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Abstract: In modern industry, timely and accurate fault diagnosis plays an important role
in satisfying the demands of production safety and stability of production quality. This paper
dedicates on propagation path identification of faults in industrial processes, which will offer
a feasible technology or solution to take corrective and timely maintenance measures for field
engineers. Specifically, a recurrent neural networks-based Granger causality analysis approach
is developed, which has sufficiently considered the nonlinear and dynamic relationships among
time series after faults happen. Finally, we validate our approach on a typical industrial process,
finishing mill process, to demonstrate the efficiency of the proposed scheme.
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1. INTRODUCTION

Modern industrial processes, like steel-making and chem-
ical, are progressing towards large-scale, continuous and
automation. Since there are too many coupled control
loops and processes in the whole production line, an ab-
normal operation may cause widespread alarms because of
coupling relationships and propagation characteristics of
faults, which seriously affects the production performance
and final product quality. Associated with these trends,
process monitoring and fault diagnosis play an important
role in satisfying the demands of production safety and
stability of production quality.

As the core technologies in process monitoring and fault
diagnosis, faut detection, diagnosis and classification have
been paid extensive attention in academic research and
industrial application areas (Yin et al., 2014; Chen et
al., 2019; Ge et al., 2018; Ma et al., 2020a). However,
in contrast with the achievements in above areas, limited
attentions have been focus on propagation path identifi-
cation approaches and their applications. Although some
data-based causality analysis means, like cross-correlation
function (CCF) (Bauer et al., 2008) and Granger causality
(GC) analysis (Yuan et al., 2014; Landman et al., 2014),
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have obtained satisfactory results, most of them assume
linear dynamics. As well known, time series may turn into
non-normally distributed or non-stationary after faults
happen (Ma et al., 2020b), which make those approaches
be impossible to achieve satisfactory causality analysis
results. In such cases, several methods, such as dynamic
time warping (DTW) (Li et al., 2016) and transfer entropy
(TE) (Schreiber, 2000), have been developed. However,
issues on higher computational complexity still have for
industrial processes, which may limit further promotions
and applications. More importantly, most of current meth-
ods are focused on fault diagnosis, while propagation path
identification problems have not been in-depth studies
(Landman et al., 2019; Ma et al., 2018; Ahmed et al.,
2017), especially for faults in industrial processes.

Motivated by above observations, in this paper, the prop-
agation path identification issue on faults is investigated
from a new perspective, which combines recurrent neural
networks (RNNs) with GC analysis method. The proposed
scheme has fully considered the nonlinear and dynamic
relationships among time series after faults happen, which
will provide a feasible technology or solution to take correc-
tive and timely maintenance measures for field engineers.

The remainder of this work is organized as follows. In
Section 2, the basic ideas of GC analysis and problem
formulation are presented. Then, Section 3 is focused on
the developed method for faults in industrial processes.
Next, a case study on finishing mill process (FMP) is given
in Section 4. Finally, conclusions are made in Section 5.
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Fig. 1. Illustration of modeling GCs using MLPs

2. PROBLEM FORMULATION

In this section, the basic ideas of GC analysis method are
described in brief. Then, the problem formulation is given.

Let x(t) ∈ Rp for t = 1, · · · , T denotes a p-dimensional
time series, then time series analysis based on GC can be
defined as:

x(t) =

R∑
r=1

A(r)x(t− r) + e(t) (1)

where A(r) ∈ Rl×l represents linear dependency relation-
ships of x(t) to x(t − r) up to lag R, e(t) denotes white
noise (Bressler et al., 2010).

In above model, if ∀r, A(r)
ij = 0, then j does not have

causality with i. Therefore, the above time series analysis
can be determined by:

min
A(1),··· ,A(R)

T∑
t=1

(
x(t)−

R∑
r=1

A(r)x(t− r)
)2

+

α
∑
ij

‖ A(1)
ij , · · · , A

(R)
ij ‖2

(2)

where ‖ ∗ ‖2 is L2 norm used for shrinking all values to 0,
α > 0 is a tuning parameter.

In industrial processes, once faults happen, the relevant
time series may change into non-normally distributed
and non-stationary, and the causalities may become non-
linear, which will influence causality analysis results. To
address above issues, in this paper, a new causality analysis
method is proposed, which benefits from classical RNNs
and GC analysis methods, which has fully considered the
nonlinear and dynamic relationships among time series
after faults happen.

3. THE PROPOSED PROPAGATION PATH
IDENTIFICATION METHOD

Due to the RNNs can compress the past of a time series
into a hidden state, it is very suitable for modeling nonlin-
ear time series. Inspired by the works of Tank et al (Tank
et al., 2018a,b), based on above linear model, a nonlinear
model can be constructed by:

x(t) =x̂(t) + et = g
(
x(t− 1), · · · ,x(t−R)

)
+ et

=

 g1(x(t− 1), · · · ,x(t−R))
...

gp(x(t− 1), · · · ,x(t−R))

+ et
(3)

where gi(•) denotes how the past R lags influence i.

Then, the p time series can be modeled by p distinct mul-
tilayer perceptron (MLP) separately, as presented in Fig.
1. The value of GCs can be calculated by the magnitudes
of encoder weights.

Assume that b denotes the number of hidden units in
the 1st encoder layer, Ah ∈ RpR×b denotes the encoder
weights of the hth MLP module. It can be seen that if
Ah

prb′ = 0, then xp(t− r) does not affect b′. Therefore, the
hth MLP can be transformed into:

min
Ah

MLP

L = min
Ah

MLP

T∑
t=1

(
xh(t)− gh(x(t− 1), · · · ,x(t−R))

)2
+ α

b∑
b′=1

R∑
r=1

‖ Ah
1rb′ , · · · , Ah

prb′ ‖2

(4)

where Ah
MLP are weights of decoders and encoders for the

hth MLP module.

