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Abstract: Nowadays, simulation is a very important tool in order to design control systems of large wind 
turbines due to the fact that large complex wind turbines are not available as experimental set-up and down 
scaled systems show a completely different behaviour as the large ones. On the other hand, digital 
simulation is not enough to test control algorithms since the analysis of controllers in a real-time 
environment is essential. Hence, the combination of wind turbine simulation and direct digital real-time 
control becomes significant and this leads to the concept of Hardware-in-the-Loop (HiL) simulation and 
control. The present contribution proposes a Hardware-in-the-Loop configuration for the real-time 
simulation and control of large-sized wind turbines, where a well-known simulation tool is integrated with 
a control hardware that is often used in real wind turbines. Software and hardware choices are analysed, 
the implemented architecture is described and satisfactory results of a numerical experiment based on a 20 
MW wind turbine is presented. 
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1. INTRODUCTION 

The basic idea of Hardware-in-the-Loop simulation is to test control 
algorithms in an environment where not only purely mathematical 
models of components are used but also real physical components 
are embedded in the control loop. This concept provides a 
more realistic testing infrastructure, which is particular useful 
when these components are difficult to be accurately modelled 
or when it is impossible to reckon with a whole real system but 
some real components can be tested in a more general context. 
In addition, HiL simulation requires that the control system as 
well as the simulation performs under real-time conditions. 

HiL simulations have been used for a very long time, for example 
in flight simulators (e.g. Evans and Schilling, (1984), Bailey and 
Doerr, (1996)), in the automotive industry (see Hanselmann, 
(1996), Kiffmeier, (1996)) and in power systems (as Viehweider 
et al., (2011), Faruque and Dinavahi, (2010)). HiL simulators 
have also been used to study power systems (grid phenomena,  
Roscoe et al., (2010), Viehweider et al., (2011), as well as wind 
energy systems from the electrical point of view, Steurer et al., 
(2004). More recently, HiL simulators for the study of nacelle 
test benches have been reported in Neshati et al., (2016) as well 
as in Leisten et al., (2017). 

Regarding wind turbines, it is important to remark, that the 
increasing size and complexity of such systems requires more 
sophisticated control approaches. Due to the fact that large 
complex wind turbines are not available for testing and experiments 
as well as small scaled systems behave dynamically in a completely 
different manner, it is necessary to appeal to realistic simula-
tion tools, like HiL simulators.  

This is the main contribution of the present work, where the 
focus is set in the real-time testing of advanced control 

algorithms in a dedicated hardware for wind turbines taking 
into account high resolution dynamic models. The paper is 
organized as follows: In Section 2, concepts of simulation, 
real-time and Hardware-in-the-Loop are introduced according 
to the definitions used in the work. Section 3 is devoted to 
describe the used architecture including hardware and soft-
ware. A numerical example is presented in Section 4 and 
simulation results are shown in Section 5. Finally, conclusions 
are drawn in Section 6. 

2. REAL TIME SYSTEMS AND HARDWARE IN THE LOOP 

Real time, modelling, simulation and hardware in the loop are much 
disseminated concepts that take different meanings and definitions 
depending on the used context and discipline. Therefore, meaning 
and concepts concerning to this work are introduced and clarified in 
the following in order to avoid misunderstandings and confusions. 

2.1 Modelling and Simulation  

In the sense of this work, a model is an abstract representation of 
a physical system or component concretized by mathematical 
equations. In particular, dynamic systems are modelled, in the case 
of systems with only continuous states, by a set of algebraic-
differential equations, by a state machine (or other discrete forma-
lism) in the case of only discrete states and by hybrid formalisms, 
like hybrid automata, in the case of systems with continuous and 
discrete states. Notice that time-discrete systems are also conti-
nuous systems represented by algebraic-difference equations. 

It is important to remark that sometimes software implementa-
tions of mathematical models is also called “model”. For instance, 
a Simulink-block-diagram implementing several physical compo-
nents could also be named a “model” of these components. 
However, this meaning is not used in the present work. 
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Differential equations used for the modelling of a dynamic system 
can be linear, nonlinear and with partial derivatives. Wind energy 
systems include all these classes.  

Simulation means here the numerical solution of a set of equations 
by using a computer program, which are representing a dynamic 
model of a real system. This program requires a “solver”, i.e., a 
software implementation of a numerical algorithm to solve 
differential equations as well as algebraic loops.  

