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Abstract: A static output feedback (SOF) incentive Stackelberg game (ISG) for a continuous-
time Markov jump delay stochastic system (MJDSS) is discussed. The existence conditions on
the SOF incentive Stackelberg strategy set are established in terms of the solvability of a set of
higher-order cross-coupled stochastic algebraic Lyapunov-type equations (CCSALTEs). A classical
Lagrange-multiplier technique is used to derive the CCSALTEs, thereby avoiding having to solve the
bilinear matrix inequalities (BMIs), a well-known NP-hard problem in designing the SOF strategy. A
heuristic algorithm is proposed to solve CCSALTEs such that convergence is attained by applying the
Krasnoselskii-Mann (KM) iterative algorithm. A simple numerical example demonstrates the efficiency
of the SOF incentive Stackelberg strategy.
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1. INTRODUCTION

Over the past few decades, there has been a considerable
amount of research on various control problems for MJDSSs to
overcome stochastic switching. MJDSS control problems and
related applications have attracted research attention because
many physical systems involve rapid failure processes and sud-
den changes in operating points (Dragan et al. (2016); Mariton
(1990)). Moreover, research on the ISG as the hierarchy strat-
egy for MJDSSs has advanced rapidly in recent years to obtain
the induced strategy set (see, e.g. Mukaidani et al. (2017a);
Mukaidani (2020)).
A well-known drawback in the practical implementation of the
state-feedback strategy set is that the required full state infor-
mation of the overall system is not always available because
of limited observations. Moreover, for complicated and/or dis-
tributed large-scale systems, such state information is difficult
to observe. To overcome these drawbacks, the static output
feedback (SOF) strategy is a powerful approach. Therefore,
many researchers have focused on designing SOF control so-
lutions, and there are many useful results for MJDSSs (Vargas
et al. (2015); Dolgov and Hanebeck (2017)). In particular,
SOF robust dynamic games for MJDSSs have been investi-
gated (Mukaidani et al. (2018b)). Subsequently, the incentive
Stackelberg problem has been studied using of the SOF strategy

⋆ This work was supported in part by JSPS KAKENHI Grant Numbers
16K00029 and 17K00034.

for MJDSSs (Mukaidani et al. (2018c)). However, the manner
of developing SOF strategies for ISGs of MJDSSs remains an
open problem. It is important to develop an incentive Stack-
elberg strategy for such systems because the delay appears in
practical hierarchical systems such as network systems.
To address the aforementioned challenges, in this study, we in-
vestigate the ISG using the SOF strategy for a class of MJDSSs.
Compared with recent results (Mukaidani et al. (2019b)), a
distinct difference is that SOF incentive Stackelberg strategies
for MJDSSs are developed for the first time. The existence con-
ditions of the SOF incentive Stackelberg strategy are provided
in terms of the solvability of a set of cross-coupled stochastic
algebraic Lyapunov type equations (CCSALTEs). In particular,
because a classical Lagrange-multiplier technique is used to
solve the CCSALTEs, the bilinear matrix inequalities (BMIs)
constraint is not considered here and the required strategy
set can be obtained directly. As another important feature of
this paper, a heuristic algorithm is proposed to solve the CC-
SALTEs. By applying the Krasnoselskii-Mann (KM) iterative
algorithm (Yao et al. (2009)), it is also shown that convergence
is attained. Finally, to demonstrate the effectiveness of the SOF
incentive Stackelberg strategy for MJDSSs, a simple numerical
example is discussed.
Notation: The notations used in this paper are fairly standard:
block diag denotes the block diagonal matrix; In denotes the
n×n identity matrix; vec denotes the column vector of a matrix;
∥·∥ denotes the Euclidean norm of a matrix; E[ · | rt = k] stands
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for the conditional expectation operator with respect to the
event {rt = k}; Ms

n,m denotes space of all SSS = (S(1), . . . ,S(s))
with S(k) being n×m matrix, k ∈D , D = {1, . . . ,s}. Moreover,
the component of SSS + TTTUUU is defined as SSS + TTTUUU = (S(1) +
T (1)U(1), . . . ,S(s) + T (s)U(s)); L2

F([0, ∞), Rn) denotes the
space of all measurable functions, which is Ft -measurable for
every t ≥ 0, and E[

∫ ∞
0 ∥u(t)∥2dt|rt = k]< ∞, k ∈D .