Suppose that yt−1 ∈ Rb is the bth hidden state at t, then
the hidden state at t− 1 can be updated by:

yt = f(xt,yt−1) (5)

where f(?) is a nonlinear recurrent function.

The standard RNNs model takes the form:

ft = σ(Afxt +Bfy(t−1)) (6)

it = σ(Ainxt +Biny(t−1)) (7)

ot = σ(Aoxt +Boy(t−1)i) (8)

ct = ft � ct−1 + it � σ(Acxt +Bcy(t−1)) (9)

yt = ot � σ(ct) (10)

where σ is sigmoid function, � represents componentwise
multiplication, it, ft, ot and ct denote input, forget, output
gates and state cell, respectively, of which ct can be
transformed into the hidden state used for prediction yt.
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Fig. 2. Schematic layout of the HSMP

Thus, the set of input matrices can be obtained by:

A = [(Af )T , (Ain)T , (Ao)T , (Ac)T ]T (11)

which reflects how the past time series xt affects the forget
gates, input gates, output gates and cell updates.

A group lasso penalty across columns of A can be used for
selecting which series cause series i during estimation:

min
A,B

T∑
t=2

(xit − gh(x(t− 1), · · · ,x(t−R)))2 + λ

p∑
j=1

‖A:j‖2

(12)
where

B = [(Bf )T , (Bin)T , (Bo)T , (Bc)T ]T (13)
If λ is enough large, then many columns of A will be zero,
which results in a sparse set of Granger causal connections.

To this end, the GCs of all variable pairs GCxi(t)→xj(t) can

be built by A = [A1, · · · , Ap]. Then, GCs can be calculated
by:

GC =

GCx1(t)→x1(t) · · · GCxp(t)→x1(t)

...
. . .

...
GCx1(t)→xp(t) · · · GCxp(t)→xp(t)



=



√√√√ b∑
b′=1

R∑
r=1

(A1
1rb′)

2 · · ·

√√√√ b∑
b′=1

R∑
r=1

(A1
prb′)

2

...
. . .

...√√√√ b∑
b′=1

R∑
r=1

(Ap
1rb′)

2 · · ·

√√√√ b∑
b′=1

R∑
r=1

(Ap
prb′)

2


.

(14)

Further, in order to get binary GCs, the following thresh-
old must be set. That is, if

GCxi(t)→xj(t) ≥ γmax(GC) (15)

where γ is a proportionality coefficient determined by
expert knowledge. If above formula satisfies, then relevant
elements of GC can be appointed to 1, and 0 otherwise.

4. A CASE STUDY ON FMP

In this section, the new scheme will be used for FMP,
and real datasets are for validating the performance of the
developed propagation path identification method.

4.1 Process description

Hot strip mill process is a typical multi-stage, long-process
industrial process, which involves complex physical and
chemical changes from raw materials to final products.
There are lots of coupled control loops and variables
in the manufacturing line, an abnormal operation may
cause widespread alarms, which seriously affects system
safety, reliability and final product quality. As a result, it
is a hot topic to ensure high-quality and high-efficiency
operation nowadays by means of reasonable propagation
path identification technology.

As shown in Fig. 2, the whole production line is composed
of six subprocesses, where FMP is the crucial one, which
will be used as background process in this paper. It can
be seen that there are seven stands in the finishing mill
group. In each stand, hydraulic cylinder is used for strip
gauge control, and electromechanical system rotates the
rolls to make strip steels move forward smoothly.

According to the analyses above, the developed framework
will be applied for identifying the propagation path of
faults in FMP. The measured variables of FMP are listed
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Table 1. Description of process variables in FMP

Variable Description Unit

1− 7 Average gap of the qth stand, q = 1, ..., 7 mm
8− 14 Total force of the qth stand, q = 1, ..., 7 MN
15− 20 Work roll bending force of the qth stand, q = 2, ..., 7 MN

Table 2. GC-based causality matrix

Variable No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
10 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

in Table 1. When the considered fault occur, it not only
influences the rolling force in the associated stand and
ambient temperature, but also makes subsequent stand
cannot satisfy the reduction rate accurately, which finally
affects the exit strip thickness or flatness.

4.2 Propagation path identification results

During simulations, based on Bayesian information crite-
rion (BIC), the model order R was set as 5. Moreover,
the tuning parameter α, the number of encoder layers, b
and λ were chosen to be 0.13, 1, 32 and 0.1, respectively.
Further, in order to get the binary GCs, the threshold was
set as 0.33. The causality matrix is listed in Table 2, where
the columns and rows are cause and response variables,
respectively. Then, the propagation path identification re-
sults are shown in Fig. 3. It can be observed that variable
4 can be diagnosed as the root cause of the fault. After this
fault happens, by means of feedback control, total forces of
the 5th, the 7th and average gap in the subsequent stands
are influenced by this abnormal event.

It can be seen that well identification performance can
be got by the new method, which will provide a feasible
technology or solution to take corrective and timely main-
tenance measures for field engineers.

5. CONCLUSION

In this paper, an accurate propagation path identification
method has been designed from a new perspective, which is
crucial for supporting the field engineers’ decision making.
Based on the framework, the new RNNs-based GC analysis
method was applied to construct causal topologies for
identifying the propagation path, which has fully con-
sidered the nonlinear and dynamic relationships among
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Fig. 3. Propagation path identification results

time series after faults happen. Finally, the validity of
the developed algorithm was verified with real FMP data,
where well identification performance has been obtained.
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