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Abstract: The fixed-time control problems of a class of unknown nonlinear affine systems sub-
ject to external disturbances, unknown input dead zone and output constraints are considered in
this paper. The fixed-time state feedback control strategy with adaptive neural networks (NNs)
is designed. In the control design, the log-type barrier Lyapunov function (BLF) is chosen to
handle the system output constraint. Then, neural networks(NNs) are applied to compensate
for the adverse impact of unknown input dead zone and deal with system uncertainties. The
novel virtual controllers and novel online updating laws of neural network weights are proposed
to fulfill the fixed-time stability of closed-loop systems. The boundednesses of all the signals in
closed-loop system are demonstrated via Lyapunov stability theory. Eventually, the experiment
performed on the lithography machine is served to demonstrate good performance.

Keywords: fixed-time control, output constraints, neural networks, input dead zone,
lithography machine

1. INTRODUCTION

In most of the practical systems, since the initial condi-
tions are unknown and constantly changing, the finite-time
control cannot guarantee convergence performance of the
closed-loop system. By way of solving this problem, the
theory of fixed-time control is first investigated in Polyakov
(2012). Fixed-time control can well estimate the the upper
bound of convergence time, which is independent of the ini-
tial conditions and only related to the control parameters.

Input dead zone and output constraints exist in many
practical systems, which will have adverse effects on con-
trol performance if overlook these nonlinearities. As for
output constraint, the control method based on Barrier
Lyapunov Function (BLF) has been proved to be valid in
dealing with a large class of constraint problems. Ngo et al.
(2005) employed a log-type BLF to prevent constraint
violation but only for systems whose system information
were known. Due to the general uncertainty in the actual
system and the existence of uncertainty will reduce the
control performance of the system. NNs were applied to
approximate uncertainty of system and the log-type BLF
was combined with adaptive neural network control to
accomplish output constraints for nonlinear systems with
uncertain in Huang et al. (2019); Jia and Song (2017).
On the other hand, to deal with the input dead zone,
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dead zone inverse method was used to solve the problem
of dead zone nonlinearity early in Zhou et al. (2006).
However, dead zone inverse scheme needs the condition
for linear parameterization which is not satisfied with the
complex nonlinear dead zone in engineering. To overcome
this problem, NNs were also used to approximate the input
dead zone. In Liu and Zhou (2010), the unknown nonlinear
function and dead zone input were approximated by the
fuzzy-neural networks. Ulteriorly, Radial Basis Function
Neural Networks (RBFNNs)-based control consumes less
calculation resources than other structures which leads
to faster convergence of errors. Hence, in Yu and Du
(2011), a novel adaptive neural network control scheme
was developed to tackle the stabilization problem with
RBFNNs approximating the dead zone input. The above
literatures, however, did not take both input dead zone and
output constraint into account. To address the system con-
trol problem with multiple constraints, recently, He et al.
(2015a,b); Li et al. (2019) have proposed adaptive learning
control for uncertain nonlinear systems with input dead
zone and output constraint. However, these controllers
only achieved asymptotic stability or finite-time stability
of closed-loop systems.

Since the establishment of fixed-time stability requires
more rigorous conditions, the existing methods in solving
input dead zone and output constraints He et al. (2015a,b);
Li et al. (2019), which cannot be directly extended to fixed-
time control. In addition, the singularity problem caused
by the use of BLF in the fixed-time control design Jin
(2019) and the unknown nonlinearity of the input dead
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zone in the actual system, which makes the design of a
fixed-time controller extremely difficult and complicated.
Therefore, there were few results on how to solve the
problems of both input dead zone and output constraint
in fixed-time control. Ni et al. (2019) firstly considered the
fixed-time control problem of nonstrict-feedback nonlinear
system with input dead zone and output constraint. But
the design of the controller need to know the relevant
information of input dead zone, which is extremely difficult
to obtain in practical systems. Besides, it did not consider
the external disturbances. These deficiencies may make the
control performance of the actual systems worse or even
unstable.

Moreover, nonlinear affine systems are a common class
of nonlinear systems, and many practical systems can
be written as them such as power systems, robot arms,
induction motor and linear motor etc. However, there are
no research results on the fixed-time control of unknown
nonlinear affine systems under the conditions of unknown
input dead zone, output constraints and external distur-
bances. Motivated by aforementioned observations, this
paper aims to tackle the fixed-time control problem for un-
known nonlinear affine systems subject to unknown input
dead zone, output constraints and external disturbances.
RBFNNs are respectively utilized to approximate system
uncertainties and compensate for the effect of input dead
zone. The novel virtual controllers and the novel online
updating laws of neural network weights are designed to
accomplish the fixed-time stability of closed-loop systems.

