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Abstract: For industrial processes, there are usually a number of measurement sensors
equipped for monitoring and control purposes. In practice, sensors may suffer from the precision
degradation phenomenon due to several aspects such as aging and ambient interference. This
phenomenon may lead to imprecise or even incorrect control commands and indications, so the
corresponding fault detection task is of vital importance. In this paper, inspired by the fact that
precision degradation of a sensor can result in the increase of the variable’s variance, an algorithm
based on second-order statistics analysis is proposed to accomplish the detection task for sensor
precision degradation faults. By employing the sliding window technique, second-order statistics
of process variables are first extracted. Then, conventional principal component analysis (PCA)
is used as a dissimilarity quantification tool, with detection statistics and corresponding control
limits established, to perform fault detection. Finally, simulations on a numerical example and
the continuous stirred tank reactor (CSTR) benchmark process are performed to illustrate the
effectiveness and advantages of the proposed method, in comparison with some existing methods
such as PCA, dynamic PCA, and dissimilarity (DISSIM).

Keywords: Fault detection, process monitoring, sensor precision degradation, second-order
statistics, variable variance.

1. INTRODUCTION

Over the past decades, data-driven fault detection has re-
ceived increasingly research attention from both academia
and industry (Qin, 2012; Alauddin et al., 2018; Chen et
al., 2018; Ji and Zhou, 2020). On one hand, accurate
mathematical models for complex modern industrial pro-
cesses are difficult to acquire, which restricts the use of
model-based fault diagnosis methods; on the other hand,
the abroad application of distributed control systems and
measurement sensors provides a foundation to acquire lots
of industry data. Statistical process monitoring (SPM)
has developed one of the most booming data-driven tech-
niques (Jiang and Yin, 2018; Deng et al., 2018). Commonly
used SPM methods include principal component analysis
(PCA), dynamic PCA (DPCA), independent component
analysis, as well as their variants (Kourti and MacGregor,
1995; Nomikos and MacGregor, 1995; Ge et al., 2013).

Sensor is one kind of indispensable devices so as to gather
information in modern industrial processes. Usually, sensor
measurements are utilized for indication or feedback con-
trol purposes. Under the circumstance of sensor malfunc-
tion or completely failure, the measurement information
provided by corresponding sensors will be imprecise or
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even incorrect. Further, the control performance or pro-
duction efficiency of industrial processes can be thus nega-
tively influenced. Therefore, it is particularly important to
accomplish timely sensor fault detection, in order to ensure
that sensors maintain normal operating conditions (Sharifi
and Langari, 2017; Ji et al., 2019).

According to the literature, there are four main types of
sensor faults, i.e., complete failure, mean bias, mean drift,
and precision degradation (Dunia et al., 1996; Wan and Ye,
2012). The complete failure fault can generally be detected
easily, as in this case no effective reading will be provided
by the sensor. As for mean bias and mean drift faults, they
alter the mean of sensor measurement by a constant and
gradually changing deviation, respectively. By contrast,
the precision degradation fault keeps the measurement
mean unvaried but increases the corresponding variable’s
variance (Dunia et al., 1996).

Most existing sensor fault detection methods aim at de-
tecting the fault type with mean changed (Harmouche et
al., 2014), whereas the sensor fault with variance change is
relatively rarely considered. Ji et al. (2018) proposed a new
sensor precision degradation fault detection and isolation
method by applying Kullback-Leibler divergence within
the principal component subspace of PCA. Chen et al.
(2019) presented a method named cumulative canonical
correlation analysis to perform the sensor precision degra-
dation fault detection and discussed this method for both
Gaussian and non-Gaussian cases.
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Recently, fault detection by monitoring the statistics of
process variables has caught more and more attention. A
new statistics pattern analysis framework was proposed
to solve many challenges related to advanced process
monitoring such as nonlinear process dynamics and non-
Gaussian distribution (Wang and He, 2010; He and Wang,
2011). Shang et al. (2017) presented a method called
recursive transformed component statistical analysis for
incipient fault detection in the field of SPM. The aforesaid
methods and their variants have exhibited superior mon-
itoring performance for specific problems. In this work,
we only consider the sensor precision degradation fault
type currently, and inspired by Wang and He (2010) a new
method is developed by monitoring second-order statistics.
This method is valid to sensor precision degradation and
relatively less computational complexity is required.

