

 Hardware-in-the-Loop Simulation and Control for
Developing Very Large Wind Energy Systems

Rami Basilios* and Adrian Gambier*


*Fraunhofer IWES, Fraunhofer Institute for Wind Energy Systems, 27572 Bremerhaven, Germany

(Tel: +49 471 14290-375; e-mail: adrian.gambier@iwes.fraunhofer.de)

Work financed by Federal Ministry of Economic Affairs and Energy (BMWi)

Abstract: Nowadays, simulation is a very important tool in order to design control systems of large wind
turbines due to the fact that large complex wind turbines are not available as experimental set-up and down
scaled systems show a completely different behaviour as the large ones. On the other hand, digital
simulation is not enough to test control algorithms since the analysis of controllers in a real-time
environment is essential. Hence, the combination of wind turbine simulation and direct digital real-time
control becomes significant and this leads to the concept of Hardware-in-the-Loop (HiL) simulation and
control. The present contribution proposes a Hardware-in-the-Loop configuration for the real-time
simulation and control of large-sized wind turbines, where a well-known simulation tool is integrated with
a control hardware that is often used in real wind turbines. Software and hardware choices are analysed,
the implemented architecture is described and satisfactory results of a numerical experiment based on a 20
MW wind turbine is presented.

Keywords: Large wind turbines, control of wind turbines, real-time simulation, Hardware-in-the-Loop

1. INTRODUCTION

The basic idea of Hardware-in-the-Loop simulation is to test control
algorithms in an environment where not only purely mathematical
models of components are used but also real physical components
are embedded in the control loop. This concept provides a
more realistic testing infrastructure, which is particular useful
when these components are difficult to be accurately modelled
or when it is impossible to reckon with a whole real system but
some real components can be tested in a more general context.
In addition, HiL simulation requires that the control system as
well as the simulation performs under real-time conditions.

HiL simulations have been used for a very long time, for example
in flight simulators (e.g. Evans and Schilling, (1984), Bailey and
Doerr, (1996)), in the automotive industry (see Hanselmann,
(1996), Kiffmeier, (1996)) and in power systems (as Viehweider
et al., (2011), Faruque and Dinavahi, (2010)). HiL simulators
have also been used to study power systems (grid phenomena,
Roscoe et al., (2010), Viehweider et al., (2011), as well as wind
energy systems from the electrical point of view, Steurer et al.,
(2004). More recently, HiL simulators for the study of nacelle
test benches have been reported in Neshati et al., (2016) as well
as in Leisten et al., (2017).

Regarding wind turbines, it is important to remark, that the
increasing size and complexity of such systems requires more
sophisticated control approaches. Due to the fact that large
complex wind turbines are not available for testing and experiments
as well as small scaled systems behave dynamically in a completely
different manner, it is necessary to appeal to realistic simula-
tion tools, like HiL simulators.

This is the main contribution of the present work, where the
focus is set in the real-time testing of advanced control

algorithms in a dedicated hardware for wind turbines taking
into account high resolution dynamic models. The paper is
organized as follows: In Section 2, concepts of simulation,
real-time and Hardware-in-the-Loop are introduced according
to the definitions used in the work. Section 3 is devoted to
describe the used architecture including hardware and soft-
ware. A numerical example is presented in Section 4 and
simulation results are shown in Section 5. Finally, conclusions
are drawn in Section 6.

2. REAL TIME SYSTEMS AND HARDWARE IN THE LOOP

Real time, modelling, simulation and hardware in the loop are much
disseminated concepts that take different meanings and definitions
depending on the used context and discipline. Therefore, meaning
and concepts concerning to this work are introduced and clarified in
the following in order to avoid misunderstandings and confusions.

2.1 Modelling and Simulation

In the sense of this work, a model is an abstract representation of
a physical system or component concretized by mathematical
equations. In particular, dynamic systems are modelled, in the case
of systems with only continuous states, by a set of algebraic-
differential equations, by a state machine (or other discrete forma-
lism) in the case of only discrete states and by hybrid formalisms,
like hybrid automata, in the case of systems with continuous and
discrete states. Notice that time-discrete systems are also conti-
nuous systems represented by algebraic-difference equations.