Compared with the prior results, the contributions of this
paper are summarized as follows:

(1) Compared with He et al. (2015b), the novel virtual
controllers are designed by backstepping method, and
the novel neural network weight updating laws are de-
signed to achieve the fixed-time stability of unknown
nonlinear affine systems with output constraints, un-
known input dead zone and external disturbances.

(2) Compared with Ni et al. (2019), the fixed-time con-
troller designed in this paper does not need any in-
formation about input dead zone and considers the
external disturbance of the system, which improves
the control performance of the actual system.

(3) In this paper, the fixed-time control is first applied
to the motion control of lithography machine and
achieve high precision tracking.

Notation 1. In the later sections, λ(·) is the eigenvalue
of the matrix and λmax(·) is the maximum eigenvalue of
the matrix. For two m × n-dimensional matrices A =
[aij ], B = [bij ], i = 1, · · · ,m, j = 1, · · · , n, we define
(A ◦ B)ij = (a)ij(b)ij as hadamard product of matrices
A and B.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1 Problem Formulation

Consider a class of nonlinear affine systems in the following
form He et al. (2015b)

ẋj = xj+1 (j = 1, 2, . . . , n− 1)

ẋn = f(x) + g(x)u+ d(t)

y = x1 (1)

where x = [x1, x2, . . . , xn]
T ∈ Rn is system state vector,

d(t) is the unknown external disturbance. f(x) ∈ R, g(x) ∈
R are unknown system functions related to the states of
system (1). u is the control input of system (1) and input
dead zone is defined as:

u = D(v) =


Dr(v) if v ≥ br
0 if bl < v < br
Dl(v) Otherwise

(2)

where v is the dead zone input, br and bl are unknown
breakpoints of the dead zone and Dr(·) and Dl(·) are
unknown smooth functions of the dead zone.
To illustrate some results and analysis in this paper, the
following assumptions are presented

Assumption 1. The desired trajectory yd(t) is known and
bounded by a positive constant ydb and its derivatives are
all bounded.

Assumption 2. In system (1), the unknown system func-
tion f(x) and g(x) are all bounded, and the derivative of
g(x) is continuous and bounded.

Assumption 3. Ge et al. (2001) The unknown system
function g(x) is strictly either positive or negative and two
positive constants g, g can be find such that g ≥ |g(x)| ≥
g > 0, in this paper, without losing generality, we assume
g(x) > 0.

Assumption 4. As for the external disturbance d(t), there
exists a positive constant d such that |d(t)| ≤ d.

Remark 1. Assumptions 1 - 4 are common assumptions
for theoretical analysis of nonlinear systems in plenty of
literatures. Assumption 1 is the basic requirement in the
literatures involving the backstepping scheme. Assumption
2 is practically satisfied in most engineering applications.
Assumption 3 implies that the control gain of the system
cannot be increased to infinity and ensures the controlla-
bility of the system, moreover, the bounds of g(x) are un-
known in this paper and only used for theoretical analysis.
In Assumption 4, bounded external distance is a common
precondition in many literatures on system robustness.

2.2 Definitions and useful Lemmas

Definition 1. For the vector x = [x1, x2, · · · , xm]T ∈
Rm, define xn = [xn1 , x

n
2 , · · · , xnm]T ∈ Rm and xnT =

[xn1 , x
n
2 , · · · , xnm] ∈ Rm, where m,n ∈ N∗.

Lemma 1. Zuo (2015) For any xi ∈ R+, i = 1, · · · , n and
a ∈ (0, 1], we have (

n∑
i=1

xi

)a

≤
n∑

i=1

xai (3)

Lemma 2. Zuo (2015) For any xi ∈ R+, i = 1, · · · , n and
a ∈ (1,∞), we have(

n∑
i=1

xi

)a

≤ na−1
n∑

i=1

xai (4)

Lemma 3. Jin (2019) For any x, y ∈ R and ϵ > 0, a >
1, b > 1, (a− 1)(b− 1) = 1, then

xy ≤ ϵa

a
|x|a + 1

bϵb
|y|b (5)
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Lemma 4. He et al. (2015b) For any µ ∈ R+, the following
inequality holds for z ∈ R in the interval |z| < |µ|:

ln
µ2

µ2 − z2
≤ z2

µ2 − z2
(6)

Lemma 5. Jin (2019) For any x, y, z ∈ Rm, the following
equality holds

xT (y ◦ z) = (x ◦ y)T z (7)

Lemma 6. For any x, y ∈ Rm and δ > 0, the following
equalities holds

−x3T y ≤3δ
4
3

4
x3Tx+

1

4δ4
y2T y2 (8)

−xT y3 ≤3x2T y2 +
1

12
y2T y2 (9)

