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Abstract: Data selection is a critical issue in data-driven soft sensor design. The paper proposes a new 

method for data selection based on a feature extraction step, followed by data selection algorithms. The 

method has been applied to an industrial case study, i.e., the estimation of the quality of processed 

wastewater produced by a Sour Water Stripping plant working in a refinery. The paper reports the results 

obtained with different data selection algorithms. The comparison has been performed both by using raw 

data and the feature extraction phase.    
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1. INTRODUCTION 

The monitoring of processes is a significant issue in many 

industrial applications, where relevant variables need to be 

measured for either controlling, monitoring, or fault-detection 

purposes. Acquiring data requires installing measurement 

equipment, which needs to work online, with a corresponding 

economic effort, due to hardware and maintenance costs. 

Eventually, measuring hardware works in harsh environments, 

with significant risks of failures. A meaningful alternative to 

conventional instrumentation is using Soft Sensors (SSs).  An 

SS is a software tool that estimates relevant quantities (the SS 

outputs), as a function of a set of input quantities (the SS 

inputs). They are used when the output quantities are either 

hard to be measured, or acquired with too low a sampling time 

for implementing efficient control or monitoring policies.  

Nonlinear data-driven models are widely used in the design of 

SSs for industrial applications, e.g., Kadleck et al. (2009), 

Fortuna et. al. (2005), Fortuna et al. (2006), Fortuna et al. 

(2007), Chen et al. (2011), Yao et al. (2017), Yuan et al. 

(2017), Yuan et al. (2018), because of the complexity of 

involved phenomena that hinders the implementation of first-

principle models. The SS design relies on the quality of data 

used in the synthesis phase; the better the data quality, the 

better the SS performance.  It is required that data used in the 

design phase of the SS represent all the process dynamics. 

Unfortunately, it is generally hard running experimental 

campaigns ad-hoc, so that the SS is designed based on 

historical databases. Usually, input quantities are acquired at a 

very fast pace, while output variables are acquired only a few 

times per day. Such a condition occurs, e.g., when input 

variables are process quantities (such as flows, temperatures, 

and pressures), and the output variables are quality indicators 

(such as composition). In such cases, the output quantity is 

measured by lab analyses on material samples taken from the 

process.  A dramatic reduction of available data results in these 

cases, named “data scarcity” problem, Fortuna et al. (2009), 

Napoli et al. (2011), and Fortuna et al. (2007). In such cases, 

the opportunity to efficiently process the set of available data 

is even more critical, Fortuna et al. (2007), and suitable 

approaches, including semi-supervised learning, have been 

proposed, Shao et al., (2017), Andò et al. (2019), and Graziani 

et al. (2018).   

Neural Networks (NNs) are a common design tool for data-

driven SSs, Fortuna et al. (2007). The training of NN-based 

SSs requires to organize data into learning, validation, and test 

data sets. Learning and validation data sets are used for the NN 

training. The test data set is used for estimating the SS 

performance. The most obvious method for organizing data is 

randomly picking-up input-output pairs. Nevertheless, 

techniques exist in literature for more efficient extraction of 

learning data from the whole set,  Singh et al. (2019), and 

Galvao et al. (2005).  

In this paper, the effect of data selection methods on the 

performance of SSs designed in the presence of the “data 

scarcity” problem is investigated. More specifically, the 

DUPLEX and SPXY methods are considered, Singh et al. 

(2019). Both SSs designed on randomly picked data, and SSs 

designed by selecting data by using DUPLEX  and SPXY have 

been considered. As a novel contribution, here, the selection 

methods mentioned above are applied both to the input data 

and to features extracted from original data. More specifically, 

features are obtained by using a one-layer denoising 

autoencoder, Goodfellow at al. (2016), and Yu et al. (2018).   

The investigation is performed on data collected from a Sour 

Water Stripping (SWS) plant, working in a large refinery in 

Sicily. The Authors have already investigated this process as a 

case study affected by data scarcity, Graziani et al. (2018). In 

the following, details about the SS design, performed by using 
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the proposed selection methods are reported. A comparative 

analysis of the obtained results is moreover performed. 