2. PRELIMINARY RESULTS

Let w(t) be the one-dimensional Wiener process that is defined
on a given filtered probability space (Ω,F ,{Ft}t≥0,P), and
rt , t ≥ 0, be a right continuous homogeneous Markov process
taking values in a finite state space, D = {1, 2, . . . ,s}. Without
loss of generality, it is assumed that {w(t)}t≥0 and {rt}t≥0 are
independent stochastic processes. Furthermore, the transition
probabilities are given by

P{rt+δ t = j | rt = i}=
{

πi jδ t +o(δ t), if i ̸= j
1+πiiδ t +o(δ t), else , (1)

where δ t > 0, πkℓ ≥ 0, k ̸= ℓ, πkk =−∑s
ℓ=1, ℓ̸=k πkℓ,

limδ t→0 o(δ t)/δ t = 0.
Consider the following MJDSS

dx(t) = [A(rt)x(t)+Ah(rt)x(t−h)+D(rt)v(t)]dt

+Ap(rt)x(t)dw(t), x(t) = ϕ(t), t ∈ [−h, 0], (2a)

z(t) = H(rt)x(t), (2b)

where x(t)∈Rn denotes the state vector, v(t)∈Rmv the external
disturbance, z(t) ∈ Rnz the controlled output, w(t) ∈ R a one-
dimensional standard Wiener process defined in the filtered
probability space, h > 0 the time-delay of the MJDSSs, and
ϕ(t) a real-valued initial function. Without loss of generality, it
is assumed that, for all δ ∈ [−h, 0], there exists scalar σ > 0
such that ∥x(t +δ )∥ ≤ σ∥x(t)∥ (Wang et al. (2002)).
In coefficients AAA, AAAh, AAAp ∈Ms

n,n and BBBv ∈Ms
n,mv , A(k), Ah(k),

Ap(k) and D(k), k ∈D , are constant matrices.
First, the related definition and lemmas are introduced.
Definition 1. (Wang et al. (2002); Cao and Lam (2000)) The
MJDSS is said to be stochastically stable if, when v(t) ≡ 0,
for all finite ϕ(t) ∈ Rn defined on [−h, 0] and initial mode
r0 = k ∈D , there exists M̃ > 0 satisfying

lim
t f→∞

E
[∫ t f

0
xT (t,ϕ ,r0)x(t,ϕ ,r0)dt

∣∣∣ϕ ,r0 = k
]
≤ xT (0)M̃x(0). (3)

The following result can be proved by using the previous result
in (Mukaidani (2020)) as a special case.
Lemma 2. Let γ denote the required disturbance attenuation
level. Consider a set of symmetric positive semidefinite matri-
ces WWW ≥ 0 and U > 0 , such that the following CCSMIs holds
for every k ∈D :

Λ(WWW ,U,k)< 0, (4)

where k = 1, . . . ,s,

Λ(WWW ,U,k) :=

 Φ11(k) W (k)Ah(k) W (k)D(k)
AT

h (k)W (k) −U 0
DT (k)W (k) 0 −γ2Imv

,

Φ11(k) :=W (k)A(k)+AT (k)W (k)+HT (k)H(k)+U
+∑s

ℓ=1 πkℓW (ℓ)+AT
p (k)W (k)Ap(k).

Then, we have the following results:

i) The MJDSS in (2) is stochastically stable internally with
v(t)≡ 0;

ii) The following inequality holds:

∥z∥2
2 < γ2∥v∥2

2 +FW (W (k),U), (5)

where ∥z∥2
2 := E

[∫ ∞
0 ∥z(t)∥2dt

∣∣∣r0 = k
]
,

∥v∥2
2 := E

[∫ ∞
0 ∥v(t)∥2dt

∣∣∣r0 = k
]
,

FW (W (k),U) := xT (0)W (k)x(0)+
∫ 0
−h ϕ T (s)Uϕ(s)ds;

iii) The worst-case disturbance is given by

v∗(t) = F∗γ (rt)x(t) = γ−2DT (rt)W (rt)x(t). (6)

The following corollary can be established by tracing the proof
of Lemma 2 with some change.
Corollary 1. Define the corresponding cost function for MJDSS
(2) with v(t)≡ 0 as follows:

J := E
[∫ ∞

0
xT (t,ϕ ,r0)Q(rt)x(t,ϕ ,r0)dt

∣∣∣ϕ ,r0 = k
]
, (7)

where Q(rt) =QT (rt)> 0. Consider a set of symmetric positive
semidefinite matrices PPP≥ 0, V > 0 and positive scalars ε(k) and
ν(k), such that the following CCSMIs holds:

Γ(PPP,V,k)< 0, (8)

where k = 1, . . . ,s,

Γ(PPP,V,k) :=
[

Ψ11(k) P(k)Ah(k)
AT

h (k)P(k) −V

]
.

Ψ11(k) := P(k)A(k)+AT (k)P(k)+Q(k)+V +∑s
ℓ=1 πkℓP(ℓ)

+AT
p (k)P(k)Ap(k).