Proof. See the Appendix A. �
Lemma 7. Jin (2019) Consider the nonlinear system
shown as ż(t) = f(z(t)), where z ∈ Rn is the system state
and f(·) : R+ × Rn −→ Rn is a nonlinear function.and
the origin of it is presumed an equilibrium point. If a
continuous and differentiable positive definite function V
satisfies

V̇ (z) ≤ −aV p(z)− bV q(z) (10)

where a, b > 0 and p > 1, 0 < q < 1. Then, the system’s
origin is said to be fixed-time stable with the setting time
Tfd estimated by

Tfd ≤ Tmax =
1

a(p− 1)
+

1

b(1− q)
(11)

The purpose of this paper is to design a fixed-time con-
troller for system (1) subject to unknown input dead zone,
unknown external distances and output constraints. And
the controller can ensure the fixed-time convergence of
output tracking error while not violate the constraint.

3. FIXED-TIME STATE FEEDBACK CONTROL
BASED NEURAL NETWORK OF SYSTEM

In this part, the backstepping scheme is adopted in the
design of controller.
Step 1.
Letting e1 = x1 − yd and making its time derivative, we
have

ė1 = ẋ1 − ẏd = x2 − ẏd (12)

Then, the virtual controller α1 is designed as

α1 = −k1,1(µ2 − e21)
1
4
1

e1
ξe1 − k1,2(µ

2 − e21)
−1e31 + ẏd

(13)

and piecewise smooth function ξe1 is defined as

ξe1 =

{
(e21)

3
4 if |e1| ≥ γ1

e21(γ
2
1)

− 1
4 Otherwise

(14)

where k1,1, k1,2 > 0 and 0 < γ1 < µ.
considering the following barrier Lyapunov function can-
didate as

V1 =
1

2
ln

µ2

µ2 − e21
(15)

Letting α1 = x2 and substituting it into (12), we get

ė1 = −k1,1(µ2−e21)
1
4

1
e1
ξe1−k1,2(µ2−e21)−1e31. Then, taking

ė1 into the time derivative of V1, by Lemma 1 - Lemma 4,
we obtain two cases:
Case 1) (|e1| ≥ γ1):

V̇1 ≤ − ´k1,1(V1)
3
4 − ´k1,2(V1)

2 (16)

Case 2) (|e1| < γ1):

V̇1 ≤ − ´k1,1(V1)
3
4 − ´k1,2(V1)

2 + a1 (17)

where ´k1,1 = 2
3
4 k1,1, ´k1,2 = 4k1,2, a1 = k1,1(

γ2
1

µ2−γ2
1
)

3
4 , since

0 < γ1 < µ, a1 is a bounded positive number.
Combining with (16) and (17), we can write the above two
cases (|e1| ≥ γ1 and |e1| < γ1) in the same form as

V̇1 ≤ ´−k1,1(V1)
3
4 − ´k1,2(V1)

2 + a1 (18)

Remark 2. For virtual controller in (13), the piecewise
smooth function ξe1 designed in (14) is used to avert
singularity caused by the term 1

e1
ξe1 . Due to (13), we can

get lime1→0
1
e1
ξe1 = lime1→0 e1(γ

2
1)

− 1
4 = 0. In addition, a

very small value of γ1 will lead to a large value of the
virtual controller, which will lead to the failure of the
control algorithm. So we need to choose a suitable γ1
to meet the actual requirements. It is worth mentioning
that, compared with Jin (2019), we use inequality scaling
to discuss Lyapunov functions segmented by singularity
under the same structure, which makes our following
conclusions more complete.

Step j (2 ≤ j ≤ n− 1).
Letting ej = xj − αj−1, and its time derivative yields

ėj = ẋj − α̇j−1 = xj+1 − α̇j−1 (19)

The virtual controller αj is chosen as

αj = −kj,1
1

ej
ξej − kj,2e

3
j + α̇j−1 (20)

and piecewise smooth function ξej is defined as

ξej =

{
(e2j )

3
4 if |ej | ≥ γj

e2j (γ
2
j )

− 1
4 Otherwise

(21)

where 0 < γj , kj,1, kj,2 > 0
Considering the Lyapunov function candidate as

Vj = Vj−1 +
1

2
e2j (22)

and making time derivative of Vj and taking (19) - (21) in
it, by lemma 1-lemma 4, we also obtain two cases
Case 1) (|ej | ≥ γj)

V̇j ≤ − ´kj,1(Vj)
3
4 − ´kj,2(Vj)

2 +

j−1∑
i=1

ai (23)

Case 2) (|ej | < γj):

V̇j ≤− ´kj,1(Vj)
3
4 − ´kj,2(Vj)

