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Abstract We study dynamic networks described by a directed graph where the nodes are associated
with MIMO systems with transfer-function matrix F(s), representing individual dynamic units, and the
arcs are associated with MIMO systems with transfer-function matrix G(s), accounting for the dynamic
interactions among the units. In the nominal case, we provide a topology-independent condition for
the stability of all possible dynamic networks with a maximum connectivity degree, regardless of their
size and interconnection structure. When node and arc transfer-function matrices are affected by norm-
bounded homogeneous uncertainties, the robust condition for size- and topology-independent stability
depends on the uncertainty magnitude. Both conditions, expressed as constraints for the Nyquist diagram
of the poles of the transfer-function matrix H(s) = F(s)G(s), are scalable and can be checked locally to
guarantee stability-preserving “plug-and-play” addition of new nodes and arcs.
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1. INTRODUCTION

Large-scale networks of interacting dynamical systems arise
in the most different contexts, from biological systems (Hori
et al. 2015) to multi-agent systems where we wish to enforce
control (Massioni and Verhaegen 2009; Blanchini et al. 2015;
Lin et al. 2016), estimation (Giordano et al. 2016), consensus
(Olfati-Saber et al. 2007) or synchronisation (Trentelman et al.
2013). Under which conditions does the stability of the local
subsystems guarantee the stability of the whole dynamic net-
work, possibly in the presence of uncertainties?

For interconnections of SISO (single-input and single-output)
LTI (linear time invariant) systems, robust stability conditions
were provided by Kao et al. (2009) and Jönsson and Kao (2010)
for particular topologies; by Lestas and Vinnicombe (2006)
using the multivariable Nyquist criterion proposed by Desoer
and Wang (1980) and the concept of S-hull; by Hara et al.
(2007, 2009, 2014) and Hori et al. (2015) in the generalised
frequency variable framework.
Extensions of the above stability conditions to the MIMO
(multiple-input and multiple-output) case were provided by
Pates and Vinnicombe (2012) with a Nyquist-like approach
and by Andersen et al. (2014) and Khong and Rantzer (2014)
based on Integral Quadratic Constraints, also used by Pates
and Vinnicombe (2017) for control design: these conditions are
scalable because, to ensure stability of the whole network, it
is enough to satisfy a local condition at each node. The gen-
eralised frequency variable technique was recently employed
by Hara et al. (2019) to obtain global necessary and sufficient
conditions for the robust stability of networks of nominally
homogeneous MIMO LTI systems, encompassing also hetero-
geneous uncertainties for specific topologies.
Dynamic networks with both dynamic nodes and dynamic
interconnections (Nepusz and Vicsek 2012) were considered
? Work partially supported by the Delft Technology Fellowship grant to GG.

by Blanchini et al. (2017, 2018) in the SISO case: topology-
independent robust stability conditions in the frequency domain
were obtained for nominally homogeneous node and arc dy-
namics, with homogeneous or heterogeneous uncertainties.

In this paper, we consider dynamic networks described by
directed graphs where both the nodes and the arcs are associated
with possibly uncertain MIMO dynamical systems. We assume
the dynamics of all the nodes to be identical, and also those
of all the arcs. We seek conditions for the robust stability
of the overall dynamic network, regardless of its size and
interconnection topology: the only available information about
the network is the maximum number of arcs that may enter
or leave a node (maximum connectivity degree). We rely on
Nyquist-like approaches and on the theorem by Bauer and Fike
(1960) to derive the following main results:

• a topology-independent stability condition for nominal
dynamic networks (Section 3);

• a topology-independent condition for the robust stability
of uncertain dynamic networks subject to norm-bounded
homogeneous uncertainties (Section 4).

Both conditions can be checked locally, thus guaranteeing scal-
ability and robustness to online modifications of the dynamic
network (such as adding nodes or arcs) in a plug-and-play
framework (Bendtsen et al. 2013; Riverso et al. 2013), as long
as the maximum connectivity degree is preserved.