The remainder of this paper is organized as follows. In
Section 2, some preliminaries are provided, including PCA,
DPCA, and dissimilarity (DISSIM). Section 3 formulates
the sensor precision degradation fault detection problem,
and presents the proposed methodology, with a detailed
algorithm provided. Simulation studies on a numerical
example and the continuous stirred tank reactor (CSTR)
process are given in Section 4, followed by some concluding
remarks in Section 5.

2. PRELIMINARIES

2.1 PCA

Assume that the industrial data are collected and stacked
into a matrix X ∈ RN×m with N rows of samples and
m columns of sensor readings. After the matrix X is
normalized, every column of X follows a distribution with
zero mean and unit variance. Matrix X is decomposed as
follows:

X = TPT + E (1)

T = XP (2)

where P is the loading matrix, T denotes the score matrix,
and E is the residual matrix. The PCA model can be
established by eigenvalue decomposition, singular value
decomposition or nonlinear iterative partial least squares
algorithms. The eigenvalue decomposition method is:

S =
1

N − 1
XTX = P̄Λ̄P̄T (3)

where Λ̄ = diag{λ1, λ2, . . . , λm} contains m eigenvalues
of S, and P̄ contains corresponding eigenvectors. The
number of principal components, A, is calculated by cu-
mulative percent variance criterion (Valle et al., 1999).
Λ = diag{λ1, λ2, . . . , λA} satisfies

Λ =
1

N − 1
TTT (4)

The PCA method detects fault with T 2 and SPE statistics,
and the two statistics are calculated by (5) and (6). If T 2

and SPE statistics are both below their control limits, the
process is deemed as normal; otherwise, some anomalies
arise.

T 2 = xTPΛ−1PTx ≤ T 2
α (5)

SPE =
∥∥(I−PPT)x

∥∥2 ≤ δ2α (6)

2.2 DPCA

DPCA considers series correlation of variables and extends
PCA method to dynamic systems. The DPCA method
uses time lag shift to establish an augmented matrix Xl,
i.e.,

Xl =


xT(1)
xT(2)

...
xT(N − l)

∣∣∣∣∣∣∣∣∣
xT(2)
xT(3)

...
xT(N − l + 1)

∣∣∣∣∣∣∣∣
· · ·
· · ·
. . .
· · ·

∣∣∣∣∣∣∣∣
xT(l + 1)
xT(l + 2)

...
xT(N)


(7)

Where l is the time lag. Parallel analysis method is a
common option to determine the value of l. As a practical
matter, the value of time lag is usually determined 2.
After the augmented data matrix is established, the rest
of modeling procedures remain the same as conventional
PCA.

2.3 DISSIM

Kano et al. (2002) proposed DISSIM by analyzing the
dissimilarity degree of process data. In order to detect the
change of operating condition, the DISSIM method defines
a dissimilarity index, termed D, to compare the difference
between process data distributions.

Consider two data sets {Xi ∈ RNi×m, i = 1, 2}. The
covariance matrix for Xi and their mixing covariance
matrix are established as follows

Ri =
1

Ni − 1
XT
i Xi (8)

R =
N1 − 1

N − 1
R1 +

N2 − 1

N − 1
R2 (9)

The orthogonal matrix Po is calculated from (10), i.e.
through the eigenvalue decomposition on R. Then, the
transformation matrix P is defined by (11)

PT
o RPo = Λc (10)

P = PoΛ
−1/2
c (11)

The original data matrix Xi is transformed to Yi via P,
and the covariance matrix of Yi is denoted as Si

Yi =

√
Ni − 1

N − 1
XiP (12)

Si =
1

Ni − 1
YT
i Yi (13)

in which {S1 + S2 = I} holds (Kano et al., 2002). The
dissimilarity index D is defined as

D =
4

m

m∑
p=1

(λp − 0.5)2 (14)

where λp is pth eigenvalue of matrices S1 or S2.