2 +

j∑
i=1

ai (24)

where
´kj,1 = min(2

3
4 k1,1, 2

3
4 k2,1, · · · , 2

3
4 kj,1) (25)

´kj,2 = min(
4

j
k1,2,

4

j
k2,2, · · · ,

4

j
kj,2) (26)

and

ai = ki,1(γ
2
i )

3
4 i = 2, · · · , n− 1 (27)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1730



αi is a bounded positive number, and we can write the
above two cases (|ej | ≥ γj and |ej | < γj) in the same form
as:

V̇j ≤ ´−kj,1(Vj)
3
4 − ´kj,2(Vj)

2 +

j∑
i=1

ai (28)

Step n.
Letting en = xn − αn−1, and its time derivative yields

ėn = ẋn − ẋnd = f(x) + g(x)u− α̇n−1 + d(t) (29)

Defining the difference between the dead zone input and
output as △u, i.e., △u = v − u and substituting △u into
ėn, we obtain

ėn = f(x) + g(x)(v −△u)− α̇n−1 + d(t) (30)

Considering the Lyapunov function candidate as

Vn = Vn−1 +
1

2

e2n
g(x)

(31)

Substituting ėn into the time derivative of the Lyapunov
function (31), we have

V̇n =V̇n−1 +
fen
g

+ (v −△u)en +
end(t)

g

− α̇n−1en
g

− 1

2

ġe2n
g2

(32)

Consider system (1) under Assumptions 1-5 and the dead
zone input v is designed as

v =− kn,1
1

en
ξen · g− 3

4 − kn,2e
3
n · g−2

+
α̇n−1 − f

g
+

1

2

ġen
g2

− en
g2

− ken +△u (33)

and piecewise smooth function ξen is defined as

ξen =

{
(e2n)

3
4 if |en| ≥ γn

e2n(γ
2
n)

− 1
4 Otherwise

(34)

where 0 < γn, 1 < k and kn,1, kn,2 > 0.

Substituting (33) and (34) into (32), due to end(t)
g − e2n

g2 ≤
1
4 |d(t)|

2 ≤ 1
4d

2
, by lemmas 1-4, we obtain two cases

Case 1) (|en| ≥ γn):

V̇n ≤ ´−kn,1(Vn)
3
4 − ´kn,2(Vn)

2 +
n−1∑
i=1

ai +
1

4
d
2

(35)

Case 2) (|en| < γn):

V̇n ≤ − ´kn,1(Vn)
3
4 − ´kn,2(Vn)

2 +
n∑

i=1

ai +
1

4
d
2

(36)

where
´kn,1 = min(2

3
4 k2,1, 2

3
4 k3,1, · · · , 2

3
4 kn,1)

´kn,2 = min(
4

n
k2,2,

4

n
k3,2, · · · ,

4

n
kn,2) (37)

and

an = kn,1(γ
2
n)

3
4 g−

3
4 (38)

As to Assumption 2, an is a bounded positive number, and
we can write the above two cases (|en| ≥ γn and |en| < γn)
in the same form as:

V̇n ≤ ´−kn,1(Vn)
3
4 − ´kn,2(Vn)

2 +
n∑

i=1

ai +
1

4
d
2

(39)

since ai, (i = 1, · · · , n) are bounded positive constants and
the orders of almost all actual systems are finite, the term

∑n
i=1 αi is bounded by a positive constant.

However, the dead zone input v in (33) contains the terms
of unknown system functions f(x), g(x), and unknown
input deadzone effect ∆u. In practice, these unknown
terms make the control input unavailable for the system
(1). Hence, we use neural networks to approximate the
above unknown terms as follows:

θTψ(S) =− kn,1
1

en
ξen · g− 3

4 − kn,2e
3
n · g−2

+
α̇n−1 − f

g
+

1

2

ġen
g2

− en
g2

− ε1 (40)

θTd ψ(Sd) =△u− ε2 (41)

where θT ∈ Rl and θTd ∈ Rl are the ideal weights and ε1
and ε2 are approximation errors of the neural networks, l is
the number of neural nodes. ε1 and ε2 satisfy |ε1| < ε1 and
|ε2| < ε2, ε1, ε2 > 0 with S, Sd ∈ ΩS , where ΩS is a com-
pact set. S = [xT1 , x

T
2 , · · · , xTj , en], Sd = [xT1 , x

T
2 , · · · , xTj , v]

are the input of the neural networks. The basis func-
tion of the Radial Basis Function (RBF) ψ(S) =
[ψ1(S), · · · , ψl(S)] ∈ Rl,ψ(Sd) = [ψ1(Sd), · · · , ψl(Sd)] ∈
Rl are chosen as the Gaussian function of the form ψi(S) =

exp(−(S−ςi)
T (S−ςi)