Then,we have the following inequality

J < xT (0)P(k)x(0)+
∫ 0

−h
ϕ T (s)V ϕ(s)ds := FP(P(k),V ). (9)

3. PROBLEM FORMULATION

Consider the following MJDSS with one leader and one fol-
lower:

dx(t) =
[

A(rt)x(t)+Ah(rt)x(t−h)+B0(rt)u0(t)

+B1(rt)u1(t)+D(rt)v(t)
]

dt +Ap(rt)x(t)dw(t), (10a)

x(t) = ϕ(t), t ∈ [−h, 0], (10b)

z(t) =
[

E(rt)x(t)
Gc(k)uc(t)

]
, (10c)

yc(t) =Cc(rt)x(t), (10d)

with uc(t) =

[
u0(t)
u1(t)

]
, yc(t) =

[
y0(t)
y1(t)

]
, Cc(rt) =

[
C0(rt)
C1(rt)

]
,

Gc(k) = block diag( G0(rt) G1(rt) ), GT
i (rt)Gi(rt) = Imi ,

where u0(t)∈Rm0 represents the leader’s control input, u1(t)∈
Rm1 represents the follower’s control input, v(t) ∈ Rnv rep-
resents the external disturbance, y0(t) ∈ Rp0 represents the
leader’s output measurement vector, and y1(t) ∈Rp1 represents
the follower’s output measurement vector. Other variables are
the same as (2). The coefficients AAA, BBB0, BBB1, EEE, AAAp, CCC0, CCC1 are
constant matrices of compatible dimensions.
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Cost functionals of the leader and the follower are defined as
follows:

J0
(
u0,u1,v;x0,k

)
= E

[∫ ∞

0

{
xT (t)Q0(rt)x(t)

+uT
0 (t)R00(rt)u0(t)+uT

1 (t)R01(rt)u1(t)
}

dt
∣∣∣r0 = k

]
, (11a)

J1
(
u0,u1,v;x0,k

)
= E

[∫ ∞

0

{
xT (t)Q1(rt)x(t)

+uT
0 (t)R10(rt)u0(t)+uT

1 (t)R11(rt)u1(t)
}

dt
∣∣∣r0 = k

]
, (11b)

where k ∈D , Qi(k) = QT
0 (k)≥ 0, Rii(k) = RT

ii (k)> 0, i = 0, 1,
Ri j(k) = RT

i j(k)≥ 0, i j = 10, 01.
For the incentive Stackelberg game, the leaders announce the
following incentive strategy to the follower ahead of time:

u†
0(t) = F0(rt)C0(rt)x(t)+Ξ(rt)

[
u1(t)−F1(rt)C1(rt)x(t)

]
= Θ(rt)x(t)+Ξ(rt)u1(t), (12)

where Θ(k) = F0(k)C0(k)−Ξ(k)F1(k)C1(k).
The parameters Θ(k) and Ξ(k) are determined in accordance
with the follower.
Finally, a robust SOF incentive Stackelberg game for MJLSSs
can be formulated as follows.

Problem: For a given disturbance attenuation level γ > 0, find,
if possible, the SOF strategies

u∗0(t) = F∗0 (rt)y0(t) = F∗0 (rt)C0(rt)x(t), (13a)
u∗1(t) = F∗1 (rt)y1(t) = F∗1 (rt)C1(rt)x(t), (13b)

such that the following hold:

(i) The trajectory of MJDLSS in (10) satisfies the following in-
equalities in the sense that H2/H∞ control concept (Mukaidani
et al. (2018b)) holds:

J0(u∗c ,v
∗;x0,k)≤ J0(uc,v∗;x0,k), (14a)

0≤ Jγ(u∗c ,v
∗;x0,k)≤ Jγ(u∗c ,v;x0,k), (14b)

where Jγ(uc,v;x0, k)=E

[∫ ∞
0

{
γ2∥v(t)∥2−∥z(t)∥2

}
dt
∣∣∣r0 = k

]
,

∥z(t)∥2 = xT (t)ET (rt)E(rt)x(t)+uT
c (t)uc(t).

On the other hand, consider the leader’s incentive strategy in
(12) and the worst-case disturbance v∗(t)∈L 2

F (R+, Rnv). The
follower’s decision u∗1(t) ∈ L 2

F (R+, Rn1) can be selected as
follows.
(ii) The bound FP1(P1(k),V1) of objective function (11b)
should be minimized such that the following inequalities are
satisfied:

J1(u
†
0,u1,v∗;x0,k) = E

[∫ ∞

0

{
xT (t)Q1(rt)x(t)

+ [Θ(rt)x(t)+Ξ(rt)u1(t)]T R10(rt)[Θ(rt)x(t)+Ξ(rt)u1(t)]

+uT
1 (t)R11(rt)u1(t)

}
dt
∣∣∣r0 = k

]
,

< xT (0)P1(k)x(0)+Tr[LLTV1] := FP1(P1(k),V1), (15a)
Γ1(PPP1,V1,Ξ(k),F1(k),Fγ(k),k)< 0, (15b)
where k = 1, . . . ,s,

Γ1(PPP1,V1,Ξ(k),F1(k),Fγ(k),k) :=
[

Ψ11
1 (k) P1(k)Ah(k)

AT
h (k)P1(k) −V1

]
,

LLT :=
∫ 0
−h ϕ(s)ϕ T (s)ds, Ψ11

1 (k) := P1(k)Ã(k)+ ÃT (k)P1(k)