Definitions and notation. A directed graph (digraph) with
N nodes and M arcs is a pair G = (N ,A ) where N =
{1,2, . . . ,N} is the set of all nodes and A is a subset of N ×N
with cardinality M; if (i, j) ∈ A , then an arc goes from node i
to node j. Two nodes are assumed to be connected by at most
one arc. The degree di of node i is the number of arcs that
either enter or leave node i. The maximum connectivity degree
is D= maxi di.
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A path is a sequence of nodes i = i0, i1, . . . , i` = j such that
(ih−1, ih) ∈A for h = 1, . . . , `. The graph is strongly connected
if each pair of nodes i, j ∈ N is connected by a path. It is
weakly connected if the associated undirected graph, where
the presence of arc (i, j) implies the concurrent presence of
arc ( j, i) (namely, each existing arc can be crossed in both
directions), is strongly connected.
In this paper, we consider weakly connected graphs where an
additional ‘environment’ node can be present, which is not
explicitly listed. Arcs that either come from or reach the en-
vironment node are counted in the degrees di: we can write
di = dint

i + dext
i , where dext

i is the number of arcs connecting
node i with the environment node, while dint

i is the number of
arcs connecting i with other nodes within the graph.
Let B ∈ {−1,0,1}N×M denote the generalised node-arc inci-
dence matrix defined as

[B]i j =


1, if the arc j enters node i,
−1, if the arc j leaves node i,

0, otherwise,
where arcs leaving or entering the environment node are ac-
counted for, even though such node is not associated with a row
of the matrix, and correspond to columns of B with a single non-
zero entry. The generalised (or grounded) Laplacian matrix of
the graph is L=BB> (Giordano et al. 2016). Its diagonal entries
are Lii = di, for i = 1, . . . ,N, while its off-diagonal entries Li j,
i 6= j, take the value −1 if there is an arc either from node i
to node j or from node j to node i, and 0 otherwise. Matrix
L is symmetric, hence its eigenvalues {γk}N

k=1 are real, and it
can be diagonalised by an orthogonal matrix W : W−1LW =
diag(γ1, . . . ,γN). We denote by H the space of stable, linear,
time invariant and continuous-time transfer functions and by
H q×m the space of q×m matrices with entries in H .
The p-th norm of matrix A is ‖A‖p = supv6=0 ‖Av‖p/‖v‖p and
⊗ is the Kronecker product of matrices. If the matrix 2-norm
is used, it holds that ‖A⊗ B‖2 = ‖A‖2‖B‖2 and ‖AB‖2 ≤
‖A‖2‖B‖2. The spectrum of a matrix X is denoted by σ(X) and
its condition number is defined as

Kp(X) = ‖X‖p‖X−1‖p.

If p = 2, the subscript is omitted in the matrix norm and the
condition number, for simplicity.
Finally, given a set S , the set ζ (S ) is defined as

ζ (S ) =
{

s :−1
s
∈S

}
.

2. PROBLEM STATEMENT

Consider a network of N nodes connected by M arcs, repre-
sented by the digraph G . The dynamic behaviour of the network
is characterised by stable MIMO linear systems associated with
both its nodes and its arcs. The nominal node and arc dynamics
are represented by F(s) ∈ H r×n and G(s) ∈ H n×r respec-
tively. Both dynamics can be subject to homogeneous uncer-
tainties, ∆F(s) ∈H r×n for node dynamics and ∆G(s) ∈H n×r

for arc dynamics. The vectors Yp(s) and Uq(s) represent the
output of the p-th node and q-th arc respectively. Note that the
environment node has no input, output or dynamics associated
with it. Then, the dynamics of node i are given by

Yi(s) = [F(s)+∆F(s)]
M

∑
h=1

[B]ihUh(s), (1)

while the dynamics of arc h = (i, j) ∈A are given by
Uh(s) = [G(s)+∆G(s)][Yi(s)−Yj(s)]. (2)

The output and input vectors can be stacked into Y (s) and U(s)
to represent the complete system as follows:
Y (s) = [Y1(s)>, . . . ,YN(s)>]>, U(s) = [U1(s)>, . . . ,UM(s)>]>.

The overall node and arc dynamics can be summarised as
Y (s) = [(IN⊗F(s))+(IN⊗∆F(s))](B⊗ In)U(s)

U(s) =−[(IM⊗G(s))+(IM⊗∆G(s))](B>⊗ Ir)Y (s),
where Ik denotes the identity matrix of size k.

The characteristic equation for the complete network is

det
(

INr +[(IN⊗F(s))+(IN⊗∆F(s))](B⊗ In)

[(IM⊗G(s))+(IM⊗∆G(s))](B>⊗ Ir)
)

= det
(

INr +L⊗ (H(s)+∆H(s))
)
= 0, (3)

where L = BB>, H(s) = F(s)G(s) ∈H r×r and
∆H(s) = F(s)∆G(s)+∆F(s)G(s)+∆F(s)∆G(s). (4)

Without uncertainty, the characteristic equation becomes

det
(

INr +L⊗H(s)
)
= 0. (5)

We seek topology-independent conditions for the stability of
the nominal system (5) and for the robust stability of the
homogeneously uncertain system (3)–(4), which hold for all
possible network topologies with a given maximum connectivity
degree D and exclusively depend on local information. We
assume stability of the nominal local transfer-function matrices.
Assumption 1. The transfer-function matrix H(s) = F(s)G(s)
does not have poles in the closed right half plane.