ι2
i

), ψi(Sd) = exp(−(Sd−ςi)
T (Sd−ςi)

ι2
i

), i =

1, · · · , l, where ςi = [ςi1, · · · , ςil] ∈ Rl is the center of the
receptive field and ιi is the width of the Gaussian function.
In addition, from Ge et al. (2001), the norm of the vector
function ψ(·) are bounded by the number of neural nodes,
i.e., ∥ψ(·)∥2 < l.
Then, dead zone input v in (33) is rewritten as:

v = −ken + θ̂Tψ(S) + θ̂Td ψ(Sd) (42)

where θ̂Tψ(S) and θ̂Td ψ(Sd) approximate to the θTψ(S)
and θTd ψ(Sd). And the approximation error of weights are

defined as θ̃ = θ̂ − θ, θ̃d = θ̂d − θd.
Substituting (42) into (30), we have

ėn =g(θ̃Tψ(S) + θ̃Td ψ(Sd)− kn,1
1

en
ξen · g− 3

4

− kn,2e
3
n · g−2 +

1

2

ġen
g2

− en
g2

+
d(t)

g
− ken

− ε1 − ε2) (43)

Then, we reselect the Lyapunov function Vn of the form

Vn = Vn−1 +
1

2

e2n
g

+
1

2
θ̃TΦ−1θ̃ +

1

2
θ̃Td Φ

−1
d θ̃Td (44)

and the novel online updating laws of the NN weights are
designed as

˙̂
θ = −Φ(ψ(S)en + σ1θ̂ ◦ θ̂ ◦ θ̂ + σ2θ̂) (45)

˙̂
θd = −Φd(ψ(Sd)en + σd1θ̂d ◦ θ̂d ◦ θ̂d + σd2θ̂d) (46)

where σ1, σ2, σd1, σd2 > 0 and Φ,Φd are positive definite
matrices. The symbol ’◦’ is hadamard product operator.
Making the time derivative of the Lyapunov function (44)
and substituting (43) and (45) - (46)into it, we can obtain

V̇n ≤− ´kn−1,1(Vn−1)
3
4 − ´kn−1,2(Vn−1)

2 − kn,1(e
2
n)

3
4 g−

3
4

− kn,2e
4
ng

−2 − σ1θ̃
T (θ̂ ◦ θ̂ ◦ θ̂)− σ2θ̃

T θ̂

− σd1θ̃
T
d (θ̂d ◦ θ̂d ◦ θ̂d)− σd2θ̃

T
d θ̂d

− en(ε1 + ε2) +
end(t)

g
− e2n

g2
− ke2n +

n∑
i=1

ai (47)
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Next, we will further process the terms that with the
weight of neural networks in (47).

For the term −σ1θ̃T (θ̂◦ θ̂◦ θ̂) in (47), by Lemma 5 we have

−σ1θ̃T (θ̂ ◦ θ̂ ◦ θ̂) =− σ1θ̃
3T θ̃ − 3σ1θ̃

3T θ − 3σ1θ̃
2T θ2

− σ1θ̃
T θ3 (48)

For −3σ1θ̃
3T θ and −σ1θ̃T θ3in (48), using Lemma 6, we

have

−3σ1θ̃
3T θ ≤ 9σ1δ

4
3

4
θ̃3T θ̃ +

3σ1
4δ4

(θ2)T θ2 (49)

−σ1θ̃T θ3 ≤ 3σ1θ̃
2T θ2 +

σ1
12

(θ2)T θ2 (50)

For −σ1θ̃3T θ̃ in (48), using Lemma 2, we have

−σ1θ̃3T θ̃ ≤− σ1
lλ2max(Φ

−1)
(θ̃TΦ−1θ̃)2 (51)

Then, substituting (49)-(51) into (48) and choosing 0 <

δ < ( 23 )
3
2 , we can transform (48) into

−σ1θ̃T (θ̂ ◦ θ̂ ◦ θ̂) ≤
4σ1 − 9σ1δ

4
3

lλ2max(Φ
−1)

(
1

2
θ̃TΦ−1θ̃)2

+ (
3σ1
4δ4

+
σ1
12

)(θ2)T θ2 (52)

Note that the term −σd1θ̃Td (θ̂d ◦ θ̂d ◦ θ̂d) in (47) has the

same structure as −σ1θ̃T (θ̂ ◦ θ̂ ◦ θ̂), therefore, we can also
get

−σd1θ̃Td (θ̂d ◦ θ̂d ◦ θ̂d) ≤
4σd1 − 9σd1δ

4
3

d

lλ2max(Φ
−1
d )