2.2 Real-time Control and Simulation  

Several definitions of real-time systems can be found in the 
literature. The definition that accentuates the fact that time is a 
very important variable in the system, where timing constraints are 
associated with system tasks, is adopted here as  

A real-time system is characterized by the fact that the correct-
ness of a result depends not only on the logical correctness 
of the calculation but also upon the meeting of the previous 
defined deadline at which the result has to be made available.  

The system tasks mentioned above are normally involved in 
the control activity or in the reaction to events that take place 
in the external world happening in “real time”. Hence, real-
time tasks must be able to respond deterministically to scheduled 
tasks requests as well as to internal and external events, with 
which it is concerned (w.r.t Gambier, (2004)). Thus, the determi-
nistic system response is related to time constraints associated 
to tasks in the form of deadlines, which have to be strictly met. 

The implementation of multitasking real-time systems can be 
done from two different points of view: one approach is based 
on programming by using a concurrent real-time language, like 
Ada, and the other one is implemented by using a standard 
programming language and the real-time services are delega-
ted to a real-time operating system (RTOS, Burns and Wellings, 
(2009)). Notice that RTOS and real-time systems are not equal con-
cepts: A RTOS provides facilities, like multitasking (i.e. concurrency 
and parallelism), scheduling, inter-task communication mecha-
nisms, etc., for implementing real-time systems. Well-known 
RTOS are for example QNX, Kim et al., (2010), VxWorks,  
Liu et al., (2017), Wind River Linux (also known as RT-Linux) 
and LynxOS, Garcia, (2017). On the other hand, there exist several 
custom dedicated implementations of real-time monitors in 
order to satisfy real-time requirements of particular hardware. 
This is the case, for instance, of manufacturers of PLC (Program-
ming Logic Controllers) and Smartphones. 

The concept of real-time changes slightly if it is applied to simula-
tion. In Isermann et al., (1999), real-time simulation is defined 
as a simulation where input and output signals have the same 
time dependence as the real running system. However, this 
definition involves the previous one of real-time system because in 
order to satisfy the time dependence, the simulation has to be 
executed inside a real-time environment, i.e. the dynamic of the 
real system determines the maximum integration time-step for the 
solver and the solver is executed in a task with a deadline set at 
the end of the given integration step. Herewith, the synchronization 
between real time and simulation time is obtained.  

In order to guarantee determinism, the integration step has to be 
fix in order to avoid iterations and recalculations that normally 
take place in the algorithms with adaptive integration steps 
making unpredictable the whole computational time.  

On the other hand, the time-step should be smaller or even 
negligible compared to the system dynamics, i.e. the maximum 
natural frequency, in order to satisfy stability conditions Khaled-El 
Feki, (2014). A particular problem appears when fast and slow 
transients are mixed in the model. In such a case, the step-size 
has to be chosen small enough to capture the fast behaviour 
but it will increase the computational burden during the inte-
gration of slow dynamics. In Balla, (2011), the time-step is 
chosen according to 

 max1 ( )h f , (1) 

where fmax = max/(2π) and max is the undamped maximum 
natural frequency of the system.   

Since the real-time simulation is combined here with the real-
time control, the time-step has to be in compliance with the 
sampling time. According to Shannon’s theorem, the theoretic 
sampling time must be smaller than 1/(2 fmax). However, for 
practical applications is well-know that the sampling time should 
be (see e.g. Åström and Wittenmark, (1997)) 

 max1 ( )sT f , (2) 

where  can be chosen, for example, as 5 or 10.  Thus, the 
time-step should be smaller than the sampling time in order to 
assume the time as “continuous”. Accepting that the solver 
should yield several values of the solution in a sampling 
period, the time-step should be  

 max( )sh T f    , (3) 

where  is often select as 0.1. Hence, the fix integration time-
step should be about (/) times smaller (e.g. 100) than the 
smallest time constant of the simulating dynamic system in order 
to maintain the emulation of the continuous time. This value is 
however very small and leads to a very high computational load. 
Since this is actually empiric and depends on the application, it 
is possible to optimize the time-step in order to find a compro-
mise between stability, accuracy and time consumption.  

Notice that dynamic errors produced by the solver are proportio-
nal to hn, i.e. O(hn), where n is the order of the numerical 
integration algorithms. One of the most popular algorithms is the 
predictor-corrector fourth-order Adams-Bashforth-Moulton method 
(ABM4). This method requires the calculation of the derivatives 
in step n+1 with the inputs un+1, which are not available in the case 
of real-time operation, Howe, (1989). An algorithm without this 
limitation is the Adams-Bashforth method (AB4),  Howe, (1991). 
In addition, the ABM method have been adapted for real-time 
applications in Howe, (1989).  