3. METHODOLOGY

For a steady-state process, suppose that there are m
sensors equipped, and a measurement sample is denoted
as x = [x1, x2, . . . , xm]T. These samples are assumed
independent and identically distributed (i.i.d.) and follow
a multi-normal distribution

x ∼ N (µ,Σ) (15)

where µ and Σ respectively denote the mean and covari-
ance matrix of x. When a sensor suffers from the precision
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degradation, the corresponding variable variance will be
increased, which can be modeled as follows. The fault
vector xf is denoted as

xf = x∗ + fj (16)

where x∗ denotes the fault-free part, fj is the fault vector,
and they are independent of each other. To be more spe-
cific, fj is such a vector in which only the jth element is fj
and other elements are zero, implying that the jth sensor
is faulty. To imitate the sensor precision degradation, it is
supposed that fj follows a normal distribution with zero
mean and a constant variance, i.e. fj ∼ N (0, σ2

j ). For
illustration, Fig. 1 shows a sensor measurement sequence
with precision degradation fault imposed starting at the
1001th sample. As intuitively observed, since sample 1001,
the variance of sensor reading is increased.
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Fig. 1. Illustration of the sensor precision degradation fault

This work aims to achieve successful detection of the
sensor precision degradation. As noted above, a distinguish
feature for this kind of fault is it can increase the faulty
sensor’s variance. Thus, we propose to use a second-
order statistics analysis method. Currently, only sample
variances are employed for monitoring purposes. If more
complex circumstances are considered such as there exist
series correlation in some variables, other second-order
statistics such as auto-correlation and cross-correlation
coefficients can also be incorporated. The proposed fault
detection method can be divided into two parts: the first
step is to calculate the variable variances, and the second
step is to establish the control limit (offline stage) or
perform fault detection (online stage).

3.1 Obtain Variable Variances

The following data matrix Xw denotes a window of sensor
measurement

Xw =


x1(k − w + 1) x2(k − w + 1) . . . xm(k − w + 1)
x1(k − w + 2) x2(k − w + 2) . . . xm(k − w + 2)

...
...

. . .
...

x1(k) x2(k) . . . xm(k)


(17)

where w denotes the window width, and k is the cur-
rent sampling instant. The second-order statistics can

include variance, correlation, auto-correlation, and cross-
correlation, and this method only uses the variance statis-
tic currently. For each variable, its sample variance is
calculated as follows

v2i (k) =
1

w

w−1∑
l=0

[xi(k − l)− µi]2 (18)

where µi is the sample mean of variable xi. The variances
for all variables constitute the following variance sample

ν(k) , v2(k) = [v21(k), v22(k), . . . , v2m(k)] (19)

3.2 Fault Detection

In this work, traditional PCA is employed as a tool
to quantify the dissimilarities among various variance
samples. Two detection statistics, named Dp and Dr

are used, with corresponding control limits established.
Dp measures the change of variances in the principal
component subspace

Dp = νTPνΛ
−1
ν PT

ν ν (20)

Dr measures the change of variances in the residual
subspace

Dr =
∥∥(I−PνP

T
ν )ν

∥∥2 (21)
If both Dp and Dr statistics are lower than their cor-
responding control limits, the process is considered as
normal. Otherwise, some faults occur.

