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Abstract: Tablet manufacturing in the pharmaceutical industry involves batch fluidized bed
drying for particle moisture removal. This paper introduces five approaches for moisture content
monitoring, relying either on a complex phenomenological model or its simplified version. The
first two soft sensors consist of open-loop estimators, i.e. they simply simulate the models fed by
the manipulated variables. Three closed-loop moving horizon estimators based on the simplified
model are also proposed for improved robustness. In the first one, the measurements of the
inlet gas and particle temperatures feed back the soft sensor. The last two closed-loop observers
additionally can take into account infrequent delayed moisture content measurements, such as
at-line loss on drying analysis. A validation of the soft sensors is performed with experimental
data collected on a pilot scale fluidized bed dryer. Results show that the closed-loop observer
with the delayed moisture content measurements still has an accuracy that is equivalent (and
sometimes better) than the complex phenomenological model.

Keywords: state estimation, batch fluidized bed dryer, moving horizon estimator, offline
measurement, measurement delay

1. INTRODUCTION

Fluidized bed dryers (FBD) are commonly used in phar-
maceutical and food industries to remove excess of solvent
or water in solid materials, such as powders, by injecting
a continuous flow of a heated gas to force mass transfer.
The main objective in pharmaceutical batch drying is to
reach the desired moisture content without exceeding a
given constraint, such as a maximum particle temperature.
Model predictive control has shown to be an efficient tech-
nique for reducing cycle time (Obrégon et al., 2013) and
energy consumption (Gagnon et al., 2017), using in this
case a state estimator with moisture content measurement
feedback provided by a near-infrared (NIR) spectrometer.

NIR spectroscopy is a fast and non-destructive analytical
technique, widely used in pharmaceutical and food indus-
try for monitoring the moisture content (Roggo et al.,
2007). However, in the case of the FBD, NIR mois-
ture measurement is only reliable if the probe window is
cleared of powder accumulation and if particle fluidization
is established sufficiently (Tok et al., 2008). Moreover,
NIR spectroscope requires calibration that can hardly be
transferred between pharmaceutical products, devices and
equipment (Roggo et al., 2007).

Moisture content soft sensors could present alternatives or
back-up solutions to the NIR probe. For instance, Jensen

et al. (2011) proposed applications developed using em-
pirical models, Vieira et al. (2019) using machine learning
method such as artificial neural networks, and Zhang et al.
(2019), using Random Forest to monitor drying processes.
Lauri Pla et al. (2018) also proposed an estimator based
on mass and energy balance for pharmaceutical FBD. Al-
though these approaches could accurately estimate mois-
ture content, they cannot predict the behavior of the
system, and thus they can hardly be applied in a pre-
dictive control context. Process disturbances, differences
in pharmaceutical compounds and equipment size can
also be an issue when transferring this kind of soft sen-
sor between products or between different manufacturing
lines/equipment. Re-calibration is required in such case,
which is known to be time consuming. Moreover, the main
weakness of open-loop approaches is the potential process
evolution/variance over extended periods of time that may
cause the model to lack fit or accuracy over time. Use of
such models thus would require a periodic model check
and/or periodic model maintenance. For these reasons,
industrial applications must integrate measurement feed-
back and filtering properties of a nonlinear state estimator
like an extended Kalman filter (Li and Duncan, 2008) or
moving horizon estimator (Gagnon et al., 2017).

A moving horizon estimator (MHE) is a fixed-size win-
dow optimization-based observer described by Rao and
Rawlings (2002) that takes into account the last N mea-
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surement to estimate the model states. Compared to the
extended Kalman filter, the MHE main advantages are
that it can handle nonlinear dynamics (without lineariza-
tion) and state constraints (Haseltine and Rawlings, 2005).
Moreover, the MHE observation window offers a simple
way to handle measurements provided with variable delays
(Valencia et al., 2011).

This work presents different approaches for moisture con-
tent monitoring. They rely either on a complex phe-
nomenological model (two-phase) or its simplified version
(single phase). The same manipulated variables, i.e. the
air inlet temperature and volumetric flow rate controller
setpoints, feed both these models. The first two soft sensors
are open-loop estimators, i.e. they simply compute the
deterministic predictions based on these models. Three
closed-loop MHE soft sensors based on the simplified
model are also described. Only the inlet gas and particle
temperature measurements feed back the first one, but
the second one also relies on sporadic delayed moisture
content measurements, and the third one, on additional
propagation of them to generate a sequence of virtual
measurements. Estimated errors with experimental data
collected on a pilot scale FBD allow validating the perfor-
mance of all five soft sensors.