+Q̃1(k)+V1+∑s
ℓ=1 πkℓP1(ℓ)+AT

p (k)P1(k)Ap(k), Ã(k) :=Aγ(k)
+B0(k)Θ(k)+[B1(k)+B0(k)Ξ(k)]F1(k)C1(k), Aγ(rt) := A(rt)

+D(rt)Fγ(rt), Q̃1(k) := Q1(k)+ΘT (k)R10(k)Θ(k)
+Θ(k)R10(k)Ξ(k)F1(k)C1(k)+CT

1 (k)F
T
1 (k)ΞT (k)R10(k)ΘT (k)

+CT
1 (k)F

T
1 (k)[R11(k)+ΞT (k)R10(k)Ξ(k)]F1(k)C1(k).

4. MAIN RESULTS

In this section, the leader and follower’s strategy set under
disturbance attenuation condition is derived.

4.1 Leader’s Strategy

The leader’s team strategy set (u∗c(t),v
∗(t)) is investigated in

terms of how they attenuate the disturbance under an H∞
constraint. For this purpose, let us configure the MJDSS as the
centralized system with any v(t) = Fγ(rt)x(t):

dx(t) =
[

Aγ(rt)x(t)+Ah(rt)x(t−h)+Bc(rt)uc(t)
]

dt

+Ap(rt)x(t)dw(t), (16a)

z(t) =
[

E(rt)x(t)
uc(t)

]
, (16b)

uc(t) = Fc(rt)yc(t) = Fc(rt)Cc(rt)x(t), (16c)

where Bc(k) = [ B0(k) B1(k) ],
Fc(k) = block diag( F0(k) F1(k) ), k ∈D .
Furthermore, the cost functional in (11a) can be changed as
follows:

J0(u0,u1,v;x0,k) = E

[∫ ∞

0

{
xT (t)Q0(rt)x(t)

+uT
c (t)Rc(rt)uc(t)

}
dt
∣∣∣r0 = k

]
, (17)

where Rc(k) = block diag
(

R00(k) R01(k)
)

.

Using the result of Corollary 1, J0(u0,u1,v;x0,k) has the fol-
lowing cost bound:

J0(u0,u1,v;x0,k)< FP0(P0(k),V0), (18)
when

Γ0(PPP0,V0,Fc(k),Fγ(k),k) :=
[

Ψ11
0 (k) P0(k)Ah(k)

AT
h (k)P0(k) −V0

]
< 0,

Ψ11
0 (k) := P0(k)Ãγ + ÃT

γ P0(k)+CT
c (k)F

T
c (k)Rc(k)Fc(k)Cc(k)

+Q0(k)+V0 +∑s
ℓ=1 πkℓP0(ℓ)+AT

p (k)P0(k)Ap(k),
Ãγ(k) := A(k)+Bc(k)Fc(k)Cc(k)+D(k)Fγ(k).
In order to obtain the leader’s centralized strategy set, F∗c (k),
the Karush-Kuhn-Tucker (KKT) conditions are derived. Define
the following Lagrangian:

L0(k) = Tr [P0(k)]+Tr[LLTV0]+
s

∑
k=1

Tr [S0(k)∆0(k)], (19)

where S0(k) is the symmetric matrix of the Lagrange multiplier,
and we set r0 = k. Furthermore, we have

∆0(k) := ∆0(PPP0,V0,Fc(k),Fγ ,k)

= Ψ11
0 (k)+P0(k)Ah(k)V−1

0 AT
h (k)P0(k). (20)

In this case, we have the following cross coupled stochastic
matrix equations (CCSMEs):
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∂L0(k)
∂P0(k)

= ∆1
0(k) = ∆1

0(SSS0,P0(k),V0,Fc(k),Fγ(k),k) = 0,(21a)

∂L0(k)
∂S0(k)

= ∆0(k) = 0, (21b)

1
2
· ∂L0(k)

∂Fi(k)
= ∆2

0(k) = ∆2
0(SSS0,P0(k),Fc(k),k) = 0, (21c)

where ∆1
0(k) = In +S0(k)[Aγ(k)+Bc(k)Fc(k)Cc(k)]T

+[Aγ(k)+Bc(k)Fc(k)Cc(k)]S0(k)+∑s
ℓ=1 πℓkS0(ℓ)

+Ap(k)S0(k)AT
p (k)+

[
S0(k)P0(k)Ah(k)V−1

0 AT
h (k)

+Ah(k)V−1
0 AT

h (k)P0(k)S0(k)
]
,

∆2
0(k) = [Rc(k)Fc(k)Cc(k)+BT

c (k)P0(k)]S0(k)CT
c (k).

From ∆1
0(k) = 0, we have S0(k)> 0. Therefore, from ∆2

0(k) = 0,
the following strategy set can be obtained:

uc(t) = F∗c (rt)Cc(rt)x(t), (22)

where F∗c (k) = block diag( F∗0 (k) F∗1 (k) ), F∗i (k)
=−[R0i(k)]−1BT

i (k)P0(k)S0(k)CT
i (k)[Ci(k)S0(k)CT

i (k)]
−1.