According to Wang and He (2010), the central limit theo-
rem states if the samples are independent, their statistics
will follow a normal distribution asymptotically. There-
fore, in this work the control limits of Dp and Dr can be
determined in theory similar to those of T 2 and SPE in
PCA. Given the significance level α, the control limit of
Dp statistic is computed as

T 2
ν =

Aν(N2 − 1)

N(N −Aν)
FAν ,N−Aν ;α (22)

where FAν ,N−Aν ;α denotes the upper α percentile of F
distribution with Aν and N − Aν degrees of freedom. Aν
is the number of principal components of PCA applied to
the variance sample data matrix. The threshold of Dr can
be approximately expressed by

δ2ν = θ1(
cα
√

2θ2h20
θ1

+ 1 +
θ2h0(h0 − 1)

θ21
)1/h0 (23)

where θi =
∑m
j=Aν+1 λ

i
ν,j , h0 = 1 − 2θ1θ3/3θ

2
2, and λν,j

is the jth eigenvalue of the variance sample covariance.
Another method to determine the control limit is the
empirical approach based on the calibration data under
normal conditions.

In the online detection stage, when a window of mea-
surements are obtained, the variance sample ν(k) can be
obtained at the current instant according to Section 3.1.
Then, the Dp and Dr statistics are calculated based on
(20) and (21), which are further compared against T 2

ν and
δ2ν to tell whether a fault happens. An algorithm for the
fault detection method is summarized in Table 1.

Remark 1. Regarding the proposed method, its detection
effect is directly influenced by the fault magnitude and
window width. If the fault magnitude is tiny, usually
a large window width is required. Nevertheless, if the
window width is too large, the detection delay may be
increased as well.
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Table 1. Fault detection algorithm

Off-line design procedure
Input: normal samples; Output: loadings Pν , control limits.

S1 : Collect normal process data;
S2 : Slide window and obtain variance sample matrix;
S3 : Apply PCA algorithm;
S4 : Obtain Pν and control limits.

On-line monitoring procedure
Input: online samples; Output: detection result.

S1 : Obtain online variance sample;
S2 : Calculate Dp and Dr statistics;
S3 : Perform fault detection.

4. SIMULATIONS

In this section, the effectiveness of the proposed method is
illustrated by two simulation studies, including a numer-
ical example and the CSTR process, in comparison with
PCA, DPCA and DISSIM.

4.1 A Numerical Example

The process model used here is (Alcala and Qin, 2009)

x =


x1
x2
x3
x4
x5
x6

 =


−0.2310 −0.0816 −0.2662
−0.3241 0.7055 −0.2158
−0.2170 −0.3056 −0.5207
−0.4089 −0.3442 −0.4501
−0.6408 0.3102 0.2372
−0.4655 −0.4330 0.5938


[
s1
s2
s3

]
+ ε (24)

where s1, s2, and s3 are zero-mean Gaussian variables
with standard deviation of 1.0, 0.8, and 0.6, respectively.
The ε ∈ R6 in (24) also is zero-mean Gaussian variable
with a standard deviation of 0.1. One data set containing
2000 normal samples are used for model training. Then,
another 2000 independent samples are generated as testing
data, where a precision degradation fault is imposed on x1
starting at sample 1001.
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Fig. 2. Fault detection by PCA

Fig. 2 shows the detection results by PCA. False alarm
rate (FAR) and fault detection rate (FDR) for the T 2 and
SPE statistics are calculated and displayed. As observed,
the FDR of SPE is only 44.5%, that is, more than half
faulty samples are missed. Therefore, the fault detection
result is unsatisfying. Fig. 3 presents the fault detection

0 500 1000 1500 2000

sample

0

4

8

S
P

E

FAR=1.5%   FDR=58.5%

0 500 1000 1500 2000

sample

0

10

20

T
2

FAR=1.1%   FDR=1.2%

Fig. 3. Fault detection by DPCA

result by DPCA, with time lag {l = 3}. Compared
with PCA, a relatively better detection performance is
obtained, however, the FDR is still below 60%.