It is important to remark that sometimes software implementa-
tions of mathematical models is also called “model”. For instance,
a Simulink-block-diagram implementing several physical compo-
nents could also be named a “model” of these components.
However, this meaning is not used in the present work.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 12302

Differential equations used for the modelling of a dynamic system
can be linear, nonlinear and with partial derivatives. Wind energy
systems include all these classes.

Simulation means here the numerical solution of a set of equations
by using a computer program, which are representing a dynamic
model of a real system. This program requires a “solver”, i.e., a
software implementation of a numerical algorithm to solve
differential equations as well as algebraic loops.

2.2 Real-time Control and Simulation

Several definitions of real-time systems can be found in the
literature. The definition that accentuates the fact that time is a
very important variable in the system, where timing constraints are
associated with system tasks, is adopted here as

A real-time system is characterized by the fact that the correct-
ness of a result depends not only on the logical correctness
of the calculation but also upon the meeting of the previous
defined deadline at which the result has to be made available.

The system tasks mentioned above are normally involved in
the control activity or in the reaction to events that take place
in the external world happening in “real time”. Hence, real-
time tasks must be able to respond deterministically to scheduled
tasks requests as well as to internal and external events, with
which it is concerned (w.r.t Gambier, (2004)). Thus, the determi-
nistic system response is related to time constraints associated
to tasks in the form of deadlines, which have to be strictly met.

The implementation of multitasking real-time systems can be
done from two different points of view: one approach is based
on programming by using a concurrent real-time language, like
Ada, and the other one is implemented by using a standard
programming language and the real-time services are delega-
ted to a real-time operating system (RTOS, Burns and Wellings,
(2009)). Notice that RTOS and real-time systems are not equal con-
cepts: A RTOS provides facilities, like multitasking (i.e. concurrency
and parallelism), scheduling, inter-task communication mecha-
nisms, etc., for implementing real-time systems. Well-known
RTOS are for example QNX, Kim et al., (2010), VxWorks,
Liu et al., (2017), Wind River Linux (also known as RT-Linux)
and LynxOS, Garcia, (2017). On the other hand, there exist several
custom dedicated implementations of real-time monitors in
order to satisfy real-time requirements of particular hardware.
This is the case, for instance, of manufacturers of PLC (Program-
ming Logic Controllers) and Smartphones.

The concept of real-time changes slightly if it is applied to simula-
tion. In Isermann et al., (1999), real-time simulation is defined
as a simulation where input and output signals have the same
time dependence as the real running system. However, this
definition involves the previous one of real-time system because in
order to satisfy the time dependence, the simulation has to be
executed inside a real-time environment, i.e. the dynamic of the
real system determines the maximum integration time-step for the
solver and the solver is executed in a task with a deadline set at
the end of the given integration step. Herewith, the synchronization
between real time and simulation time is obtained.

In order to guarantee determinism, the integration step has to be
fix in order to avoid iterations and recalculations that normally
take place in the algorithms with adaptive integration steps
making unpredictable the whole computational time.

On the other hand, the time-step should be smaller or even
negligible compared to the system dynamics, i.e. the maximum
natural frequency, in order to satisfy stability conditions Khaled-El
Feki, (2014). A particular problem appears when fast and slow
transients are mixed in the model. In such a case, the step-size
has to be chosen small enough to capture the fast behaviour
but it will increase the computational burden during the inte-
gration of slow dynamics. In Balla, (2011), the time-step is
chosen according to

 max1 ()h f , (1)

where fmax = max/(2π) and max is the undamped maximum
natural frequency of the system.

Since the real-time simulation is combined here with the real-
time control, the time-step has to be in compliance with the
sampling time. According to Shannon’s theorem, the theoretic
sampling time must be smaller than 1/(2 fmax). However, for
practical applications is well-know that the sampling time should
be (see e.g. Åström and Wittenmark, (1997))

 max1 ()sT f , (2)

where  can be chosen, for example, as 5 or 10. Thus, the
time-step should be smaller than the sampling time in order to
assume the time as “continuous”. Accepting that the solver
should yield several values of the solution in a sampling
period, the time-step should be

 max()sh T f    , (3)

where  is often select as 0.1. Hence, the fix integration time-
step should be about (/) times smaller (e.g. 100) than the
smallest time constant of the simulating dynamic system in order
to maintain the emulation of the continuous time. This value is
however very small and leads to a very high computational load.
Since this is actually empiric and depends on the application, it
is possible to optimize the time-step in order to find a compro-
mise between stability, accuracy and time consumption.