This paper is organized as follows. Section 2 summarizes
the experimental setup. The two-phase and single phase
models are presented in Section 3, and Section 4 describes
the five observers. Section 5 highlights, and discusses the
main results.

2. MATERIALS

Two-phase and single phase FBD models were calibrated
with experimental data collected on a 1 ft3 pilot scale
FBD. The experimental setup is the same as the one
described in Gagnon et al. (2020a). An Aeromatic MP-
1 fluidized bed dryer is used to dry 3.14 kg calcium
carbonate powder granulated with two excipients in small
quantity. 0.712 kg of purified water is also incorporated.
Inlet gas and particle temperature are measured with
resistance temperature detectors (RTD).

Two independent methods provide moisture content mea-
surements during the FBD operation: (1) a reliable inline
moisture content given by a Viavi Solutions MicroNIRTM

Pro near-infrared (NIR) spectrometer paired with a pre-
calibrated partial least squares model, and (2) an offline
sample differential mass analysis.

3. BATCH FLUIDIZED BED DRYER MODELS

Gagnon et al. (2020a) proposed a two-phase FBD state-
space model based on the Kunii-Levenspiel theory for
pharmaceutical applications. The two-phase model was
calibrated by a grey-box approach with experimental
datasets collected on the pilot FBD. Simulation of the
two-phase model was able to reproduce the pilot data
accurately with moderate computational effort. However,
when implemented in optimization-based estimation or
control algorithms, solving the model represents an ex-
cessive computational burden.

A simpler model is required to design the closed-loop
observers. Thus, Gagnon et al. (2020b) describe a single

phase FBD model, in which major simplifications to heat
and mass transfer are proposed. The single phase model
describes the continuous state-space representation from
which the closed-loop observer are designed. The follow-
ing paragraphs succinctly describe the single phase dryer
model equations and main assumptions.

Compared to the two-phase model, bubble phase is ne-
glected. Thus, the FBD content is considered to be a single
emulsion phase fluid composed of wet solid particles and
interstitial gas at a constant void fraction. The total mass
of particles mp in the FBD is :

mp = ms +mw (1)

where ms is the mass of solid material contained in the
FBD vessel. Thus, mw is the total mass of liquid water
including free and bound moisture. The particle moisture
content in dry basis is:

χp =
mw

ms
(2)

The mass balance is expressed in dry basis, but moisture
content measurement is given by the NIR probe in wet ba-
sis. The particle moisture content in wet basis is evaluated
by :

wp =
mw

mw +ms
=

χp
1 + χp

(3)

The moisture content in dry basis can be evaluated by the
following equation which will come handy to implement
offline moisture content measurement :

χp =
wp

100− wp
(4)

The moisture content gradient is the driving force of the
evaporation process. For simplicity purposes, an expo-
nential empirical function describes the saturation mixing
ratio :

γ(Tp) = α exp(βTp) (5)

where Tp is the particle temperature. α and β are empirical
coefficients.

Solid moisture removal kinetics are usually divided in
two parts for non-hygroscopic material. Prior to the crit-
ical moisture content χpc, the drying rate is considered
constant at isothermal conditions (constant rate period).
Past this point, the drying rate starts to decrease (falling
rate period). Since the moisture needs to diffuse from the
particle internal pores to the surface to evaporate, the
moisture content gradient should be limited in the falling
rate period, hence the empirical function :

ψ(χp) =

{
1 if χp ≥ χpc
(
χp

χpc
)ν if χp < χpc

(6)

where ν is an empirical coefficient describing the drying
rates.
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3.1 Mass balance

During drying, the gradient between the inlet gas moisture
content χ0 and particle film drives the water removal from
the solid content. Thus, assuming low χ0 values, the FBD
moisture content mass balance is :

dχp
dt

= a1V̇0,sp(χ0 − γ(Tp)ψ(χp)) (7)

where a1 is an empirical parameter that represents the
gas-particle mass transfer ratio per unit volume and V̇0,sp
is the volumetric flow setpoint.

3.2 Energy balance

Drying processes involve vaporization of the binding so-
lution, here water. Since the latent heat of vaporization
often exceeds the vapor heat, the latter is neglected. Ther-
modynamics properties, here densities and specific heat
capacities, are considered constant. Heat losses are also
neglected. Thus, the particle energy balance is :

dTp
dt

= b1V̇0,sp(χ0 − γ(Tp)ψ(χp)) + b2V̇0,sp(T0 − Tp) (8)

where b1 and b2 are empirical coefficients that both repre-
sent gas-particle ratios for enthalpies and heat transfer.