(
1

2
θ̃d

T
Φ−1

d θ̃d)
2

+ (
3σd1
4δ4d

+
σd1
12

)(θ2d)
T θ2d (53)

For the term −σ2θ̃T θ̂ in (47), we can get

−σ2θ̃T θ̂ ≤− 1

2
σ2θ̃

T θ̃ +
1

2
σ2θ

T θ (54)

Furthermore, for −1
2σ2θ̃

T θ̃ in (54), we have

−1

2
σ2θ̃

T θ̃ =− 1

4
σ2θ̃

T θ̃ − σ2(θ̃
T θ̃)

3
4 + σ2(θ̃

T θ̃)
1
2

− 1

4
σ2

[
(θ̃T θ̃)

1
2 − 2(θ̃T θ̃)

1
4

]2
(55)

and

σ2(θ̃
T θ̃)

1
2 ≤ σ2

8
θ̃T θ̃ + 2σ2 (56)

Then, substituting (55) and (56) into (54), we can trans-
form (54) into

−σ2θ̃T θ̂ ≤− σ2(
2

λmax(Φ−1)
)

3
4 (

1

2
θ̃TΦ−1θ̃)

3
4

+
1

2
σ2θ

T θ + 2σ2 (57)

Note that the term −σd2θ̃Td θ̂d (47) has the same structure

as −σ2θ̃T θ̂, therefore, we can also get

−σd2θ̃Td θ̂d ≤− σd2(
2

λmax(Φ
−1
d )

)
3
4 (

1

2
θ̃Td Φ

−1
d θ̃d)

3
4

+
1

2
σd2θ

T
d θd + 2σd2 (58)

For −en(ε1 + ε2) +
end(t)

g − e2n
g2 in (47), it is easy to obtain

−en(ε1+ε2) ≤ e2n+
1
2 (ε

2
1+ε

2
2) and

end(t)
g − e2n

g2 ≤ 1
4 |d(t)|

2 ≤
1
4d

2
, therefore, we have

−en(ε1 + ε2) +
end(t)

g
− e2n
g2

≤ e2n +
1

2
(ε1

2 + ε22) +
1

4
d
2

(59)

Substituting (52)-(53), (57)-(58) and (59) into (47) yields

V̇n =− ´kn−1,1(Vn−1)
3
4 − ´kn−1,2(Vn−1)

2 − kn,1(e
2
n)

3
4 g−

3
4

− kn,2e
4
ng

−2 − κ1(
1

2
θ̃TΦ−1θ̃)2 − ρ1(

1

2
θ̃TΦ−1θ̃)

3
4

− κd1(
1

2
θ̃Td Φ

−1
d θ̃Td )

2 − ρd1(
1

2
θ̃Td Φ

−1
d θ̃d)

3
4 + C (60)

where

C =κ2(θ
2)T θ2 + κd2(θ

2
d)

T θ2d +
1

2
ρ2θ

T θ

+
1

2
ρd2(θd)

T θd +
1

2
(ε21 + ε22) +

1

4
d
2
+

n∑
i=1

ai (61)

Using lemma 1 and Lemma 2, we have

V̇n ≤ −ζ1(Vn)
3
4 − ζ2(Vn)

2 + C (62)

where

ζ1 =min(2
3
4 k1,1, 2

3
4 k2,1, · · · , 2

3
4 kn,1, ρ1, ρd1) (63)

ζ2 =min(
4

n+ 2
k1,2,

4

n+ 2
k2,2, · · · ,

4

n+ 2
kn,2

,
1

n+ 2
κ1,

1

n+ 2
κd1) (64)

and κ1 = 4σ1−9σ1δ
4
3

lλ2
max(Φ

−1) , κ2 = 3σ1

4δ4 + σ1

12 , κd1 =
4σd1−9σd1δ

4
3
d

lλ2
max(Φ

−1
d

)
,

κd2 = 3σd1

4δ4
d

+ σd1

12 , 0 < δ < ( 23 )
3
2 , 0 < δd < ( 23 )

3
2 , ρ1 =

σ2(
2

λmax(Φ−1) )
3
4 , ρ2 = 2σ2 +

1
2θ

T θ, ρd1 = σd2(
2

λmax(Φ
−1
d

)
)

3
4 ,

ρd2 = 2σd2 +
1
2θ

T
d θd.

Theorem 1. Under Assumptions 1-4, with the virtual con-
trollers (13) and (20), dead zone input (42), and the online
updating laws of neural network weights (45) and (46)
which are applied in the nonlinear affine system (1), the
following results hold.. (a)The output of system will not
exceed preset output constraints. (b) All the signals of the
closed-loop system are bounded.(c) The output tracking
error e1 will converge into the sets Θe1 , defined by

Θe1 :

e1 ∈ R||e1| ≤

√
µ2(e2C̄ − 1)

e2C̄

 (65)

in fixed time Tfd

Tfd ≤ Tmax =
4

ζ1
+

1

ζ2(1−ϖ)
(66)

where C̄ =
√

C
ϖζ2

and 0 < ϖ < 1.