Notice that dynamic errors produced by the solver are proportio-
nal to hn, i.e. O(hn), where n is the order of the numerical
integration algorithms. One of the most popular algorithms is the
predictor-corrector fourth-order Adams-Bashforth-Moulton method
(ABM4). This method requires the calculation of the derivatives
in step n+1 with the inputs un+1, which are not available in the case
of real-time operation, Howe, (1989). An algorithm without this
limitation is the Adams-Bashforth method (AB4), Howe, (1991).
In addition, the ABM method have been adapted for real-time
applications in Howe, (1989).

A similar analysis is given in the literature also for Runge-Kutta
based algorithms. Hence, it is important to be careful in the
selection of numerical integration algorithms, if they should be
used in a real-time environment.

Finally, an AB4 algorithm will produce errors in the order of

 4 4 4 4
max() ()O h f  , (4)

where  ≤ / ≤ 100 is an empiric value. Thus, from (1) and (2)
it follows

 8 4 4 2 4
max max10 () 10f O h f   . (5)

In this way, a compromise value for  can be chosen such that for
a given maximum natural frequency an accepted error is obtained.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12303

2.2 Hardware in the Loop

There are several ways to interpret the idea of Hardware-in-
the-Loop. A detailed general description about the topic can be
found in Sarhadi and Yousefpour, (2015), Bacic, (2005),
Bélanger et al., (2010). In the following, only the concept as
used in this work is presented. The start point is a real
computer-controlled system as shown in Fig. 1, i.e., a real
plant, a controller implemented on a dedicated computer and
the interfaces. Notice that wide arrows are used here to
represent digital data with parallel representation of bits and
thin arrows symbolize analog signals.

Fig. 1. Scheme of a real control loop

If the control loop of Fig. 1 is completely implemented in a
digital computer for simulation purposes, the block diagram
looks like Fig. 2.

Fig. 2. Scheme of a simulated control loop

The chain actuator-plant-sensor of Fig. 1 can be replaced by the
corresponding models of Fig. 2 such that Fig. 1 becomes a Software-
in-the-Loop scheme. On the other hand, if all blocks associated
with the control system of Fig. 2 are replaced by the control
hardware of Fig. 1, the result is a Hardware-in-the-Loop scheme.
Notice that both obtained schemes result in an identic configu-
ration and its name depends on the point of view (see Fig. 3).

Fig. 3. Hardware-in-the-Loop control system configuration

It is important to remark that due to the fact that the control
hardware and the simulation system run in different machines,
both has to be synchronized. Hence, the simulation must run
inside a real time task. This can be named real-time simulation
and therefore the algorithm for the numerical integration should
satisfy the conditions described subsection 2.2. This aspect is
treated in details in the next section.

If only the model of a component, as e.g. the actuator, is
replaced by a real actuator in Fig. 2, then it is a clear case of
HiL. However, the software has to manage the actuator power
and in this case the scheme is called sometimes Power Hardware-
in-the-Loop (PHiL, see e.g. Bouscayrol, (2008)) and an example
of this is given in Fig. 4.

Fig. 4. Example of a Power Hardware-in-the-Loop configuration

In the present work, the configuration used is that given in Fig.
3 and it will be called Hardware-in-the Loop because the maximum
interest is to study the control hardware, the control algorithms
and the real-time problem. A configuration like Fig. 4 is planned
for the future.

3. HARDWARE-IN-THE-LOOP ARCHITECTURE

Following the concepts introduced in the previous section, the
implemented architecture and the simulation environment are
described in the following.

3.1 System Architecture

The general system architecture consists of a simulation worksta-
tion with interfaces and real time capacity, where the aeroelastic
code simulating the wind turbine dynamic behaviour runs, and a
distributed hardware for the implementation of the control
system. The scheme is illustrated in Fig. 5.