A similar analysis is given in the literature also for Runge-Kutta 
based algorithms. Hence, it is important to be careful in the 
selection of numerical integration algorithms, if they should be 
used in a real-time environment.    

Finally, an AB4 algorithm will produce errors in the order of  

  4 4 4 4
max( ) ( )O h f  , (4) 

where  ≤ / ≤ 100 is an empiric value. Thus, from (1) and (2) 
it follows 

 8 4 4 2 4
max max10 ( ) 10f O h f   . (5) 

In this way, a compromise value for  can be chosen such that for 
a given maximum natural frequency an accepted error is obtained.  
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2.2 Hardware in the Loop 

There are several ways to interpret the idea of Hardware-in-
the-Loop. A detailed general description about the topic can be 
found in Sarhadi and Yousefpour, (2015), Bacic, (2005), 
Bélanger et al., (2010). In the following, only the concept as 
used in this work is presented. The start point is a real 
computer-controlled system as shown in Fig. 1, i.e., a real 
plant, a controller implemented on a dedicated computer and 
the interfaces. Notice that wide arrows are used here to 
represent digital data with parallel representation of bits and 
thin arrows symbolize analog signals. 

 

 
Fig. 1. Scheme of a real control loop 

If the control loop of Fig. 1 is completely implemented in a 
digital computer for simulation purposes, the block diagram 
looks like Fig. 2.  

 

 
Fig. 2. Scheme of a simulated control loop 

The chain actuator-plant-sensor of Fig. 1 can be replaced by the 
corresponding models of Fig. 2 such that Fig. 1 becomes a Software-
in-the-Loop scheme. On the other hand, if all blocks associated 
with the control system of Fig. 2 are replaced by the control 
hardware of Fig. 1, the result is a Hardware-in-the-Loop scheme. 
Notice that both obtained schemes result in an identic configu-
ration and its name depends on the point of view (see Fig. 3). 

 

 
Fig. 3. Hardware-in-the-Loop control system configuration 

It is important to remark that due to the fact that the control 
hardware and the simulation system run in different machines, 
both has to be synchronized. Hence, the simulation must run 
inside a real time task.  This can be named real-time simulation 
and therefore the algorithm for the numerical integration should 
satisfy the conditions described subsection 2.2. This aspect is 
treated in details in the next section. 

If only the model of a component, as e.g. the actuator, is 
replaced by a real actuator in Fig. 2, then it is a clear case of 
HiL. However, the software has to manage the actuator power 
and in this case the scheme is called sometimes Power Hardware-
in-the-Loop (PHiL, see e.g. Bouscayrol, (2008)) and an example 
of this is given in Fig. 4. 

 

 
Fig. 4. Example of a Power Hardware-in-the-Loop configuration 

In the present work, the configuration used is that given in Fig. 
3 and it will be called Hardware-in-the Loop because the maximum 
interest is to study the control hardware, the control algorithms 
and the real-time problem. A configuration like Fig. 4 is planned 
for the future. 

3. HARDWARE-IN-THE-LOOP ARCHITECTURE 

Following the concepts introduced in the previous section, the 
implemented architecture and the simulation environment are 
described in the following.  

3.1 System Architecture  

The general system architecture consists of a simulation worksta-
tion with interfaces and real time capacity, where the aeroelastic 
code simulating the wind turbine dynamic behaviour runs, and a 
distributed hardware for the implementation of the control 
system. The scheme is illustrated in Fig. 5. 

 

 
Fig. 5. Proposed general HiL architecture for the large wind turbine 

3.2 Software Implementation 

The simulation of wind turbines in time domain can be under-
taken by using different software tools. Thus, commercial 
software are, for example, HAWC2 from the Denmark Technical 
University, Larsen and Hansen, (2014), Bladed from DNV 
GL, Bossanyi, (2003), and Cp-Lambda from Politecnico di 
Milano, Bottasso and Croce, (2009). Open source tools are for 
instance QBlade from the Technical University of Berlin, 
Pechlivanoglou et al., (2010) and FAST from National Renewable 
Energy Laboratory, Jonkman and Buhl Jr., (2005). 