0 500 1000 1500 2000

sample

0

0.1

0.2

0.3

0.4

D

FAR=1%   FDR=29%

Fig. 4. Fault detection by DISSIM (w=20)
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Fig. 5. Fault detection by DISSIM (w=40)

Then we turn to investigate the DISSIM method. Fig. 4
and Fig. 5 show the monitoring results of DISSIM with
w = 20 and w = 40, respectively. It can be observed
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Fig. 6. The eigenvalues of the matrix Si

that as the window width increases, the fault detection
performance of DISSIM is enhanced accordingly. Fig. 6
illustrates the eigenvalues for a period of samples before
and after the fault occurrence. As we all know, eigenvec-
tors of the covariance matrix represent the directions of
principal components, and eigenvalues are the variances of
corresponding scores. Similar to PCA, DISSIM also gets
the transformation matrix Y by projecting the measured
variables. The difference is that Y contains a coefficient,
thus the eigenvalues of its covariance matrix are all around
0.5. When the variable x1 is changed, the maximum and
minimum eigenvalues are near one and zero, respectively.
According to the definition (14), the change of eigenvalues
can be reflected in D. This point has been intuitively
demonstrated by Fig. 6. Therefore, the DISSIM with a
large window width can detection the sensor precision
degradation as well.
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Fig. 7. Fault detection by the proposed method

Fig. 7 presents the fault detection result using the pro-
posed second-order statistics algorithm. For this method,
the window width w used in (17) is equal to 100. We can
observe from the two sub-figures that both Dp and Dr

provide satisfying fault detection performance. Besides,
the FARs of these two statistics are approximately equal
to the significance level α = 0.01, implying that the control
limits (22) and (23) are determined reasonably.

4.2 The CSTR Process

The CSTR process (Li et al., 2010) can be described as
follows

dCA
dt

=
q

V
(CAf − CA)− k0exp(− E

RT
)CA + v1 (25)

dT

dt
=
q

V
(Tf − T ) +

−∆H

ρCp
k0exp(− E

RT
)CA

+
UA

V ρCp
(Tc − T ) + v2

(26)

where CA is the outlet concentration of component A, T
and Tc are the temperatures of reaction and cooling water,
respectively, and q is the flow rate of feed. CAf and Tf are
the feed concentration and temperature, respectively. v1
and v2 are white Gaussian noises with zero mean, and
they are independent. Other variables in (25) and (26) are
constants. Four measurements in the process, i.e. CA, T ,
Tc, and q are used. Please refer to Li et al. (2010) for more
details about the process. A sensor precision degradation
fault is imposed on the fourth variable q.
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Fig. 8. Fault detection by the proposed method in the
CSTR process

Fig. 8 shows the monitoring result by the second-order
statistics analysis method. The sensor precision degrada-
tion fault is effectively detected, with satisfying FAR and
FDR. For comparison purpose, Table 2 shows the fault
detection results provided by other methods. Again, for
the CSTR process the second-order statistics method is
the most efficient.

5. CONCLUSIONS

In this work, the fault detection task for sensor precision
degradation within the SPM framework has been involved.
Instead of monitoring process variables themselves, the
proposed method monitors the second-order statistics of
process variables. It has been revealed in the literature
that traditional PCA is sensitive to faults which cause
mean shift rather than variance change. As analyzed, the
characteristic of sensor precision degradation can just be
reflected by the deviation (increase) of the faulty vari-
able’s variance. Consequently, though traditional PCA and
DPCA are not efficient in monitoring the sensor precision
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Table 2. Comparison of various fault detection methods

PCA DPCA DISSIM DISSIM Proposal
T 2 SPE T 2 SPE (w = 20) (w = 40) Dp Dr

FAR 0.9% 1% 1.2% 1.5% 1.1% 1.3% 0.4% 1.2%
FDR 2.7% 31.5% 3.5% 42% 25.5% 76.3% 97.9% 95.3%

degradation fault, monitoring the second-order statistics
by PCA is effective. Besides, it is observed that DISSIM
with a large window width can also exhibit satisfying
detection performance, because the fault characteristic is
indirectly reflected in its detection index. Simulation stud-
ies are carried out to demonstrate the effectiveness of the
proposed method. In the future, several research directions
based on the present work deserves further attention, such
as the fault isolation problem especially when the faulty
sensor is under closed-loop control.
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