Fig. 5. Proposed general HiL architecture for the large wind turbine

3.2 Software Implementation

The simulation of wind turbines in time domain can be under-
taken by using different software tools. Thus, commercial
software are, for example, HAWC2 from the Denmark Technical
University, Larsen and Hansen, (2014), Bladed from DNV
GL, Bossanyi, (2003), and Cp-Lambda from Politecnico di
Milano, Bottasso and Croce, (2009). Open source tools are for
instance QBlade from the Technical University of Berlin,
Pechlivanoglou et al., (2010) and FAST from National Renewable
Energy Laboratory, Jonkman and Buhl Jr., (2005).

FAST is provided including the source code and therefore is
attractive for the current implementation. In particular, it is useful
the provided Matlab/Simulink interface because tools like
Simulink Coder, Simulink Real Time and Simulink Desktop
Real-Time can be used to execute FAST in a soft real time task
with integration steps up to 1 ms. In addition, an AB4 algorithm is
implemented as solver. Thus, the wind turbine can be
simulated in a real time like environment despite the time
constraints imposed to the simulation conditions.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12304

3.2 Hardware Implementation

The necessary hardware consists basically of at least two
computational units, one to host the real-time simulation and
the other one as digital controller, and the corresponding
interfaces. As simulator a Windows® Workstation with an
Intel® Core™ i7 Extreme edition processor is used. There are
many interface cards in the market. However, the necessary
conditions for this configuration are: to support by the
Simulink Desktop Target and a high number of A/D, D/A and
I/O channels. The final decision felt upon two card MF634 from
Humusoft® completing 16 channels of each type.

Although there exist many options for the control hardware,
three requirements are decisive for the selection: support of
Simulink development based on a blockset and code generation
for the target, standard hardware used in real wind turbines and
well-known hard real-time operating systems (HRTOS). All these
prerequisites are satisfied by the M1 industrial platform of
Bachmann®, which consists of several modules (e.g. MC210
and MX213 as computational units and AIO216 and DIO248 for
the interface channels). As HRTOS, VxWorks from Wind
River is used.

Finally, signal conditioning adapters are necessary to connect
the TLL signal level of the MF634 and the ±24V of the
Bachmann modules.

3.3 Final Implemented Configuration

The final configuration is shown in Fig. 6.

Fig. 6. Implementation of the HiL architecture

3.4 Task Synchronization

As it is previously mentioned simulation and control tasks have to
be synchronized. This is not difficult to do on the control hardware
because VxWorks provides facilities for this. On the simulation
side, the synchronization is not simple because the running software
does not foresee methods for real-time operation. In a first
approach, the problem is solved by using the simulation time, that
FAST provides as output variable. This variable is a monotonic
increasing piecewise constant signal, whose constant period is equal
to the integral time-step. The signal is then passed by an edge detec-
tor in order to generate a pulse train, which, in turn, is transferred to
the real-time control hardware as wake-up signal in order to activate
the waiting control task. The procedure is illustrated in Fig. 7.

Fig. 7. Synchronization procedure for the HiL system

The necessary real time required by the solver to compute the
solution of an integration time-step hFAST is noted as hrt. In general,
the real-time system must satisfy hrt < hFAST.

Notice that the solver must reckon with the input signals at the begin
of the integration step, which are maintained constant from time-
step to time-step until the sampling period finishes and new values
of the input signals are required at the begin of the next sampling
period. Therefore, it is essential that the whole sequence of time-
steps finishes inside the sampling time but letting an enough free
margin such that the controller can compute the next values of the
control signals before the next simulation step begin. On the other
hand, the values of the output signals are delivered by the solver at
the end of m hrt steps. Hence, these output values are already
available for the control signal calculation when the control tasks
are triggered by the wake-up signal. Control tasks have to deliver
the control signals in a time defined by Ts - m hrt. This analysis is
summarized in Fig. 8.

Fig. 8. Illustrative time sequences of the HiL system

3.5 Pitch Control System

At present, only a collective pitch control system (CPC) has been
implemented. It is based on a PID controller with an anti-windup
mechanism for magnitude and rate saturations with back calcula-
tion formulated as

  1
() () () [() ()] ()

1
d

p i a a
d

K s
U s K E s K E s K U s U s E s

s T s
    


 (6)

and illustrated in Fig. 9. The controller is implemented as a time-
discrete system for the defined sampling time.