2. THE DESIGN OF THE SS FOR THE SWS PLANT 

The SWS plant processes the wastewater produced by the 

refinery Gofiner plant. Resulting water is released, as the 

output of the plant, to the wastewater refinery system. The gas 

produced by the SWS, as a further output, is fed to the refinery 

Sulphur Unit. The quality of the SWS output is measured by 

the concentration of H2S and NH3 in the wastewater.  A scheme 

of the process and the variable Tags, is shown in Fig. 1. 

 

Fig. 1. Scheme of the SWS (T103) and corresponding variable 

Tags. 

The estimation of H2S by using a SS is investigated in the 

following. Input variables for the SS design were selected 

according to suggestions from the SWS plant technologists. 

The list of selected input and output variables is reported in 

Table 1. The adopted notation, Tags, and units for the 

considered variables are also given. Input variables are 

acquired at a sampling interval of Ts=1 min and averaged. The 

mean values, in 15 min, are, finally, stored in the database. 

Data were extracted from the plant database. The plant outputs 

are sampled once a day and the concentrations of H2S is 

obtained offline by laboratory analyses.  

The output sampling frequency is too low for process 

monitoring. An SS is required for estimating the process 

output quality in real-time. The SS needs to be designed on the 

basis of a small dataset.   

The original dataset refers to a period lasting 1345 d. As a first 

step, data extracted from the plant database were processed for 

eliminating outliers. According to plant technologists’ 

suggestions, NaN samples, flat data, and values larger than 30 

ppm were removed. Data corresponding to 700 d were 

available for the SS design. 

The proposed SS will assume the form of a static nonlinear 

MISO model, where the input will contain values of the 

process variables, and the output will be the H2S concentration 

(see Table. 1).  

Let consider a MISO (Multi-Input Single-Output) system with 

p input variables u=[u1,….,up] and one output y. 

Table 1. Input and Output Variables, Tags and Units 

 Variable description Tag (Fig.1) Unit 

u1 Steam to T103 14F008RC kg/h 

u2 Feed to T103  14F010RC m3/h 

u3 BA gas pressure 14P001RC N/cm2 

u4 
E-106 output flow 

temperature 
14T003RC °C 

u5 
T-103 top steam 

temperature 
14TI011 °C 

u6 
T-103 bottom to E-105 

temperature 
14TI015 °C 

u7 
T-103 bottom from E-

105 temperature 
14TI016 °C 

y1 
H2S content in SWS 

output  
1404A004.AN ppm 

 

The nonlinear model assumes the form:  

𝑦(𝑘) = 𝑓(𝒖(𝑘)) = 𝑓(𝑢1(𝑘)), … , 𝑢𝑝(𝑘)),  (1) 

being f() a suitable nonlinear function of the vector u. 

Two-layers Multilayer Perceptrons (MLPs) will be used to this 

aim.  

In the next section, methods used for selecting data for MLPs 

training. i.e, building the learning, validation, and test datasets, 

will be described. 

It is worth mentioning that, though the case study refers to a 

static model, the proposed strategy can be applied to the more 

general case of nonlinear  FIR or nonlinear ARX models. 

3. METHODS FOR DATA SELECTION IN THE DESIGN 

OF DATA-DRIVEN MODELS 

Data selection is one of the main challenges in SSs design and 

many methods have been proposed, Kennard et al. (2969), 

Daszykowski et al. (2002),  Marengo et al. (1992), Saptoro et 

al. (2012), and Gao et al. (2018).  Nevertheless, many 

applications are proposed in literature based on the random 

selection of input data. In Singh et al. (2019),  methods for data 

selection are proposed for the case of large datasets. Here, the 

same problem is addressed to cope with the problem of data 

scarcity. More specifically, among possible data selection 

methods, the DUPLEX and SPXY algorithms are used, as 

representative of methods that exploit statistics on the input 

data and input-output data, respectively. Generally, the 

methods mentioned above are applied to raw input-output data. 

In this paper, as a novel contribution, the selection methods are 

applied to a different kind of dataset. More specifically, a 

preprocessing phase is used for extracting, from raw data, a set 

of features. These are obtained by using a denoising 

autoencoder, Goodfellow at al. (2016). The data selection 

methods are then applied to the feature-output dataset. This 

allows for exploiting the high-level information contained in 

the features, which might be more representative than the 

original data.  
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The DUPLEX algorithm involves the following steps, Singh 

et. al., 2019:  

 calculate the Euclidean norm, between all possible 

input data couples and select the couple associated 

with the maximum value of the norm;  

 add the selected couple to the training dataset; 

 move the couple associated with the second largest 

norm value to the test dataset;  

 calculate the norms between the two selected 

couples and all data still contained in the original 

dataset. The point associated with the maximum 

distance from the couple in the train set is selected 

for the training set. The same criterion is applied for 

the test dataset.  