3.3 Inlet blower and heater

The inlet gas moisture content χ0 is assumed to be
constant. On the pilot FBD, inlet gas temperature and
flow rate are controlled by proportional-integral-derivative
controllers (PIDs). Since the closed-loop time response

between the volumetric flow setpoint V̇0,sp (m3 s−1) and

the corresponding value V̇0 (m3 s−1) is short, it is simply

assumed that V̇0 = V̇0,sp.

The model between inlet temperature setpoint T0,sp (◦C)
and value T0 (◦C) is :

dT0
dt

=
T0,sp − T0

τT
(9)

where τT is the inlet temperature time constant.

A grey-box identification algorithm is used to calibrate the
model with datasets coming from FBD batch experimen-
tations. The resulting parameters are given in Table 1.

3.4 State-space representation

Equations (5) to (9) describe the single phase model, the
states being

x(t) = [T0(t) χp(t) Tp(t)]
T

(10)

This system is dicretized by a fourth order Runge-Kutta
(RK4) method with a sampling time of 45s :

x(k + 1) = f
(
x(k),u(k)

)
(11a)

yT (k) = CTx(k) =

[
1 0 0
0 0 1

]
x(k) (11b)

yχ(k) = Cχx(k) = [0 1 0] x(k) (11c)

where f(•) model state update function. The model out-
puts are yT (k) and yχ(k). They are split into two equa-
tions to simplify the observer equations when the moisture
content measurement is not available.

Table 1. Single phase batch fluidized dryer
model parameter

parameter units value

a1 m−3 9.32E-05
b1 ◦Cm−3 4.69E-02
b2 m−3 2.61E-05
χpc 2.80E-02
χ0 1.50E-03
α 4.90E-03
β ◦C−1 5.70E-02
ν 3.04
τT s 86.7

4. OBSERVER-BASED SOFT SENSORS

The observer-based soft sensors are derived from the MHE
optimization-based algorithm. State estimation requires
measurements :

yT,m(k) = [T0,m(k) Tp,m(k)]
T

(12a)

yχ,m(k) =
wp,m(k)

100− wp,m(k)
(12b)

where T0,m (◦C) and Tp,m (◦C) are the inlet gas and par-
ticle temperature measurements, respectively. wp,m (%) is
the measurement of the wet basis moisture content in the
particles. The model input vector u are the PID controller
setpoints :

u =
[
T0,sp V̇0,sp

]T
(13)

4.1 Open-loop observers

The first two soft sensors are open-loop estimators, i.e.
they are the simulation of the two-phase and single phase
models fed by the input vector u and without measure-
ment feedback. State estimation is performed by recur-
sively solving the discrete state-space representation pre-
sented in Gagnon et al. (2020a) or the equations (11a) to
(11c) for both models respectively with the same initial
conditions described in the next section.

4.2 Moving horizon estimator

The proposed design makes use of the modifications in-
troduced by Gagnon et al. (2017), i.e. the MHE in the
predictor form, and a simplified arrival cost. The notation
x̂j(i) refers to the estimated state vector at the discrete
time i estimated at the discrete time j.

The optimization problem is :
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min
x̂k(k−N),Ŵk

Φk + ẐTk M̄Ẑk (14)

in which the first term of the cost function Φk is :

Φk =
(
x̂k(k −N)− x̄k

)T
P−1

(
x̂k(k −N)− x̄k

)
+ ŴT

k Q̄−1Ŵk + V̂T
k R̄−1V̂k

(15)

where N is the dimension of the observation window and
subject to the disturbed model :

x̂k(k + 1) = f
(
x̂k(k), u(k)

)
+ ŵ(k) (16a)

yT (k) = CTx(k) + v̂(k) (16b)

yχ(k) = Cχx(k) + ẑ(k) (16c)

and constrained by :

x̂min < x̂k(k − i) < x̂max ∀ i ∈ [−1 . . .min{k,N}] (17)

In the disturbed model equations (16a) and (16b), w, v
are the process noise vector and measurement noise vector.
They are considered white Gaussian noise signals with
covariance matrices Q and R respectively. In equation
(16c), z is the moisture content measurement noise and it
is considered a white Gaussian noise signal with variance
1/Mi. Weighs in (14) are diagonal matrices such as :

Q̄ = diag
(
Q,Q, . . . ,Q

)
[3(N+1)×3(N+1)]