Fig. 9. Automatic reset configuration with magnitude and rate anti-
windup with back calculation

3.6 Torque Control System

In Region II, i.e. where wind speed in under rated, the optimal
tracking control is obtained by manipulating the electromagne-
tic torque. For this work, the very simple control law given by

 2
1 2g g gT K K    (7)

is used, where K1 is selected for maximum power extraction and
K2 for rotor inertia reduction (see Gambier and Meng, (2019)).

4. NUMERICAL EXAMPLE

The Hardware-in-the-Loop architecture has been tested with a
numerical example based on a reference wind turbine. These
aspects are presented in the following subsections.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12305

4.1 Description of the Wind Turbine

The 20 MW reference wind turbine used here is proposed first in
Ashuri et al., (2016). This is a conventional three-bladed, horizontal
axis, clockwise, upwind, variable-speed and variable-pitch
machine. The rotor has a diameter of 276 m, where the blades
have a length of 135 m and the hub a diameter of 6 m. Each
blade has a mass of 259 tonnes and is divided in 20 sections
with six different airfoils. The maximum chord of the blade is
10 m and the tip deflection in the fore-aft direction is 18.1 m.
Finally, the whole rotor has a mass of 839.3 tonnes and a
second mass moment of inertia of 2.92 ×109 kg m2.

The nacelle has a mass of 252.8 tonnes and it is mounted on a
tower of 160.2 m hub height and 10 m diameter on the bottom as
well as 6.2 m on the top. In addition, the tower consists of 22
sections. The first natural frequency of the tower is 0.1561 Hz.

The drive train consists of a low speed shaft of 159.1 tonnes, a
gearbox of 161.9 tonnes and a ratio of 164:1. The high-speed
shaft and the generator adds a mass of 59.8 tonnes. The drive train
is characterized by an equivalent spring constant of 6.94×109
Nm/rad and a damping constant of 4.97 ×107 Nm/(rad/s).

For a generator efficiency of 94.4%, a rated electrical power
of 20 MW corresponds a rated mechanical power of 21.19
MW. The maximum power factor Cp,max = 0.47268 is reached
at a tip-speed ratio of 9.51. The gearbox ratio yields a rated gene-
rator speed of 1173.7 rpm for a rated rotor speed of 7.16 rpm,
such that for the rated wind speed of 10.715 m/s is obtained.

Fig. 10. Descriptive scheme of the 20 MW wind turbine

The reference turbine has 16 DOF (degrees of freedom), i.e.
32th order, and the natural frequencies are in the range of

 0.0174 11.7596n  . (8)

The maximum natural frequency is given by fmax=11.7596/(2)
(fmax=1.8716) such that the sampling time is Ts = 0.05 sec.
Accepting an integration time-step of hFAST = 0.0125, the value
for  (according to (3)) is 0.25. Thus, four integration time-steps can
be completed in a sampling period. Since the real computational
time for an integration time-step is 2.6 ms (hrt = 0.0026) 42.6 ms are
available for the control signal calculation. Errors of the AB4
algorithm are in the order of O(h4) = 3.18 10-8 (w.r.t. eq. (4)).

A control system design for this reference turbine is proposed in
Gambier and Meng, (2019).

4.2 Experimental Setup

For this example, the wind turbine is operated in Region III for
an effective wind speed varying between 11 and 25 m/s
including tower shadow and variable turbulences between 5
and 20%. The profile is shown in Fig. 11.

Fig. 11. Wind speed profile for simulation purposes in FAST

The simulation time was set to 1400 sec (23.3 min).

5. SIMULATION RESULTS

The main objective of this simulation experiment is to verify that
the implemented HiL system work correctly. That is, the simulation
of a large wind turbine by using a high-resolution model can run in
a real-time environment, the communication between simulation
hardware and control hardware is correct and maintains the real-
time conditions and the available time on the control hardware is
enough to compute the control signals. This can be observed in the
simulation results (Fig. 12 and Fig. 13). This is so because on the
contrary the large machine behaves with very large oscillations or
even becomes unstable.