 Continue applying the selection method until all 

available data are considered.  

The SPXY algorithm has been proposed to include statistics 

of both the input and output variables, Singh et. al., 2019. It 

is based on the same routine as for the DUPLEX method 

reported above. The distance is modified as:  

�̃�𝑢𝑦(𝑧, 𝑣) =
𝑑𝑢(𝑧,𝑣)

𝑚𝑎𝑥𝑧,𝑣∈𝐷𝑑𝑢(𝑧,𝑣)
+

𝑑𝑦(𝑧,𝑣)

𝑚𝑎𝑥𝑧,𝑣∈𝐷𝑑𝑦(𝑧,𝑣)
  , (2) 

being d(,)  is the Euclidean norm, D is the dataset, and (z, v) 

are elements of the dataset.  

Both the SPXY and DUPLEX methods have been used in the 

procedure proposed in this paper. More specifically, these 

methods are applied to a set of features extracted from the 

original dataset. The procedure consists of the following steps:  

 apply a denoising autoencoder to the raw dataset;  

 extract the corresponding features;  

 use either the DUPLEX or SPXY method to the 

feature set, or to the feature set, complemented with 

the corresponding outputs, respectively, to create the 

train and test datasets.  

The obtained sets are used for the design of SSs by using  two-

hidden- layer  MLPs.   

4. NUMERICAL RESULTS AND DISCUSSION 

The procedure has been applied to the design of the SS 

introduced in Section 2. The available samples (700) were split 

into two sets, each one containing 50% of the original data. It 

is worth mentioning that this could not be the most effective 

choice when small data sets are available. Nevertheless, such 

a choice aimed at evaluating the improvements that can be 

achieved by using the proposed selection method.  For the sake 

of comparison, SSs, based on MLPs have been trained on the 

datasets obtained by the following algorithms:  

1) random selection from the raw dataset;  

2) DUPLEX algorithm applied to to the raw data;  

3) SPXY algorithm applied to the raw data; 

4) random selection from the feature dataset;  

5) DUPLEX algorithm applied to the feature dataset;  

6) SPXY algorithm applied to the feature and output dataset. 

The same numbering is adopted in the following of the paper 

when discussing the SSs performance. 

In order to extract the features, the same autoencoder, with five 

hidden neurons (i.e., five features) has been trained. Also, for 

each MLP topology, the same initial weight matrices have 

been used for all the algorithms. An exhaustive search has been 

performed for the MLP structure, with hidden neurons 

spanning in the range 3 to 10 neurons, for each hidden layer.   

The SS performance has been evaluated by using both the 

Correlation Coefficient (CC)  between the measured and 

estimated output value, and the Root Mean Square Error 

(RMSE) of the model residual. The coefficients have been 

evaluated both for the training and test data sets. In the 

following, the results of such an analysis are given in graphical 

form from Fig. 2 to Fig. 9. More specifically, the box plots of 

the CC and RMSE are reported for all mentioned methods. 

Each box plot reports the results obtained for all considered 

MLPs.  

 

Fig. 2. CC for SS obtained with the methods 1), 2), and 3) on 

the learning data.  

 

Fig. 3. CC for SS obtained with methods 1), 2), and 3) on the 

test data.  
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Fig. 4. RMSE for SS obtained with methods 1), 2), and 3) on 

the learning data.  

 

Fig. 5. RMSE for SS obtained with methods 1), 2), and 3) on 

the test data.  

 

Fig. 6. CC for SS obtained with methods 4), 5), and 6) on the 

learning data.  

 

Fig. 7. CC for SS obtained with methods 4), 5), and 6) on the 

test data.  

 

Fig. 8. RMSE for SS obtained with methods 4), 5), and 6) on 

the learning data.  

