, gradient projection tech-
nique utilizing the null space of the Jacobian matrix has

been widely implemented to incorporate an extra perfor-
mance index into the control, such as joint limit avoid-
ance (Liegeois, 1977), manipulability indices (Yoshikawa,
1984, Chiu, 1987, Bayle et al., 2003). Note that most of
the aforementioned methods and techniques are based on
the pseudoinverse-type formulations and are difficult to
incorporate inequality constraints.

More recently, quadratic programming (QP) has been
examined as an efficient method owing to the capabil-
ity of dealing with different constraints and performance
indices in a unified manner. Among such performance
indices, manipulability of arm has been extensively stud-
ied, which is related to the singularities of the Jaco-
bian matrix. Zhang et al. (2016) proposed a novel QP-
based refined manipulability-maximizing (ReMM) scheme
for coordinated motion planning and control of a phys-
ically constrained wheeled mobile redundant manipula-
tor. In Jin et al. (2017), the manipulability optimization
scheme was formulated as a constrained QP and a dynamic
neural network with rigorously provable convergence was
constructed to solve such a problem online. Dufour and
Suleiman (2017) integrated the manipulability index into
inverse kinematics using approximated derivatives and ob-
stacle avoidance had also been considered.

To our knowledge the manipulability optimization of co-
operative manipulation of free-floating multi-arm space
robots has not been demonstrated so far and the pur-
pose of this paper is to accomplish this. By maximizing
manipulability, not only the singularity can be avoidance,
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but also the coordinated performance of multi-arm can be
enhanced. However, the manipulability index of free float-
ing closed chain systems are more complex than that of
fixed-base or mobile-base manipulators owing to dynamic
coupling effects and closed chain constraints. In this paper,
task compatibility of multi-arm cooperative manipulation
is used as a performance measure of the arms’s manipula-
bility. Further, manipulability optimization is transformed
from a nonlinear problem to a QP problem in velocity
level. The gradient of the manipulability index which is
hard to solve analytically is approximated with numerical
algorithms.

This paper is organized in the following manner. Section
2 systematically formulates the kinematics and manipu-
lability index of cooperative manipulation of free-floating
multi-arm space robots. The manipulability optimization
is given as a nonlinear problem. In Section 3, the nonlinear
problem is reformulated as a constrained QP problem and
gradient of the nonlinear performance index is approxi-
mated with numerical algorithms. In Section 4, simulations
are conducted to show that the proposed methods are
indeed useful for manipulability optimization. The con-
clusive remarks are listed in Section 5.

2. PROBLEM FORMULATION
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Fig. 1. Schematic diagram of cooperative manipulation of
a multi-arm space robot.

Fig. 1 illustrates a cooperative system with N arms manip-
ulating a common object. Consider each arm with nk DOF
attached to a free-floating base satellite, and whose end-
effector acts in an m-dimensional task space with m ≤ nk.
In the following, kinematics and manipulability analysis
for the closed chain system are presented for problem
formulation.

2.1 Closed Chain Kinematics

The Cartesian coordinate xe =
[
xT
e1 · · · xT

eN

]T ∈ RmN
of end-effectors in the workspace can be described as a
nonlinear mapping

xe = f (xb,θ) (1)

where the mapping f(·) carries mechanical and geometri-
cal information of a space robot, while xb = [ rTb q

T
b ]T ∈

R7 and θ =
[
θT1 · · · θTN

]T ∈ R
∑N

k=1
nk denote the base

and the joint variables, respectively. rb ∈ R3 is the position
of the base and qb ∈ R4 is a quaternion which present the

attitude of the base. Computing time derivations on both
sides of Eq. (1), we have

ẋe = Jbẋb + Jmθ̇ (2)

where Jb ∈ RmN×m and Jm ∈ RmN×
∑N

k=1
nk being

the Jacobian matrices for the base and for the arms,
respectively. And ẋb = [ vTb ω

T
b ]T ∈ R6 includes the linear

velocity and angular velocity of the base.