4.2 Followers’ Strategy

Second, the follower’s strategy is established. Let us consider
the minimization problem for the cost bound, FP1(P1(k),V1),
of (15a) such that LMI in (15b) is satisfied. In order to solve
this optimization problem, consider the following Lagrangian:

L1(k) = Tr [P1(k)]+Tr[LLTV1]+
s

∑
k=1

Tr [S1(k)∆1(k)], (23)

where S1(ℓ) = ST
1 (ℓ) is the Lagrange multipliers,

∆1(k) := ∆1(PPP1,V1,F1(k),Fγ(k),k)

= Ψ11
1 (k)+P1(k)Ah(k)V−1

1 AT
h (k)P1(k). (24)

As a necessary condition, the following equations can be de-
rived by using the KKT condition:

∂L1(k)
∂P1(k)

= ∆1
1(k) = ∆1

1(SSS1,P1(k),V1,F1(k),Fγ(k),k) = 0, (25a)

∂L1(k)
∂S1(k)

= ∆1(k) = 0, (25b)

1
2
· ∂L1(k)

∂F1(k)
= ∆2

1(k) = ∆2
1(SSS1,P1(k),F1(k),k) = 0, (25c)

where ∆1
1(k) = In +S1(k)ÃT (k)+ Ã(k)S1(k)+∑s

ℓ=1 πℓkS1(ℓ)

+Ap(k)S1(k)AT
p (k)+

[
S1(k)P1(k)Ah(k)V−1

1 AT
h (k)

+Ah(k)V−1
1 AT

h (k)P1(k)S1(k)
]
, ∆2

1(k) =
[
R11(k)

+ΞT (k)R10(k)Ξ(k)
]
F1(k)C1(k)S1(k)CT

1 (k)+
[(

B1(k)

+B0(k)Ξ(k)
)T P1(k)+ΞT (k)R10(k)Θ(k)

]
S1(k)CT

1 (k).
Therefore, if C1(k)S1(k)CT

1 (k) is nonsingular, the gain of the
leader’s strategy, F1(k), can be computed as follows:

F†
1 (k) =−

[
R11(k)+ΞT (k)R10(k)Ξ(k)

]−1

×
[(

B1(k)+B0(k)ΞT (k)
)T P1(k)+ΞT (k)R10(k)Θ(k)

]
×S1(k)CT

1 (k)
[
C1(k)S1(k)CT

1 (k)
]−1

. (26)

In this case, since F†
1 (k) = F∗1 (k), the incentive of Ξ(k) can be

computed by

ΞT (k)
[
BT

0 (k)P1(k)+R10(k)F∗0 (k)C0(k)
]

+R11(k)F∗1 (k)C1(k)+BT
1 (k)P1(k) = 0. (27)

4.3 Disturbance Attenuation Condition

Finally, the disturbance attenuation condition is derived. Con-
sider the closed-loop MJDSS and the cost functions. For arbi-
trary ui(t) = Fi(rt)yi(t) = Fi(rt)Ci(rt)x(t), i = 1,2, the closed-
loop MJDSS is established as

dx(t) =
[

Ā(rt)x(t)+Ah(rt)x(t−h)+D(rt)v(t)
]

dt

+Ap(rt , t)x(t)dw(t), (28a)

z(t) =

[ E(rt)x(t)
G0(rt)F∗0 (rt)C0(rt)
G1(rt)F∗1 (rt)C1(rt)

]
x(t), (28b)

where Ā(rt) := A(rt)+Bc(rt)F∗c (rt)Cc(rt).
Thus, we have the following CCSMIs, using Lemma 2:

Λ̃(WWW ,U,k)< 0, (29)
where k = 1, . . . ,s,

Λ̃(WWW ,U,k) :=

 Φ̃11(k) W (k)Ah(k) W (k)D(k)
AT

h (k)W (k) −U 0
DT (k)W (k) 0 −γ2Imv

, Φ̃11(k)

:=W (k)Ā(k)+ ĀT (k)W (k)+ET (k)E(k)+U +∑s
ℓ=1 πkℓW (ℓ)

+CT
c (k)F

∗T
c (k)F∗c (k)C(k)+AT

p (k)W (k)Ap(k).
Furthermore, the worst-case disturbance is given by

v∗(t) = γ−2DT (rt)W (rt)x(t). (30)
Theorem 3. Consider the MJDSS in (12) with one leader u0(t),
one follower u1(t) and deterministic disturbance v(t). Assume
that there exist the solution sets of (21), (25), (27) and (29).
In this case, the incentive strategy (12) is worked such that the
follower’s strategy can be induced to the leader’s strategy.

It should be noted that Markov jump processes without a state
delay is a special case of this paper, e.g., set Ah(rt) ≡ 0 in
Mukaidani (2020).