We denote by σ(H(s)) = {λ1(s), . . . ,λr(s)} the eigenvalues of
the transfer-function matrix H(s). The eigenvalues {λi(s)}r

i=1
are not rational transfer functions: they are not a quotient of
polynomials in s. In general, they are complex functions of the
variable s. Therefore, the poles of λi(s) are not the roots of a
polynomial but the set of complex numbers p̃ ∈ C such that
λ
−1
i (p̃) = 0. We have the following result.

Theorem 1. Consider the transfer-function matrix H(s)∈H r×r

and its eigenvalues λ1(s), . . . ,λr(s). Let p̃ ∈ C be a pole of the
complex function λi(s), for some i ∈ {1, . . . ,r}. Then, p̃ is a
pole of the transfer-function matrix H(s).

Proof. Since the complex function λi(s) is an eigenvalue of
H(s), it must satisfy the characteristic equation

det
(
λi(s)I−H(s)

)
= 0. (6)

The transfer-function matrix H(s) can be written as

H(s) =
1

d(s)
R(s), (7)

where d(s) is the pole polynomial and R(s) is a matrix with
polynomial entries. For any s ∈ C such that d(s) 6= 0, replacing
(7) into (6) gives

det
(
λi(s)d(s)I−R(s)

)
= 0. (8)

By contradiction, assume that p̃ is a pole of the com-
plex function λi(s) but not of the transfer-function matrix
H(s). Then, by continuity, lims→p̃{d(s)} → d(p̃) 6= 0 and
lims→p̃{R(s)} → R(p̃), which is a matrix with finite entries.
At the same time, lims→p̃{λi(s)} → ∞. This in turn implies

that lims→p̃

{
det
(
λi(s)d(s)I−R(s)

)}
→ ∞, which contradicts

equation (8). Hence, it must be lims→ p̃{d(s)} → d(p̃) = 0,
namely, p̃ must be a root of d(s), hence a pole of H(s). �
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Remark 1. In view of Theorem 1, if Assumption 1 is satisfied,
then the complex functions λi(s) are stable: there exists some
ε < 0 such that, for every pole p̃ of λi(s), Re(p̃) ≤ ε < 0. In
fact, we can pick ε as the largest real part of all the poles of
H(s), which must be strictly negative in view of Assumption 1.
This is the condition we will exploit in the following results.
Computing the poles of the transfer-function matrix H(s),
which are the roots of the denominator polynomial, is much
easier than computing the poles of the generic complex func-
tions λi(s). The results presented in this paper do not require to
analytically compute the functions λi(s), nor their poles.

2.1 Technical preliminary results

The considered graphs have peculiar spectral properties.
Since di = Lii ≥∑ j 6=i |Li j|= dint

i , where the equality is obtained
when node i has no connections with the environment node, the
symmetric matrix L is column diagonally dominant.
By the Gershgorin circle theorem, the (real) eigenvalues of L
lie within the union of the circles with radius dint

i and center
in (di,0). Hence, matrix L is positive semidefinite (and, in the
presence of at least one arc to/from the environment node, L
is non-singular, cf. Giordano et al. 2016). Therefore, all the
eigenvalues of L, which are real because L is symmetric, must
lie in the circle of radius D with center in (D,0), being D the
maximum diagonal entry of L. Hence,

σ(L)⊂ {z ∈ R : 0≤ z≤ 2D}. (9)
Next, we provide some technical lemmas that are needed to
prove our main results in the following sections. In particu-
lar, we give a sufficient condition, which is shown to be non-
conservative, for the robust stability of the feedback of a generic
scalar complex function, where the feedback gain is an eigen-
value of some generalised Laplacian L with maximum connec-
tivity degree D, in the presence of norm-bounded uncertainties.
Lemma 1. Consider the scalar complex function h(s) = h̄(s)+
δh(s), where the nominal function h̄(s) is stable and the un-
certainty is bounded as |δh(s)| ≤ δ max

h (s). Consider also the
scalar coefficient µ ∈ σ(LD), where LD is the family of gen-
eralised Laplacian matrices with maximum connectivity degree
D. Then, the feedback complex function hfeed(s) = µh(s)(1+
µh(s))−1 is robustly stable for all µ ∈ σ(LD) and for all possi-
ble realisations of the uncertainty if, for all ω ∈ R+,

min
ρ≤−(2D)−1

|h̄( jω)−ρ|> δ
max
h ( jω). (10)