Assuming that the initial linear and angular momentums
are equal to zeros and no external force or torque acts
on the system, the momentum conservation equations of
the free-floating closed chain system can be preserved as
follows

Hbcẋb +Hmcθ̇ = 0 (3)

where Hbc ∈ Rm×m and Hmc ∈ Rm×
∑N

k=1
nk are the

base inertia and coupling inertia matrices, respectively. So
the relationship between the base velocity and the joint
angular velocity is expressed as

ẋb = −H−1
bc Hmcθ̇ (4)

Substituting Eq. (4) into Eq. (2) yields

ẋe =
(
Jm − JbH

−1
bc Hmc

)
θ̇ = Jθ̇ (5)

The velocity constraints due to the closed kinematic chain,
which expresses the velocity relationship between the
target and the end-effectors, are given through a matrix
G ∈ Rm×mN as follows

GTẋt = ẋe (6)

where xt ∈ Rm denotes the target variable, G is the so-
called grasp matrix presented as

G =

[
I 0
r×1 I

. . .
I 0
r×N I

]
where I and 0 denote identify and null matrices of appro-
priate dimensions, respectively. ri is the grasp point posi-
tion respect to target center, and a× is a skew symmetrical
matrix, which can be calculated for a = [ax, ay, az]

T as

a× =

[
0 −az ay
az 0 −ax
−ay ax 0

]

From Eqs. (5) and (6), the kinematic relationship at ve-
locity level for task is given as

θ̇ = J+GTẋt (7)

where J+ is the pseudoinverse of matrix.

2.2 Cooperative Manipulation Manipulability

It is well-known that the manipulability measure intro-
duced by Yoshikawa (1985) is widely used in manipulator
performance measures. It is applied to describe the volume
of manipulability ellipsoids which depict the manipulabil-
ity of arm in all directions. Giving the velocity limits of θ̇ji
as ∣∣∣θ̇ji ∣∣∣ ≤ θ̇ji,max, i = 1, · · · , N, j = 1, · · · , nk (8)

where θ̇ji,max is the bound of the j-th joint velocity for
arm i. Consider the weight matrix W , where W =
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diag

([
1

θ̇11,max

, · · · , 1
θ̇
nN
N,max

])
, a suitable scaling of the joint

velocity is defined as
˜̇
θ, that is

˜̇
θ = Wθ̇ (9)

The velocity manipulability ellipsoid is defined as the
primage of the unit sphere in the space of the scaled joint
velocity

˜̇
θT

˜̇
θ ≤ 1 (10)

which, under the mapping of Eqs. (7) and (9), is given by

ẋT
t GJ

+TWTWJ+GTẋt ≤ 1 (11)

The manipulability measure represented by a scale value
mw is given as a quantitative measure for the local
manipulability of the arms, which is defined as

mw =

√
det((GJ+TWTWJ+GT)

−1
) (12)

Additionally, the transmission ratio along a particular
direction called task compatibility (Chiu, 1988) is used to
represent the manipulability of arm in a desired direction.
To describe the task compatibility of multi-arm in a
desired task direction, a unit velocity u is used, which
represents the direction of a task. Then we have

ẋt = su (13)

where the scale value s denotes the velocity transmission
ratio of ẋt in the direction of u. Therefore, s has to
satisfy the following inequations substituting Eq. (13) into
Eq. (11)

s2uTGJ+TWTWJ+GTu ≤ 1 (14)

From Eq. (14), the maximum value ms of velocity on the
desired direction u is given as follows

ms =
(
uTGJ+TWTWJ+GTu

)−1/2
(15)

2.3 Optimization Problem Formulation

Based on the above analysis, the inverse kinematics of
multi-arm cooperative manipulation with manipulability
optimality considered can be formulated as a constrained
optimization problem

min
θ
−m (x) (16a)

s.t. f (x) = xd
e (16b)

where x = [ xT
b θ

T ]T and xd
e is the desired pose of end-

effectors. m(x) is a manipulability index chosen as mw or
ms for different task requirements. Eq. (16b) represents
the forward kinematic equation including the closed chain
constraints.

In this optimization problem, m(x) and f(x) are related
not only to optimization variable θ, but also to the cou-
pling base variable xb. But, the position level relationship
between xb and θ is hard to obtain owing to the nonholo-
nomic constraint of free-floating space robots. Addition-
ally, m(x) and f(x) are also nonlinear. Thus, the solution
of θ in Eq. (16) becomes a challenging problem.