 

Fig. 9. RMSE for SS obtained with methods  4), 5), and 6) on 

the test data.  
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Most relevant parameters, extracted from results reported in 

Fig. 2 to Fig. 9, i.e., the median values of the CC and RMSE, 

the maximum CC value, and the minimum RMSE value are 

reported in Tab. 2 and Tab. 3, for the CC and RMSE, 

respectively.   

From Figs. 2, 3, 6, and 7, relating to the CC, it can be observed 

that a beneficial effect was obtained on the generalization 

properties of the SS (test data)  by using the DUPLEX 

algorithm. This effect exists both when the DUPLEX method 

is applied to the raw data or the features. Moreover, this effect, 

both in terms of the median and the dispersion of values,  is 

more evident in the second case (see Fig. 7).  

The SPXY works worse than random selection on the learning 

data set, but overperforms the random selection method on the 

test data. 

  Table 2. CC values on the learning and test datasets, for 

all methods 

 Learning Test 

 median Max median Max 

1 0.568 0.790 0.487 0.567 

2 0.453 0.687 0.528 0.641 

3 0.565 0.725 0.540 0.653 

4 0.575 0.668 0.501 0.579 

5 0.398 0.606 0.469 0.625 

6 0.572 0.675 0.563 0.674 

 

From Figs. 4, 5, 8, and 9, relating to the RMSE, it can be 

observed that, looking at the learning data, the data 

preprocessing with the autoencoder, generally improved the 

performance of the SS. The random selection and the 

DUPLEX algorithm are comparable, though DUPLEX is 

slightly better working.  Looking at the test data, the SPXY has 

smaller values of the RMSE, but much more dispersed values 

have been obtained. The DUPLEX works slightly better than 

random-selection method, both with and without autoencoder 

data preprocessing.   

It is worth noticing that using the DUPLEX algorithm, one 

network was obtained, guaranteeing both the largest CC value 

and the smallest RMSE.  This consistency was not obtained by 

using the SPXY method.  

As a final remark, though the improvement of SSs 

performance required an increase of the computation load, the 

most part of the load characterizes the SS design phase. The 

computational load of the on-line working is not significantly 

increased.  

Table 3. RMSE values on the learning and test datasets, 

for all methods 

 learning test 

 median min Median min 

1 1.410 1.047 1.343 1.266 

2 1.740 1.356 1.154 1.015 

3 1.371 1.139 1.339 1.199 

4 1.377 1.216 1.392 1.314 

5 1.737 1.470 1.176 1.051 

6 1.306 1.170 1.366 1.220 

 

Based on results discussed so far, the DUPLEX method, 

applied to the features, looks the most adequate for designing 

a SS for the SWS. More specifically, the best results have been 

obtained by an MLP with 10 and 6 neurons in the hidden 

layers. 

The time plot of the H2S concentration values and the 

corresponding estimation are reported in Fig. 10. More 

specifically, the graph reports the original data and the 

corresponding estimation, in the original time sequence.  

For the sake of completeness, the figure also shows the 

estimation obtained by using the best performing MLP, among 

those trained with the classical random selection of raw data.  

 

Fig. 10. Time plot of SS estimation of H2S, obtained with the 

methods 1) and 5). The plots refer to the whole available 

dataset.   

The proposed selection method (i.e., the autoeconder followed 

by the DUPLEX algorithm) allowed increasing the CC value 

from 0,56 to 0,67 and decreasing the RMSE value from 1.27 

to 1.22. Such values refer to the test data.  
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5.  CONCLUSIONS 

In the paper, methods for selecting data to be used in the design 

of data-driven SSs have been proposed and compared. More 

specifically, a new method based on the exploitation of 

features for data selection is proposed. Features are extracted 

by using a denoising autoecoder.  

The proposed method has been applied to a real industrial case 

of study, i.e,  the estimation of the quality of wastewater 

produced by a Sour Water Stripping process.  

The performance of the proposed method has been compared 

with the classical random selection method applied to the raw 

data. Reported results show a beneficial effect on the 

generalization capabilities of the SS. This reflects in an 

improvement of both CC and RMSE on test data processing.   

Thought the procedure has been applied to a static model, it 

can easily extended to dynamic nonlinear models, e.g., NFIR 

or NARX models, by arranging data in suitable time windows.  

The proposed method is a general one, and further 

developments are possible either by using different feature 

extraction methods and selection algorithms.  
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