5. HEURISTIC ALGORITHM

In order to compute the robust incentive SOF Stackelberg strat-
egy set for the MJDSS, optimization problems (15) and (18)
should be solved. However, it is difficult to obtain the solution
set. Hence, we propose the following heuristic algorithm based
on the KM iterations (Yao et al. (2009)):
Step 1. Set the initial values: choose F(0)

i (k), i = 0,1, k =
1, . . . ,s, such that closed-loop MJDSS in (16a) is stochastically
stable; choose an appropriate κ value for W (0)(k) = κIn and
compute F(0)

γ (k) = γ−2DT (k)W (0)(k);
Step 2-1. Solve the following optimization problem for
P(n+1)

0 (k) and V (n+1)
0 for variable α0:

min
ααα0

Tr

[
s

∑
k=1

P(n+1)
0 (k)+LLTV (n+1)

0

]
, (31a)

s.t. ααα0 := (PPP(n+1)
0 ,V (n+1)

0 ) satisfies (31b),

Γ0(PPP
(n+1)
0 ,V (n+1)

0 ,F(n)
c (k),F(n)

γ (k),k)
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:=

[
ΨΨΨ11(n)

0 (k) P(n+1)
0 (k)Ah(k)

AT
h (k)P

(n+1)
0 (k) −V (n+1)

0

]
< 0, (31b)

where k = 1, . . . ,s, ΨΨΨ11(n)
0 (k) := P(n+1)

0 (k)Ã(n)
γ (k)

+Ã(n)T
γ (k)P(n+1)

0 (k)+Q0(k)+V (n+1)
0 +∑s

ℓ=1 πkℓP
(n+1)
0 (ℓ)

+CT
c (k)F

(n)T
c (k)Rc(k)F

(n)
c (k)Cc(k)+AT

p (k)P
(n+1)
0 (k)Ap(k),

Ã(n)
γ (k) := A(k)+Bc(k)F

(n)
c (k)Cc(k)+D(k)F(n)

γ (k);

Step 2-2. Solve the following CCSMEs for S(n+1)
0 (k):

∆1
0(SSS

(n+1)
0 ,P(n+1)

0 (k),V (n+1)
0 , F(n)

c (k),F(n)
γ (k),k) = 0; (32)

Step 2-3. Compute F(n+1)
i (k), i = 0,1:

F(n+1)
i (k) =−[R0i(k)]−1BT

i (k)P
(n+1)
0 (k)S(n+1)

0 (k)CT
i (k)

×[Ci(k)S
(n+1)
0 (k)CT

i (k)]
−1; (33)

Step 2-4. Solve the following optimization problem for
W (n+1)(k) for variables βββ :

min
βββ

s

∑
k=1

Tr[W (n+1)(k)+LLTU (n+1)], (34a)

s.t. βββ := (WWW (n+1),U (n+1)) satisfies (34a),

Λ̃(WWW (n+1),U (n+1),k)

:=

 Φ̃11(n)(k) W (n+1)(k)Ah(k) W (n+1)(k)D(k)
AT

h (k)W
(n+1)(k) −U (n+1) 0

DT (k)W (n+1)(k) 0 −γ2Imv


< 0, (34b)

where k = 1, . . . ,s, Φ̃11(n)(k) :=W (n+1)(k)Ā(n)(k)
+Ā(n)T (k)W (n+1)(k)+ET (k)E(k)+CT

c (k)F
(n)
c (k)F(n)

c (k)Cc

+U (n+1)+∑s
ℓ=1 πkℓW (n+1)(ℓ)+AT

p (k)W
(n+1)(k)Ap(k);

Step 2-5. Set

ZZZ(n+1)
0 ← θ (n)

0 ZZZ(n+1)
0 +(1−θ (n)

0 )ZZZ(n)
0 (35)

where ZZZ(n)
0 :=

[
PPP(n)

0 SSS(n)0 WWW (n) V (n)
0 U (n)

]
.

Furthermore, θ (n)
0 ∈ (0,1] is chosen at each iteration to ensure

that J
(n)

0 > J
(n+1)

0 with

J
(n)

0 =
s

∑
k=1

Tr[P(n)
0 (k)+S(n)0 (k)+W (n)(k)]+Tr[V (n)

0 +U (n)];(36)

Step 2-6. If the iterative algorithm consisting of Steps 2-1
to 2-5 converges, we have obtained the iterative solutions as
F(∞)

i (k) = F∗i (k), i = 0,1, k = 1, . . . ,s, F(∞)
γ (k) = F∗γ (k); oth-

erwise, if the number of iterations reaches a preset threshold,
declare that there is no strategy set. Stop.
Step 3-1. Solve the following optimization problem for
P(m+1)

1 (k) and V (m+1)
1 for variable α1:

min
ααα1

Tr

[
s

∑
k=1

P(m+1)
1 (k)+LLTV (m+1)