3. REFORMULATION AS A CONSTRAINED QP

By redefining the constraint equation and performance
index, the nonlinear optimization problem is transformed

into a constrained QP problem at velocity level. Besides,
the physical constraint of joint velocity is incorporated.

3.1 Constraint Equation: Velocity-Level

Owing to the strong nonlinearity of the position level
kinematic equation, the velocity level one is used to
represent the constraint equation (16b) as follows

Jθ̇ = ẋd
e + Λ(xd

e − f(x)) (17)

where Λ ∈ RmN×mN is a positive definite matrix. Note
that Eq. (17) is asymptotically equivalent to f (x) = xd

e
because of f(x) exponentially converging to xd

e over time.

When multi-arm manipulating a common object coopera-
tively, the desired position and velocity of the end-effectors
can be derived as follows

xd
e = tTT

e x
d
t (18a)

ẋd
e = GTẋd

t (18b)

where xd
t is the desired task variable of target and tTe

represents the transformation matrix of the end-effectors
relative to the target. Substituting Eqs. (18a) and (18b)
into (17), the constraint equation (16b) is more explicitly
defined by

Jθ̇ = GTẋd
t + Λ(tTT

e x
d
t − f(x)) (19)

3.2 Performance Index: Gradient Maximization

In order to transform Eq. (16) into a QP problem, the
performance index (16a) is reformulated by using the

gradient of m(x) which is a function of θ̇. As m(xk) =
m(xk−1)+ṁ(xk−1)dtime, where dtime is sampling time and
k and k−1 is two adjacent sampling points, by maximizing
ṁ(xk−1), the maximization of the manipulability m(xk)
can also be achieved.

Based on the above discussion, the gradient of m(x) is
calculated as

ṁ (x) =
∂m

∂xb
ẋb +

∂m

∂θ
θ̇ (20)

For free-floating space robots, the dynamic coupling effects
between the base and arms can be represent by Eq (4) at
velocity level. Substituting Eq. (4) into Eq. (20), directly
we have

ṁ (x) =

(
∂m

∂θ
− ∂m

∂xb
H−1

bc Hmc

)
θ̇ (21)

By incorporating one extra term 1
2 θ̇

TWθ̇ to regulate the
kinematic energy consumption and considering the physi-
cal limits of the arms, the manipulability optimization in
velocity level is reformulated as

min
θ̇

1

2
θ̇TWθ̇ − α

(
∂m

∂θ
− ∂m

∂xb
H−1

bc Hmc

)
θ̇ (22a)

s.t. Jθ̇ = GTẋd
t + Λ(tTT

e x
d
t − f(x)) (22b)

θ̇− ≤ θ̇ ≤ θ̇+ (22c)

where α is a weight coefficient and θ̇− and θ̇+ are the
lower and the upper bounds of θ̇, respectively. Note that
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the nonlinear optimization problem is transformed into a
constrained QP problem. The calculated method for the
gradient of m in Eq. (22a) is given in the following section.

3.3 Gradient of Manipulability Index

As the attitude of base is describe by a quaternion, ∂m
∂xb

is computed as ∂m
∂xb

=

[
∂m

∂rb

1

2

∂m

∂qb
Q (qb)

]
. Defining

qb = [ η qT ]T, Q (qb) is expressed by

Q (qb) =

[
−qT

ηI − q×
]

Compared with fixed-base or mobile-base manipulators,
the manipulability of free-floating closed chain systems is
more complex. From Eqs. (12) and (15), it can be noted
that m(x) are related not only to Jacobian and grasp
matrices, but also to inertia matrices. Hence, it is hard to
find a direct analytical relationship between m(x) and θ
to calculate the gradient of m(x). Thus, it is approximated
numerically by(

∂m

∂rb

)
k

=
m
(
x+ δrkbIk

)
−m

(
x− δrkbIk

)
2δrkb

(23a)(
∂m

∂qb

)
k

=
m
(
x+ δqkbI3+k

)
−m

(
x− δqkbI3+k

)
2δqkb

(23b)