FAST is provided including the source code and therefore is 
attractive for the current implementation. In particular, it is useful 
the provided Matlab/Simulink interface because tools like 
Simulink Coder, Simulink Real Time and Simulink Desktop 
Real-Time can be used to execute FAST in a soft real time task 
with integration steps up to 1 ms. In addition, an AB4 algorithm is 
implemented as solver. Thus, the wind turbine can be 
simulated in a real time like environment despite the time 
constraints imposed to the simulation conditions. 
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3.2 Hardware Implementation 

The necessary hardware consists basically of at least two 
computational units, one to host the real-time simulation and 
the other one as digital controller, and the corresponding 
interfaces. As simulator a Windows® Workstation with an 
Intel® Core™ i7 Extreme edition processor is used. There are 
many interface cards in the market. However, the necessary 
conditions for this configuration are: to support by the 
Simulink Desktop Target and a high number of A/D, D/A and 
I/O channels. The final decision felt upon two card MF634 from 
Humusoft® completing 16 channels of each type. 

Although there exist many options for the control hardware, 
three requirements are decisive for the selection: support of 
Simulink development based on a blockset and code generation 
for the target, standard hardware used in real wind turbines and 
well-known hard real-time operating systems (HRTOS). All these 
prerequisites are satisfied by the M1 industrial platform of 
Bachmann®, which consists of several modules (e.g. MC210 
and MX213 as computational units and AIO216 and DIO248 for 
the interface channels). As HRTOS, VxWorks from Wind 
River is used. 

Finally, signal conditioning adapters are necessary to connect 
the TLL signal level of the MF634 and the ±24V of the 
Bachmann modules.  

3.3 Final Implemented Configuration 

The final configuration is shown in Fig. 6. 

 

 
Fig. 6. Implementation of the HiL architecture 

3.4 Task Synchronization 

As it is previously mentioned simulation and control tasks have to 
be synchronized. This is not difficult to do on the control hardware 
because VxWorks provides facilities for this. On the simulation 
side, the synchronization is not simple because the running software 
does not foresee methods for real-time operation. In a first 
approach, the problem is solved by using the simulation time, that 
FAST provides as output variable. This variable is a monotonic 
increasing piecewise constant signal, whose constant period is equal 
to the integral time-step. The signal is then passed by an edge detec-
tor in order to generate a pulse train, which, in turn, is transferred to 
the real-time control hardware as wake-up signal in order to activate 
the waiting control task. The procedure is illustrated in Fig. 7.  

 

 
Fig. 7. Synchronization procedure for the HiL system 

The necessary real time required by the solver to compute the 
solution of an integration time-step hFAST is noted as hrt. In general, 
the real-time system must satisfy hrt < hFAST. 

Notice that the solver must reckon with the input signals at the begin 
of the integration step, which are maintained constant from time-
step to time-step until the sampling period finishes and new values 
of the input signals are required at the begin of the next sampling 
period. Therefore, it is essential that the whole sequence of time-
steps finishes inside the sampling time but letting an enough free 
margin such that the controller can compute the next values of the 
control signals before the next simulation step begin. On the other 
hand, the values of the output signals are delivered by the solver at 
the end of m hrt steps. Hence, these output values are already 
available for the control signal calculation when the control tasks 
are triggered by the wake-up signal. Control tasks have to deliver 
the control signals in a time defined by Ts - m hrt. This analysis is 
summarized in Fig. 8. 

 

 
Fig. 8. Illustrative time sequences of the HiL system 

3.5 Pitch Control System 

At present, only a collective pitch control system (CPC) has been 
implemented. It is based on a PID controller with an anti-windup 
mechanism for magnitude and rate saturations with back calcula-
tion formulated as  

   1
( ) ( ) ( ) [ ( ) ( )] ( )

1
d

p i a a
d

K s
U s K E s K E s K U s U s E s

s T s
    


 (6) 

and illustrated in Fig. 9. The controller is implemented as a time-
discrete system for the defined sampling time. 

 

 
Fig. 9. Automatic reset configuration with magnitude and rate anti-
windup with back calculation 

3.6 Torque Control System 

In Region II, i.e. where wind speed in under rated, the optimal 
tracking control is obtained by manipulating the electromagne-
tic torque. For this work, the very simple control law given by  

 2
1 2g g gT K K     (7) 

is used, where K1 is selected for maximum power extraction and 
K2 for rotor inertia reduction (see Gambier and Meng, (2019)). 

4. NUMERICAL EXAMPLE 

The Hardware-in-the-Loop architecture has been tested with a 
numerical example based on a reference wind turbine. These 
aspects are presented in the following subsections. 
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4.1 Description of the Wind Turbine 

The 20 MW reference wind turbine used here is proposed first in 
Ashuri et al., (2016). This is a conventional three-bladed, horizontal 
axis, clockwise, upwind, variable-speed and variable-pitch 
machine. The rotor has a diameter of 276 m, where the blades 
have a length of 135 m and the hub a diameter of 6 m. Each 
blade has a mass of 259 tonnes and is divided in 20 sections 
with six different airfoils. The maximum chord of the blade is 
10 m and the tip deflection in the fore-aft direction is 18.1 m. 
Finally, the whole rotor has a mass of 839.3 tonnes and a 
second mass moment of inertia of 2.92 ×109 kg m2. 