Proof. The Nyquist stability criterion requires Z =N+P, where
P is the number of unstable poles of the complex function h(s),
Z is the number of unstable zeros of the complex function
1+ µh(s) and N is the number of times the Nyquist diagram
encircles the point −1/µ clockwise. Because the open loop
complex function is assumed to be stable (P = 0), the closed
loop system is stable (Z = 0) if and only if N = 0, that is, if and
only if the Nyquist diagram does not encircle the point −1/µ .
Recall that σ(LD) ⊂ S = {z ∈ R : 0 ≤ z ≤ 2D}. Then, the
Nyquist diagram h( jω) cannot encircle the point −1/µ if, for
all ω ∈ R+, it has an empty intersection with the set

ζ (S ) =
{

z ∈ R : z≤ −1
2D

}
. (11)

This condition can be interpreted geometrically with the help
of Figure 1 to get the equivalent condition that the distance of
h̄( jω) from the set ζ (S ) must be larger than the uncertainty,
minρ≤−(2D)−1 |h̄( jω)−ρ| > |δh( jω)|, for any possible uncer-
tainty |δh( jω)| ≤ δ max

h ( jω), thus leading to (10). �

Figure 1. Visualisation of the robust stability condition in Lemma 1.
Nyquist diagram of the nominal transfer function h̄( jω) (green), un-
certainty disk centred at h̄( jω̂) representing δh( jω̂) at the frequency
ω̂ (cyan), set ζ (S ) (red) and distance of h̄( jω̂) from the set ζ (S )
(orange). For all ω ∈R+, the distance of h̄( jω) from the set ζ (S ) needs
to be larger than the uncertainty radius δ max

h ( jω)≥ |δh( jω)|.

The condition (10) in Lemma 1 is not conservative, as stated in
the following result, whose proof is omitted for space reasons.
Lemma 2. Consider the scalar complex function h(s) = h̄(s)+
δh(s), where the nominal function h̄(s) is stable and the uncer-
tainty is bounded as |δh(s)| ≤ δ max

h (s). If

min
ρ≤−(2D)−1

|h̄( jω)−ρ|< δ
max
h ( jω), (12)

for some ω ∈ R+, then there exists a graph with maximum
connectivity degree D and generalised Laplacian matrix LD

such that the complex function hfeed(s) = µh(s)(1+µh(s))−1,
where µ ∈ σ(LD), is unstable for some uncertainty realisation.

3. TOPOLOGY-INDEPENDENT NOMINAL STABILITY

We provide a topology-independent stability condition for
the interconnection of identical MIMO systems at the nodes
through identical MIMO arc dynamics.
Theorem 2. Given the system (5) under Assumption 1, stability
is ensured for all networks with maximum connectivity degree
D if, for all i ∈ {1, . . . ,r} and ω ∈ R+,

min
ρ≤−(2D)−1

|λi( jω)−ρ|> 0. (13)

Proof. The generalised Laplacian can be diagonalised as
W−1LW = diag{γk}N

k=1 and the transfer function matrix can be
triangularised as V (s)−1H(s)V (s) = Λ, where Λ is a triangular
matrix carrying on the diagonal the eigenvalues {λk(s)}r

k=1 of
H(s). Then, we can pre-multiply the characteristic polynomial
p(s) = det

(
INr + L⊗H(s)

)
by det((W ⊗V (s))−1) and post-

multiply it by det(W ⊗V (s)) to get

p(s) =
r

∏
i=1

N

∏
k=1

(1+ γkλi(s)). (14)

The characteristic polynomial (14) is stable if and only if each
polynomial 1+ γkλi(s) is stable.

Assumption 1 and Theorem 1 guarantee that the complex
functions λi(s) are stable; see Remark 1. Therefore, we can
apply Lemma 1 where h̄(s) = λi(s) and δ max

h ≡ 0 to conclude
that the polynomials 1+ γkλi(s) are stable if, for all i and all
ω ∈ R+, (13) holds. �

Condition (13) can be checked locally, regardless of the net-
work size and topology, and guarantees the stability of the
whole dynamic network also if new nodes and arcs are added
or removed, as long as the maximum connectivity degree is D.
This ensures robustness to online modifications, and scalability.
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Figure 2. Visualisations of the stability conditions (13) in Theorem 2 and (15) in Theorem 4, for the systems in Examples 1 (first and second panel)
and 2 (third and fourth panel). First and third panel: The two blue lines are min

ρ≤−(2D)−1 |λi( jω)−ρ| for i = 1,2, with D = 5. Nominal topology-
independent stability requires that they are strictly above zero, while robust topology-independent stability requires that they are strictly above the bound
K (V ( jω))∆max

H ( jω) shown in magenta. Second and fourth panel: Nominal stability is guaranteed since the blue curves λ1( jω) and λ2( jω) never intersect
the forbidden set S = {z ∈ R : z≤−0.1}, shown in magenta.