(
∂m

∂θ

)
k

=
m
(
x+ δθji I7+k

)
−m

(
x− δθji I7+k

)
2δθji

(23c)

where
(
∂m
∂rb

)
k
, k = 1, 2, 3,

(
∂m
∂qb

)
k
, k = 1, 2, 3, 4 and(

∂m
∂θ

)
k
, k = 1, · · · ,

∑N
k=1 nk are the kth element of vector

∂m
∂rb

, ∂m
∂qb

and ∂m
∂θ , respectively, δ is a small increment and

I(·) ∈ R7+
∑N

k=1
nk , for any a, Ia is given as follows

Ia = [0 . . . 1 . . . 0]T

↑
a

Using these formulations, it is then easy to compute the
performance index of Eq. (22) since only the manipulabil-
ity index of different configurations is computed.

4. SIMULATION

Fig. 2. Simulation model: a dual-arm space robot

In this section, simulations are conducted on a dual-arm
space robot shown in Fig. 2 with the kinematic and dy-
namic parameters summarized in Table 1 to demonstrate

the effectiveness of the proposed manipulability optimiza-
tion scheme.

Table 1. Kinematic and dynamic parameters of
space robot and target

robot base
left arm (right arm) modified DH

target
j1 j2 j3 j4 j5 j6 j7

ai,m – 0.8 0 0 0 0 0 0 –

αi,deg – -90(90) -90(90)90(-90)90(-90) 90(-90) -90(90) 90(-90) –

bi,m – 0.856 0.168 1.450 0.168 1.290 0.168 0.084 –

q,deg – θ1i θ2i θ3i θ4i θ5i − 90θ6i − 90 θ7i –

m,kg 400 3 8 2 6 2 2 4 100

Ixx,kg·m2 128 0.0041 1.3824 0.0047 0.8712 0.0047 0.0047 0.0645 10

Iyy ,kg·m2 340 0.0041 0.0256 0.0064 0.0192 0.0064 0.0047 0.0645 20

Izz ,kg·m2 340 0.0096 1.3824 0.0047 0.8712 0.0047 0.0064 0.0128 20

The pose of the base in inertia frame is set as rb =
[ 0 0 0 ]T m and qb = [ 1 0 0 0 ]T. The grasp points e1
and e2 for the end-effectors are described by

tTe1 =

 0 0 1 −0.5
0 1 0 0.4
−1 0 0 0
0 0 0 1

 , tTe2 =

 0 0 1 −0.5
0 −1 0 −0.4
1 0 0 0
0 0 0 1


Fig. 3 shows the manipulability ellipsoid of the arms in
different configurations, and the corresponding manipu-
lability mw and ms as functions of the robotic arms
stretching. From Fig. 3, it can be noted that the manipu-
lability of the arms varies with the change of the configu-
rations. The zero value of manipulability measure means
that the robot passes a singularity configuration, which
is shown in Fig. 3(a). In the following, self-motion and
trajectory tracking with manipulability optimization are
demonstrated to verify the effectiveness of the proposed
method.
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Fig. 3. Manipulability analysis for the dual-arm coopera-
tive manipulation. (a) Manipulability Ellipsoids. (b)
Normalized manipulability index.

4.1 Manipulability Optimization Via self motion

Giving the pose of target in Cartesian coordinate as rt =
[ 2.5 0 0 ]T m and qt = [ 1 0 0 0 ]T. Fig. 4 shows the mo-
tion trajectories of space robot’s base and arms while the
manipulability optimization with the end-effectors fixed
in Cartesian space. The initial configuration is given by
minimizing a quadratic function of joint angles. Compared
with that of the initial configuration, mw of the optimized
configuration is increased by 76.76%, which means that the
proposed manipulability optimization method is effective.
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Fig. 4. Simulation results for the manipulability optimiza-
tion of the closed system via self motion. (a) Motion
trajectories. (b) Normalized manipulability index.

4.2 Manipulability Optimization in trajectory Tracking

In this section, manipulability optimization is conducted
to track a circular trajectory and a sinusoidal trajectory
with joint velocity constraints. The velocity constraints
are given as |θ̇ji | ≤ 0.5 rad/s. The task compatibility is
important for arms to enhance the manipulability along
the special task direction while tracking a trajectory.
Hence, ms in Eq. (15) is used in this section as the
manipulability index.