Fig. 12. Generator power maintained constant at 20 MW

Fig. 13. Generator speed maintained constant at 1173.7 rpm
under stochastic wind

Torque control and pitch control are designed for the above-
mentioned objective and are still able to be optimized and
improved. Additional control loops as the active tower damping
control (ADTC) as used in Gambier, (2017) as well as
individual pitch control implemented in Behera and Gambier,
(2018) can be added in a near future.

Finally, the control signals computed in the MX213 CPU with
rate limited anti windup are transferred to the simulation hardware
in order to maintain constant the power when the wind speed is
over rated. This signal is presented in Fig. 14.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12306

Fig. 14. Pitch angle signal provided by the controller

7. CONCLUSIONS

In this work, a Hardware-in-the-Loop architecture for the real-
time simulation and control of wind turbines combined with a
typical control hardware, which is often used in wind energy
systems, is presented. Software characteristics and numerical
aspects related to the solver implemented in FAST are analysed
from the execution point of view under time-constraints.

It could be verified that the implemented system satisfied all
requirements. The distributed real-time control system reduces,
on one hand, the computational load in the calculation of the
control signals allowing more sophisticated control algorithms
and, on the other hand, introduces hardware redundancy such
that reconfiguration and fault-tolerant control approaches can
be studied in a real-time environment.

REFERENCES
Ashuri, T., Martins, J. R. R. A., Zaaijer, M. B., van Kuik, G. A. M. and

van Bussel, G. J. W., (2016), 'Aeroservoelastic design definition
of a 20 MW common research wind turbine model', Wind Energy,
vol. 19, no. 11, pp. 2071-2087.

Åström, K. and Wittenmark, B., (1997), Computer controlled systems,
2nd edn, Prentice Hall International.

Bacic, M., (2005), 'On hardware-in-the-loop simulation', 44th IEEE
Conference on Decision and Control and European Control
Conference 2005, IEEE, Seville.

Bailey, M. and Doerr, J., (1996), 'Contributions of hardware-in-the-loop
simulations to Navy test and evaluation', Proceedings of the
Society of Photo-optical Instrumentation Engineers, vol. 2741, pp.
33-43.

Balla, J., (2011), ' “Dynamics of mounted automatic cannon on track
vehicle”, ', International Journal ofMathematicalmodels and
methods in applied sciences, vol. 5, pp. 423-432.

Behera, A. and Gambier, A., (2018), 'Integrated pitch control system
design of a wind turbine by using multi-objective optimization',
IFAC PaperOnLine, vol. 51, no. 28, pp. 1033–1039.

Bélanger, J., Venne, P. and Paquin, J.-N., (2010), 'The what, where and
why of real-time simulation', PES General Meeting, IEEE.

Bossanyi, E. A., (2003), 'GH Bladed, Version 3.6 User Manual', Garrad
Hassan & Partners Limited, Bristol.

Bottasso, C. L. and Croce, A., (2009), 'Cp-Lambda user manual',
Dipartimento di Ingnegneria Aerospaziale, Politecnico di Milano,
Milano.

Bouscayrol, A., (2008), 'Different types of Hardware-In-the-Loop
simulation for electric drives', IEEE International Symposium on
Industrial Electronics, IEEE, Cambridge.

Burns, A. and Wellings, A., (2009), Real-time systems and
programming languages, Fourth Edition edn, Addison Wesley,
Essex.

Evans, M. B. and Schilling, L. J., (1984), 'The role of simulation in the
development and flight test of the HiMAT vehicle', NASA,
NASA, Hampton.

Faruque, M. O. and Dinavahi, V., (2010), 'Hardware-in-the-loop
simulation of power electronic systems using adaptive
discretization', IEEE Transactions on Industrial Electronics, vol.
57, no. 4, pp. 1146-1158.

Gambier, A., (2004), 'Real-time control systems: a tutorial', Asian
Control Conference, ACA, Melbourne.

Gambier, A., (2017), 'Simultaneous design of pitch control and active
tower damping of a wind turbine by using multi-objective
optimization', IEEE, Kohala Coast.