The nacelle has a mass of 252.8 tonnes and it is mounted on a 
tower of 160.2 m hub height and 10 m diameter on the bottom as 
well as 6.2 m on the top. In addition, the tower consists of 22 
sections. The first natural frequency of the tower is 0.1561 Hz. 

The drive train consists of a low speed shaft of 159.1 tonnes, a 
gearbox of 161.9 tonnes and a ratio of 164:1. The high-speed 
shaft and the generator adds a mass of 59.8 tonnes. The drive train 
is characterized by an equivalent spring constant of 6.94×109 
Nm/rad and a damping constant of 4.97 ×107 Nm/(rad/s). 

For a generator efficiency of 94.4%, a rated electrical power 
of 20 MW corresponds a rated mechanical power of 21.19 
MW. The maximum power factor Cp,max = 0.47268 is reached 
at a tip-speed ratio of 9.51. The gearbox ratio yields a rated gene-
rator speed of 1173.7 rpm for a rated rotor speed of 7.16 rpm, 
such that for the rated wind speed of 10.715 m/s is obtained. 

 

 
Fig. 10. Descriptive scheme of the 20 MW wind turbine 

The reference turbine has 16 DOF (degrees of freedom), i.e. 
32th order, and the natural frequencies are in the range of 

   0.0174 11.7596n  . (8) 

The maximum natural frequency is given by fmax=11.7596/(2) 
(fmax=1.8716) such that the sampling time is Ts = 0.05 sec. 
Accepting an integration time-step of hFAST = 0.0125, the value 
for  (according to (3)) is 0.25. Thus, four integration time-steps can 
be completed in a sampling period. Since the real computational 
time for an integration time-step is 2.6 ms (hrt = 0.0026) 42.6 ms are 
available for the control signal calculation. Errors of the AB4 
algorithm are in the order of O(h4) = 3.18 10-8 (w.r.t. eq. (4)). 

A control system design for this reference turbine is proposed in 
Gambier and Meng, (2019). 

4.2 Experimental Setup 

For this example, the wind turbine is operated in Region III for 
an effective wind speed varying between 11 and 25 m/s 
including tower shadow and variable turbulences between 5 
and 20%. The profile is shown in Fig. 11.  

 

 

 
Fig. 11. Wind speed profile for simulation purposes in FAST 

The simulation time was set to 1400 sec (23.3 min). 

5. SIMULATION RESULTS 

The main objective of this simulation experiment is to verify that 
the implemented HiL system work correctly. That is, the simulation 
of a large wind turbine by using a high-resolution model can run in 
a real-time environment, the communication between simulation 
hardware and control hardware is correct and maintains the real-
time conditions and the available time on the control hardware is 
enough to compute the control signals. This can be observed in the 
simulation results (Fig. 12 and Fig. 13). This is so because on the 
contrary the large machine behaves with very large oscillations or 
even becomes unstable. 

 

 

 

 

 

 

Fig. 12. Generator power maintained constant at 20 MW 

 

 

 

 

 

 
Fig. 13. Generator speed maintained constant at 1173.7 rpm 
under stochastic wind 

Torque control and pitch control are designed for the above-
mentioned objective and are still able to be optimized and 
improved. Additional control loops as the active tower damping 
control (ADTC) as used in Gambier, (2017) as well as 
individual pitch control implemented in Behera and Gambier, 
(2018) can be added in a near future. 

Finally, the control signals computed in the MX213 CPU with 
rate limited anti windup are transferred to the simulation hardware 
in order to maintain constant the power when the wind speed is 
over rated. This signal is presented in Fig. 14. 
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Fig. 14. Pitch angle signal provided by the controller 

7. CONCLUSIONS 

In this work, a Hardware-in-the-Loop architecture for the real-
time simulation and control of wind turbines combined with a 
typical control hardware, which is often used in wind energy 
systems, is presented. Software characteristics and numerical 
aspects related to the solver implemented in FAST are analysed 
from the execution point of view under time-constraints. 

It could be verified that the implemented system satisfied all 
requirements. The distributed real-time control system reduces, 
on one hand, the computational load in the calculation of the 
control signals allowing more sophisticated control algorithms 
and, on the other hand, introduces hardware redundancy such 
that reconfiguration and fault-tolerant control approaches can 
be studied in a real-time environment.  
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