The circular trajectory of the target is given as follows{
rt = [ 1.7 + 0.3 cos(

π

5
t), 0.3 sin(

π

5
t), 0 ]T

qt = [ 1, 0, 0, 0 ]T
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Fig. 5. Normalized manipulability index evolution while
tracking a circular trajectory for different k.

Fig. 5 shows the impact of weight coefficient α to the ma-
nipulability optimization while tracking the given circular
trajectory. Among a appropriate range, the influence of α
to manipulability index is little. And α is chosen as 35 for
the circular trajectory and 45 for the sinusoidal trajectory
in the simulation.
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Fig. 6. Simulation results on motion trajectories and ma-
nipulability index for the manipulability optimiza-
tion of the closed chain system tracking a circular
trajectory. (a) Motion trajectories. (b) Normalized
manipulability index for different methods.

0 2 4 6 8 10
t (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Jo
in

t v
el

oc
ity

 (
ra

d/
s)

1
 l

1
 r

2
 l

2
 r

3
 l

3
 r

4
 l

4
 r

5
 l

5
 r

6
 l

6
 r

7
 l

7
 r

velocity limits

(a)

0 2 4 6 8 10
t (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Jo
in

t v
el

oc
ity

 (
ra

d/
s)

1
 l

1
 r

2
 l

2
 r

3
 l

3
 r

4
 l

4
 r

5
 l

5
 r

6
 l

6
 r

7
 l

7
 r

velocity limits

(b)

0 2 4 6 8 10
t (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Jo
in

t v
el

oc
ity

 (
ra

d/
s)

1
 l

1
 r

2
 l

2
 r

3
 l

3
 r

4
 l

4
 r

5
 l

5
 r

6
 l

6
 r

7
 l

7
 r

velocity limits

(c)

Fig. 7. Joint velocities of tracking a circular trajectory
for different methods. (a) Pseudoinverse method. (b)
Gradient projection method. (c) Quadratic program-
ming method.

The sinusoidal trajectory of the target is given as follows{
rt = [ 1.5 +

1

12
t, 0.5 sin(

π

6
t), 0 ]T

qt = [ 1, 0, 0, 0 ]T
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Fig. 8. Simulation results on motion trajectories and ma-
nipulability index for the manipulability optimiza-
tion of the closed chain system tracking a sinusoidal
trajectory. (a) Motion trajectories. (b) Normalized
manipulability index for different methods.
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Fig. 9. Joint velocities of tracking a sinusoidal trajectory
for different methods. (a) Pseudoinverse method. (b)
Gradient projection method. (c) Quadratic program-
ming method.

The motion trajectories of the space robotic system with
manipulability optimization for tracking a circular trajec-
tory and a sinusoidal trajectory are illustrated in Figs. 6(a)
and 8(a), respectively. Figs. 7(a) and 7(b) show the corre-
sponding normalized manipulability index evolution of the
proposed QP method comparing with two classical inverse
kinematic solver method, pseudoinverse method (Whitney,
1969) and gradient projection technique (Liegeois, 1977).
The pseudoinverse method can minimize the quadratic
function of joint velocities. Gradient projection technique
can maximize the manipulability index by using the null-
space of Jacobian matrix. The joint velocities while track-
ing the designed circular trajectory and sinusoidal tra-
jectory for the three method are shown in Figs. 7 and 9,
respectively. It can be noted that the proposed method has
a good effect on manipulability optimization while keeping
the joint velocity constraints.

5. CONCLUSION

This paper has proposed a manipulability optimization
method for multi-arm space robots cooperative manip-
ulation. The optimization problem is solved at velocity
level, which generates the coordinated velocity control
commands to perform a predefined task. Simulation results
have proven that this method is effective to increase the
manipulability index along the given task trajectories.

The results of this method can be used in cooperative mo-
tion control when a space robot’s multi-arm cooperatively
manipulating a common object. Future work will take the
joint angle physical limits and obstacle avoidance problem
into consideration.
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