(18a)

R̄ = diag
(
R,R, . . .R

)
[2(N+1)×2(N+1)]

(18b)

M̄ = diag
(
M−N ,M−N+1, . . . ,M0

)
[(N+1)×(N+1)]

(18c)

P = Cov
(
x(k −N), x̂k(k −N)

)
[3×3]

(18d)

In the cost function in (14), the estimated process and
measurement noises over the observation window are :

Ŵk =


ŵ(k −N + 0)
ŵ(k −N + 1)

...
ŵ(k)

 (19a)

V̂k =


yT,m(k −N + 0)−CT x̂k(k −N + 0)
yT,m(k −N + 1)−CT x̂k(k −N + 1)

...
yT,m(k)−CT x̂k(k)

 (19b)

Ẑk =


yχ,m(k −N + 0)−Cχx̂k(k −N + 0)
yχ,m(k −N + 1)−Cχx̂k(k −N + 1)

...
yχ,m(k)−Cχx̂k(k)

 (19c)

They are obtained by recursively solving the disturbed
model equation :

x̂k(k − i+ 1) = f
(
x̂k(k − i), u(k − i)

)
+ ŵ(k − i) (20)

When the optimal arguments, x̂k(k − N) and Ŵk, are
computed, the state estimation at the next discrete time
x̂k(k + 1) is obtained by recursively applying equation
(20) down to i = 0. Equation (14) is solved with MAT-
LAB function fmincon using a combination of sequential
quadratic programming method and central finite differ-
ence calculations. Discrete time is incremented and this
estimated state is used as the observer output. The MHE
optimisation problem is initialized with x̄k which is :

x̄k =

{
x̄0 if k ≤ N
x̂k−N−1(k −N) if k > N

(21)

where x̄0 =
[
T0,m(0)

wp,m(0)
100−wp,m(0) Tp,m(0)

]T
.

4.3 Closed-loop observer 1 : no moisture content measure-
ment

The third soft sensor is the closed-loop observer 1 (CLO1)
in which no moisture content measurement is taken into
account. Thus, the weights in equation (18c) become :

Mi = 0 ∀ i (22)

4.4 Closed-loop observer 2 : delayed moisture content
measurement

State estimation, provided by the MHE, is performed here
for N discrete time in the past. Thus, a delayed at-line
moisture content measurement can be inserted into the
observation window at the time it was taken leading to
the closed-loop observer 2 (CLO2).

wp,m(l) is an at-line loss on drying (LOD) measurement,
taken at time l but only becoming available at the time k
because of the analysis time. Thus, at present time k, the
measurement can be inserted in equation (19c) with the
delay being fixed at d = k − l:

yχ,m(k + i) =

{
wp,m(l)

100−wp,m(l) i = −d
0 otherwise

(23)

The weights are adjusted accordingly in equation (18c) :

Mi =

{
m i = −d
0 otherwise

(24)

At the next sampling time, the measurement value and
the weight are shifted :

yχ,m(k + i) =

{
wp,m(l)

100−wp,m(l) i = −d− 1

0 otherwise
(25)

Mi =

{
m i = −d− 1

0 otherwise
(26)

Shifting is repeated at the next sampling periods until the
values exit the time windows.
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4.5 Closed-loop observer 3 : delayed moisture content and
virtual measurements

A methodology is proposed to propagate the at-line LOD
measurement leading to closed-loop observer 3 (CLO3).
The idea consists in calculating, at the time the LOD
measurement becomes available, virtual moisture content
measurements ỹχ(−d+ 1), . . . , ỹχ(0) to fill the lower part
of the observation window. This is achieved by recursively
solving equations (11a) and (11c) with the initial condition[
T0,m(l)

wp,m(l)
100−wp,m(l) Tp,m(l)

]T
. Thus, at present time k,

moisture content measurement in equation (19c) become :

yχ,m(k + i) =


wp,m(l)

100−wp,m(l) i = −d
ỹχ(i) i ∈ [−d+ 1 . . . 0]

0 otherwise

(27)

and, in equation (18c), the weights become :

Mi =

{
m i ∈ [−d . . . 0]

0 otherwise
(28)

At the next sampling time a new virtual measurement
is obtained by pursuing one more step of the previous
calculations with (11a) and (11c). This new value is
inserted and the previous ones are shifted:

yχ,m(k + i) =


wp,m(l)

100−wp,m(l) i = −d− 1

ỹχ(i) i ∈ [−d . . . 0]

0 otherwise

(29)

Mi =

{
m i ∈ [−d− 1 . . . 0]

0 otherwise
(30)

The same process is repeated at each sampling period.
If a new at-line moisture content measurement becomes
available, the new value is calculated and inserted in the
appropriate positions in (18c) and (19c), while keeping
previous values, if any, elsewhere in the vector/matrix.