Proof. (a) For inequality (62), if V 2
n ≥ C

ζ2
, we have

V̇n ≤ −ζ1(Vn)
3
4 < 0. Therefore, the Lyapunov function

Vn is bounded. This makes the barrier Lyapunov function
(15) bounded, thus output tracking error e1 is bounded by
constraint µ. By Assumption 1, system output is bouned
by µ+ ydb.
(b) From (a), we know Vi(i = 1 · · ·n − 1) are bounded
due to the boundedness of Vn, therefore the error ei are
bounded. The piecewise smooth function ξei are continu-
ous, which lead the virtual controllers αi to be continuous
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Fig. 1. The lithography machine system.

Fig. 2. Schematic diagram of experiment setup.

and bounded. Moreover, according to (44), the weights of

neural network θ̂, θ̂d are also bounded due to the bound-
edness of Vn. The boundedness of input of the dead zone
is guaranteed by the boundedness of the weights of neural
network and the Gaussian function ψ(S), ψ(Sd). Further,
it can easily explain that all the other signals in the closed-
loop system are also bounded.
(c)When there exist a positive constant 0 < ϖ < 1 which
satisfying C ≤ ϖV 2

n ζ2. From (62), we have

V̇n ≤− ζ1(Vn)
3
4 − (1−ϖ)ζ2(Vn)

2 (67)

Based on Lemma 7, Vn will converge to the set {Vn ≤√
C

ϖζ2
} within the setting time estimated in (66). This

guarantees that V1 = 1
2 ln

µ2

µ2−e21
≤ C

ϖζ2
. Then, tracking

error e1 will converge into the set Θe1 in fixed time Tfd. �

4. EXPERIMENT

The good performance of the proposed methods will be
shown by the lithography machine system which driven
by the linear motor in this section.

4.1 Nonlinear model of linear motor

A nonlinear affine system model in Tan et al. (2001) can
be developed to describe the dynamics of the linear motor.

ẋ = υ

υ̇ =
u− ffriction − fripple

m
+ ω(t)

y = x (68)

where ffriction is the friction force, fripple is the ripple
force, m is the mass of load, u is the developed force, and
ω(t) represents unknown external disturbances. It is worth
noting that the motor has the unknown input dead zone
which means that the motor cannot work when the input
is within the breakpoints of the dead zone.

4.2 Experiment Setup

The lithography machine system is displayed in Fig. 1. The
wafer stage driven by the linear motor (UM, Tecnotion) is

assembled on the air bearing. Position of the wafer stage is
acquired by the NI data acquisition system (NI PCI 6289),
which measured by the grating ruler (Mercury II 5000,
Micro-E) with the resolution of 5µm. The control input
is generated by the MATLAB-XPC-Target system in Fig.
2, which transmitted to drive the liner motor through the
data acquisition system and motor driver. The sampling
frequency is selected as 1000Hz.

4.3 Fixed-time State Feedback Control Based RBFNN
Experiment Implementation

The effectiveness of state feedback control based RBFNN
with output constraint will be verified by linear motor ex-
periment implementation. Before experiment, the relevant
parameters selection are set as follows, the number of neu-
ral nodes is set as l = 24, the center of activation function
ψ(·) is selected in the area of [−1, 1] × [−1, 1] × [−1, 1] ×
[−1, 1]. Initial weights of the neural network are set as

θ̂(0) = θ̂d(0) = [0, . . . , 0]T ∈ R24 . Then, the simulation
time is set as t = 20s, and the controller parameters are
chosen as k1,1 = 20, k1,2 = 5, k = 10, γ1 = 0.01,Φ =
100I16×16,Φd = I16×16, σ2 = σd2 = σ1 = σd1 = 0.001.
The constraint selected as µ = 0.1. Based on the above
parameters selection, we set desired trajectory and initial
values as: yd = sin( t2 ) + 0.05, x(0) = [0.01, 0]T .

Fig. 3. Actual outputs and reference trajectory under
fixed-time state feedback control based RBFNN.

Fig. 4. Tracking errors e1 = x1−yd under fixed-time state
feedback control based RBFNN.