1

]
, (37a)

ααα1 := (PPP(m+1)
1 ,V (m+1)

1 )

s.t. ααα1 satisfies (37b),

Γ1(PPP
(m+1)
1 ,V (m+1)

1 ,Ξ(m)(k),F∗1 (k),F
∗
γ (k),k)

:=

[
ΨΨΨ11(m)

1 (k) P(m+1)
1 (k)Ah(k)

AT
h (k)P

(m+1)
1 (k) −V (m+1)

1

]
< 0, (37b)

where k = 1, . . . ,s, Ψ11(m)
1 (k) := P(m+1)

1 (k)Ã(m)(k)

+Ã(m)T (k)P(m+1)
1 (k)+ Q̃(m)

1 (k)+V (m+1)
1 +∑s

ℓ=1 πkℓP
(m+1)
1 (ℓ)

+AT
p (k)P

(m+1)
1 (k)Ap(k), Ã(m)(k) := A(k)+D(k)F∗γ (k)

+B0(k)Θ(m)(k)+ [B1(k)+B0(k)Ξ(m)(k)]F∗1 (k)C1(k),
Q̃(m)

1 (k) := Q1(k)+Θ(m)T (k)R10(k)Θ(m)(k)
+Θ(m)(k)R10(k)Ξ(m)(k)F∗1 (k)C1(k)
+CT

1 (k)F
∗T
1 (k)Ξ(m)T (k)R10(k)Θ(m)T (k)

+CT
1 (k)F

∗T
1 (k)[R11(k)+Ξ(m)T (k)R10(k)Ξ(m)(k)]F∗1 (k)C1(k),

Θ(m)(k) = F∗0 (k)C0(k)−Ξ(m)(k)F∗1 (k)C1(k);
Step 3-2. Solve the following CCSMEs for SSS(m+1)

1 (k):

∆1
1(SSS

(m+1)
1 ,P(m+1)

1 (k),V )m+1)
1 ,F∗1 (k),F

∗
γ (k),k) = 0; (38)

Step 3-3. Compute Ξ(m+1)(k), k = 1, . . . ,N:

Ξ(m+1)T (k)
(
BT

0 (k)P
(m+1)
1 (k)+R10(k)F∗0 (k)C0(k)

)
+R11(k)F∗1 (k)C1(k)+BT

1 (k)P
(m+1)
1 (k) = 0. (39)

Step 3-4. Set

ZZZ(m+1)
1 ← θ (m)

1 ZZZ(m+1)
1 +(1−θ (m)

1 )ZZZ(m)
1 (40)

where ZZZ(m)
1 :=

[
PPP(m)

1 SSS(m)
1 V (m)

1 ΞΞΞ(m)
]
.

Furthermore, θ (m)
1 ∈ (0,1] is chosen at each iteration to ensure

that J
(m)

1 > J
(m+1)

1 with

J
(m)

1 =
s

∑
k=1

Tr
[
P(m)

1 (k)+S(m)
1 (k)+Ξ(m)(k)

]
+Tr

[
V (m)

1

]
; (41)

Step 3-5. If the iterative algorithm consisting of Steps 3-
1 to 3-4 converges, we have obtained the iterative solutions
as Ξ(∞)(k) = Ξ(k), k = 1, . . . ,s; otherwise, if the number of
iterations reaches a preset threshold, declare that there is no
strategy set. Stop.
Finally, the convergence property can be stated.
Theorem 4. The proposed heuristic algorithm achieves the con-
vergence if there exists θ (n)

0 ∈ (0,1] such that for all n ∈ N,

J
(n)

0 > J
(n+1)

0 in Steps 2. Furthermore, if there exists θ (n)
1 ∈

(0,1] such that for all n ∈ N, J
(m)

1 > J
(m+1)

1 in Steps 3,
another algorithm based on the KM iterations also converges.

6. A SIMPLE EXAMPLE

To demonstrate the effectiveness and usefulness of the theoreti-
cal results presented in the previous sections, a simple computer
simulation example is provided in the following. Consider the
set of following parameters in the simulations:

s = 2,
[

π11 π12
π21 π22

]
=

[
−0.3 0.3

0.7 −0.7

]
,
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A(1) =
[
−5 0

0 −1

]
, Ap(1) = 0.2A(1), Ah(1) = 0.1A(1)

B0(1) =
[
−0.5 −1

0 0

]
, B1(1) =

[
−0.5 −2.5

1 1

]
H(1) = [ 1 1 ] , C0(1) =C1(1) = [ 1 0 ]

A(2) =
[
−15 0

0 −1

]
, Ap(2) = 0.2A(2), Ah(2) = 0.1A(2)

B0(2) =
[
−1 −1

0 0

]
, B1(2) =

[
−1 −2.5

1 1

]
H(2) = [ 2 1 ] , C0(2) =C1(2) = [ 1 0 ]

LLT :=
∫ 0

−h
ϕ(s)ϕ T (s)ds = block(1 0 ) , h = 1,

Q0(k) = Q1(k) = I2

R00(k) = I2, R01(k) = 2I2, R10(k) = 1.5I2, R11(k) = 0.5I3.