4.6 Closed-loop observers parameters

CLO2 offers a way to simply handle an at-line moisture
content measurement. However, the delay associated with
the analysis time implies that this value is inserted near
the end of the observation window resulting in little to
no effect on the estimation accuracy. Since CLO1 and
CLO2 performances are almost identical, CLO2 will not be
further analyzed. For both CLO1 and CLO3, the selected
parameters are :

• ∆t = 45s
• N = 12
• x̂min = [40 0 20]

T

• x̂max = [95 20 70]
T

• m = 1/1.338
• P = diag(0.01, 5, 3)
• Q = diag(0.1, 10, 30)
• R = diag(2.544, 0.487)

R and m were selected from the instrument noise magni-
tude. Q and P were selected by trial and error.

State estimation constraints were selected at 0% for parti-
cle moisture content on dry basis, 40 and 95◦C on the inlet
gas temperature (operating limits), and 20 and 70◦C on
the particle temperature (minimum and maximum values
observed in practice).

5. RESULTS

Open-loop operation of the FBD is performed with exper-
imental setup described in section 2. The sampling period
of the FBD sensors is 45 s. The open-loop observers (here
two-phase and single phase models) are simulated with
the algorithm given in section 4.1 and theses simulations
are performed with the same sampling time as the FBD
sensors. The closed-loop observers (here CLO1 and CLO3)
are simulated with the algorithm given in sections 4.2,
4.3 and 4.5. In-line measurement provide feedback for the
inlet gas and particle temperatures every 45 s. For CLO3,
a single moisture content inline measurement is provided
after 2 minutes of operation.

The difference between the estimated states and measure-
ments (inlet gas temperature, humidity from NIR probe
and particle temperature) gives the estimation error. The
performance benchmarks are based on the root mean
square error (RMSE) of estimation. Table 2 and Figure
1 provide the results for between all soft sensors for three
batches.

For particle temperature, these results show that both
closed-loop MHE have higher estimation accuracy than
open-loop observers. This difference is explained by the
measurement feedback provided to the algorithm. Particle
temperature measurement feedback alone can also result
in better moisture content estimation as it is shown in
B3 where high particle temperature estimation error was
observed for the single phase open-loop observer. Thus, the
CLO1 estimation accuracy is better than the single phase
model for both particle moisture content and temperature
even if no moisture content measurement feedback is
provided.

In the event of a large moisture content estimation error,
the results show that providing a single moisture content
measurement can largely improve estimation accuracy as
it is shown by CLO3 in B1 and B3. In the other case,
moisture content estimation is not impaired as depicted
for B2. These results show that CLO3 is able to reproduce

Table 2. RMSE values of the four observers
presented in this article

RMSE
case batch T0 (◦C) wp (%) Tp (◦C)

Two-phase
B1 3.319 1.549 3.875
B2 1.812 1.228 4.735
B3 2.896 0.486 4.538

Single phase
B1 2.322 3.705 9.373
B2 2.801 0.514 1.377
B3 2.899 1.034 8.073

CLO1
B1 2.796 3.614 2.141
B2 1.791 0.440 0.955
B3 2.698 0.692 1.396

CLO3
B1 2.815 2.180 2.103
B2 1.610 0.454 1.067
B3 2.465 0.468 1.107
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Fig. 1. Estimation error with pilot FBD data: batches B1
(top), B2 (middle) and B3 (bottom). Offline measure-
ment is being taken and made available at the solid
vertical line and dash vertical line, respectively.

data as accurately or better than the full-blown two-phase
phenomenological model.

6. CONCLUSION

This work proposes five moisture content soft sensors: two
phenomenological models, i.e. one based on a detailed two-
phase description, and the other one, on a single phase
simplified one, and three MHE designs using the latter
single phase model. Results show that the simplifying as-
sumptions made for the single-phase model does not curb
the performance, and closed-loop MHEs can accurately
reproduce data taken from a pilot scale FBD. Feedback
using both delayed moisture content, and virtual measure-
ments leads to estimations similar to that from the com-
plex phenomenological model, but with obviously lower
computational effort and higher robustness. This makes
the corresponding MHE adequate to pair with a real-time
optimization control of the FBD. Future developments will
tackle this issue.
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