The detailed experiment results are given in Fig. 3 - Fig.
6. In Fig. 3, the wafer stage can track the desired trajec-
tory well without exceeding the preset output constraint
through the fixed-time adaptive neural network controller
designed in this paper. Fig. 4 shows that the tracking error
e1 = x1 − yd converging into a small neighborhood of de-
sired trajectory yd within the setting time. The variation of
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Fig. 5. Control input under fixed-time state feedback
control based RBFNN.
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Fig. 6. Euclidean norm ∥θ̂∥, ∥θ̂d∥ under fixed-time state
feedback control based RBFNN.

control input and Euclidean norm of the RBFNN weights

θ̂, θ̂d are shown in Fig. 5 - Fig. 6.

5. CONCLUSION

In this work, the fixed-time control problem for an un-
known nonlinear affine system with unknown input dead
zone, external disturbance and output constraints has been
addressed. A novel fixed-time adaptive neural network
control scheme has been proposed, which combines a log-
type BLF with backstepping design method to obtain vir-
tual controllers and dead zone input. Then, RBFNNs are
utilized to compensate for unknown dead zone effect and
deal with system uncertainties. On this basis, a new online
weight updating algorithm of NNs has been designed. At
last, the experiment of lithography machine has shown
the proposed method can ensure a good performance of
the system under the constraints of output and unknown
input dead zone.

Appendix A. PROOF OF LEMMA 6

Before the proof, we define x = [φ1, φ2, · · · , φm]T ∈ Rm

and y = [ν1, ν2, · · · , νm]T ∈ Rm.
Then, for the term −x3T y, using Lemma 3, we can obtain

−x3T y ≤ 3δ
4
3

4

m∑
i=1

φ4
i +

1

4δ4

m∑
i=1

ν4i (A.1)

For the term −xT y3, we can get

−xT y3 ≤ 3

m∑
i=1

φ2
i ν

2
i +

1

12

m∑
i=1

ν4i (A.2)

Then, by (A.1) and (A.2), one can get Lemma 6.

REFERENCES

Ge, S., Lee, T., Hang, C., and Zhang, T. (2001). Stable
adaptive neural network control.

He, W., David, A.O., Yin, Z., and Sun, C. (2015a). Neural
network control of a robotic manipulator with input
deadzone and output constraint. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 46(6), 759–
770.

He, W., Dong, Y., and Sun, C. (2015b). Adaptive neural
network control of unknown nonlinear affine systems
with input deadzone and output constraint. ISA trans-
actions, 58, 96–104.

Huang, X., Song, Y., and Lai, J. (2019). Neuro-adaptive
control with given performance specifications for strict
feedback systems under full-state constraints. IEEE
Transactions on Neural Networks and Learning System-
s, 30(1), 25–34.

Jia, Z. and Song, Y. (2017). Barrier function-based neural
adaptive control with locally weighted learning and
finite neuron self-growing strategy. IEEE Transactions
on Neural Networks and Learning Systems, 28(6), 1439–
1451.

Jin, X. (2019). Adaptive fixed-time control for mimo
nonlinear systems with asymmetric output constraints
using universal barrier functions. IEEE Transactions on
Automatic Control, 64(7), 3046–3053.

Li, H., Zhao, S., He, W., and Lu, R. (2019). Adaptive
finite-time tracking control of full state constrained
nonlinear systems with dead-zone. Automatica, 100, 99–
107.

Liu, Y.J. and Zhou, N. (2010). Observer-based adaptive
fuzzy-neural control for a class of uncertain nonlinear
systems with unknown dead-zone input. ISA transac-
tions, 49, 462–9.

Ngo, K.B., Mahony, R., and Jiang, Z.P. (2005). Integrator
backstepping using barrier functions for systems with
multiple state constraints. In Proceedings of the 44th
IEEE Conference on Decision and Control, 8306–8312.
IEEE.

Ni, J., Wu, Z., Liu, L., and Liu, C. (2019). Fixed-time
adaptive neural network control for nonstrict-feedback
nonlinear systems with deadzone and output constraint.
ISA transactions.

Polyakov, A. (2012). Nonlinear feedback design for fixed-
time stabilization of linear control systems. IEEE
Transactions on Automatic Control, 57(8), 2106–2110.

Tan, K., Lee, T., Huang, S., and Leu, F. (2001). Adaptive-
predictive control of a class of siso nonlinear systems.
Dynamics and Control, 11(2), 151–174.

Yu, Z. and Du, H. (2011). Adaptive neural control
for a class of uncertain stochastic nonlinear systems
with dead-zone. Journal of Systems Engineering and
Electronics, 22(3), 500–506.

Zhou, J., Wen, C., and Zhang, Y. (2006). Adaptive output
control of nonlinear systems with uncertain dead-zone
nonlinearity. IEEE Transactions on Automatic Control,
51(3), 504–511.

Zuo, Z. (2015). Nonsingular fixed-time consensus tracking
for second-order multi-agent networks. Automatica, 54,
305–309.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1734