Gambier, A. and Meng, F., (2019), 'Control system design for a 20 MW
reference wind turbine', IEEE, Hong Kong.

Garcia, L. W., (2017), 'Real-time operating systems. Case study:
LynxOS vs. VxWorks', Florida Atlantic University, Boca Raton.

Hanselmann, H., (1996), 'Hardware-in-the-Loop simulation testing and
its integration into a CACSD toolset', 1996 IEEE International
Symposium on Computer-Aided Control System Design, IEEE,
Dearborn.

Howe, R. M., (1989), 'An improved numerical integration method for
flight simulation', AIAA Flight Simulation Technologies
Conference and Exhibit, American Institute of Aeronautics and
Astronautics, Washington D.C.

Howe, R. M., (1991), 'A new family of real-time redictor-corrector
integration algorithms', Simulation, pp. 177-186.

Isermann, R., Schaffnit, J. and Sinsel, S., (1999), 'Hardware-in-the-loop
simulation for the design and testing of engine-control systems',
Control Engineering Practice, vol. 7, no. 5, pp. 643-653.

Jonkman, J. M. and Buhl Jr., L. M., (2005), 'FAST User’s Guide',
NREL, Battelle.

Khaled-El Feki, A. B., (2014), 'Distributed real-time simulation of
numerical models: application to power-train', Université de
Grenoble, NNT: 2014GRENT033, Université de Grenoble,
Grenoble.

Kiffmeier, U., (1996), 'A Hardware-in-the-Loop testbench for ABS
controllers', S.G.E., Genoa.

Kim, J. Y., Lee, Y. J., Cheon, S. W., Lee, J. S. and Kwon, K. C., (2010),
'A Commercial-off-the-shelf(COTS) dedication of a QNX real
time operating system (RTOS)', IEEE, Mumbai.

Larsen, T. J. and Hansen, A. M., (2014), 'How 2 HAWC2, the user‘s
manual, v.4.5', Risø, Roskilde.

Leisten, C., Jassmann, U., Balshüsemann, J., Hakenberg, M. and Abel,
D., (2017), 'Design and analysis of a MPC-based mechanical
hardware-in-the-loop system for full-scale wind turbine system
test benches', IFAC-PapersOnLine, vol. 50, pp. 10985–10991.

Liu, J., Gao, X., Jiang, B., Yang, S. and Zhang, Z., (2017), 'Deterministic
replay for multi-core VxWorks applications', IEEE, Beijing.

Neshati, M., Zuga, A., Jersch, T. and Wenske, J., (2016), 'Hardware-in-
the-loop drive train control for realistic emulation of rotor torque
in a full-scale wind turbine nacelle test rig', 2016 European
Control Conference, EUCA, Aalborg.

Pechlivanoglou, G., Marten, D., Nayeri, C. N. and Paschereit, C. O.,
(2010), 'Integration of a wind turbine blade design tool in
xfoil/xflr5', DEWEK, Bremen.

Roscoe, A. J., Mackay, A., Burt, G. M. and McDonald, J. R., (2010),
'Architecture of a network-in-the-loop environment for
characterizing AC power-system behavior', IEEE Transactions
on Industrial Electronics, vol. 57, no. 4, pp. 1245-1253.

Sarhadi, P. and Yousefpour, S., (2015), 'State of the art: hardware in the
loop modeling and simulation with its applications in design,
development and implementation of system and control software',
International Journal on Dynamics and Control, vol. 3, pp. 470-
479.

Steurer, M., Li, H., Woodruff, S., Shi, K. and Zhang, D., (2004),
'Development of a unified design, test, and research platform for
wind energy systems based on hardware-in-the-loop real-time
simulation', IEEE Power Electronics Specialists Conference,
IEEE, Aachen.

Viehweider, A., Lauss, G. and Lehfuss, F., (2011), 'Stabilization of
power hardware-in-the-loop simulations of electric energy
systems', Simulation Modelling Practice and Theory, vol. 19, no.
7, pp. 1699-1708.

Viehweider, A., Lehfuss, F. and Lauss, G., (2011), 'Power hardware-in
the-loop simulations for distributed generation', International
Conference on Electricity Distribution, CIRED, Frankfort.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12307