Next, we select γ = 7. Using the proposed KM iterations, the
leader’s strategy set uc(t) = Fc(rt)Cc(rt)x(t) and the worst case
disturbance are obtained as follows:

F0(1) =
[

5.3440e-2
1.0688e-1

]
, F1(1) =

[
1.4568e-2
1.2145e-1

]
,

F0(2) =
[

4.9123e-2
4.9123e-2

]
, F1(2) =

[
2.1468e-2
5.8310e-2

]
,

Fγ(1) =− [−1.1059e-3 −1.7165e-3 ] ,

Fγ(2) =− [−5.0705e-4 −7.2285e-4 ] .

Second, the related incentives Ξ(rt) are given by

Ξ(1) =−
[

1.5319e-1 1.2970
3.0638e-1 2.5941

]
,

Ξ(2) =−
[

6.4609e-1 1.7558
6.4609e-1 1.7558

]
.

Finally, it can be observed that the strategy of the follower based
on the incentive Ξ(rt) in (16) is induced to the leader’s strategy.
In particular, the relation F∗1 (rt) = F†

1 (rt) is satisfied.
We employ the proposed KM iterative algorithm to obtain the
converged solutions and the strategies. In particular, Step 2 only
is demonstrated. The initial gains are set as F(0)

0 (k) = F(0)
1 (k) =

[ κ κ ]
T , κ = 5.0 for k = 1, 2. The initial condition was selected

by the trial and error method, such that the closed loop system
is stable. The algorithms converge after 33 iterations, with an
accuracy of 10−7.
In Steps 2 and 3 of the heuristic algorithms, the value of θ (τ)

i ,
i = 0, 1 are set to 0.5. As a result, it is easy to show that the
proposed algorithm generates a non-increasing sequence for the
cost.

7. CONCLUSION

In this paper, the robust SOF incentive Stackelberg games in
the two-level decision hierarchy for a MJDSS has been studied.
Compared to previous studies, this paper differs distinctly in
that the robust SOF incentive Stackelberg strategies for the state
delay are developed for the first time. The existence conditions
are provided in terms of the solvability of a set of CCSALTEs.
A classical Lagrange-multiplier technique is used to solve the
CCSALTEs, thereby avoiding having to solve the BMIs, which
is a well-known NP-hard problem in designing SOF strategies.

Furthermore, a novel heuristic algorithm based on the KM
iteration is developed to guarantee convergence analytically. A
simple numerical example demonstrates the existence of the
SOF incentive Stackelberg strategies and the effectiveness of
the proposed algorithm.
The robust incentive Stackelberg game is an important recent
research area. However, unsolved problems remain. To the best
of our knowledge, incentive Stackelberg game for stochastic
linear parameter-varying (LPV) system with time-delay has not
been investigated. This problem can be addressed in future
studies.
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A. N. Vargas, L. Acho, G. Pujol, E. F. Costa, J. Y. Ishihara and
J. B. R. do. Val, Output feedback of Markov jump linear
systems with no mode observation: An automotive throttle
application, Int. J. Robust Nonlinear Control, 26(9), 1980-
1993, 2015.

M. Dolgov and U. D. Hanebeck, Static output-feedback control
of Markov jump linear systems without mode observation,
IEEE Trans. Automatic Control, 62(10), 5401-5406, 2017.

H. Mukaidani, H. Xu and V. Dragan, Static output feedback
Stackelberg strategy of infinite horizon Markov jump linear
stochastic systems with H∞ constraint, IEEE Conf. Decision
and Control, 1935-1940, Miami Beach, FL, Dec. 2018.

H. Mukaidani, H. Xu and V. Dragan, Static output-feedback
incentive Stackelberg game for discrete-time Markov jump
linear stochastic systems with external disturbance, IEEE
Control Systems Letters, 2(4), 701-706, 2018.

H. Mukaidani, R. Saravanakumar, H. Xu and W. Zhuang,
Robust Nash static output feedback strategy for uncertain
Markov jump delay stochastic systems, IEEE Conf. Decision
and Control, 5826-5831, Nice, France, Dec. 2019.

Y. Yao, H. Zhou and Y. C. Liou, Strong convergence of a
modified Krasnoselskii-mann iterative algorithm for nonex-
pansive mappings, J. Applied Mathematics and Computing,
29(1-2), 383-389, 2009.

Z. Wang, H. Qiao and K. J. Burnham, On stabilization of bilin-
ear uncertain time-delay stochastic systems with Markovian
jumping parameters, IEEE Trans. Automatic Control, 47:
640-646, 2002.

Y. Y. Cao and J. Lam, Robust H∞ control of uncertain Marko-
vian jump systems with time-delay, IEEE Trans. Automatic
Control, 45:77-83, 2000.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6796