Remark 2. In view of Lemma 2, condition (13) is essen-
tially non-conservative. Indeed, if the condition is violated and
minρ≤−(2D)−1 |λi( jω)−ρ| is zero at some ω , then there is zero
stability margin, since infinitesimal uncertainties bounded by
ε > 0, no matter how small, can lead to instability.
Example 1. Consider an arbitrary network where the node and
arc nominal transfer-function matrices are

F(s) =
1

s2 +3.412s+2.871

[
0.1307s−0.08404
−0.1105s+0.06774

]
,

G(s) =
1

s2 +1.805s+0.4837

[
0.1485s−0.753
0.4924s+0.329

]>
,

while the maximum connectivity degree is D= 5. Numerically
evaluating the eigenvalues λ1(s) and λ2(s) of H(s) for s = jω
is enough to check that the graphical stability condition (13)
in Theorem 2 is satisfied: the first panel in Figure 2 shows
that both the blue lines representing minρ≤−(2D)−1 |λi( jω)−ρ|
for i = 1,2 are strictly above zero, while the third panel in
Figure 2 shows that both λ1( jω) and λ2( jω) never intersect
the forbidden set S = {z ∈ R : z≤−0.1}.
Example 2. Consider an arbitrary network where the node and
arc nominal transfer-function matrices are

F(s) =
1

s2 +3.62s+3.523

[
−0.06235s+0.1982
0.09975s+0.1692

]
,

G(s) =
1

s2 +1.213s+0.7026

[
−0.3224s−0.2307
0.2809s+0.08381

]>
,

while the maximum connectivity degree is D= 5. The second
and fourth panel in Figure 2 show that the graphical stability
condition (13) in Theorem 2 is satisfied.

Example 3. Consider the node and arc nominal transfer-function
matrices

F(s) =
1

s2 +3.338s+2.613

[
0.08071s+2.308
0.6187s+1.78

]
,
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Figure 3. Alternative visualisations of the stability condition (13) in
Theorem 2, for the system in Example 3. Left: the two blue lines
are min

ρ≤−(2D)−1 |λi( jω)− ρ| for i = 1,2, with D = 5. The condition
for nominal topology-independent stability is that they are strictly above
zero, which is violated. Right: for nominal stability, the curves λ1( jω)
and λ2( jω) should never intersect the forbidden set S = {z ∈ R : z ≤
−0.1}; the condition is violated.

G(s) =
1

s2 +0.9124s+0.2505

[
0.8022s+0.2204
0.1696s+0.2161

]>
.

We wish to check whether stability is guaranteed for all net-
works with maximum connectivity degree D= 5. The graphical
stability condition (13) in Theorem 2 is violated: in Figure 3
left, the blue line representing minρ≤−(2D)−1 |λ1( jω)− ρ| is
zero for ω ≈ 2.5, while Figure 3 right shows that λ1( jω) in-
tersects the forbidden set S = {z ∈R : z≤−0.1}. There exists
at least one dynamic network with the given node and arc nom-
inal transfer-function matrices and with maximum connectivity
degree 5 that is not stable: take, for instance, the network with
5 nodes and 9 arcs (8 internal and 1 external) whose topology
is described by the generalised Laplacian matrix

L =


3 −1 0 −1 −1
−1 3 −1 0 −1

0 −1 3 −1 −1
−1 0 −1 3 −1
−1 −1 −1 −1 5

 .
It can be seen that the overall interconnected system is unsta-

ble, because it has positive-real-part poles.

4. TOPOLOGY-INDEPENDENT ROBUST STABILITY
WITH HOMOGENEOUS UNCERTAINTIES

Also in the presence of homogeneous uncertainties, affecting
both node and arc MIMO dynamics, we can provide a topology-
independent condition for robust stability, which relies on the
eigenvalue decomposition of the uncertain system.

We need a bound for the eigenvalues of uncertain matrices,
which is provided by the Bauer-Fike theorem.
Theorem 3. (Bauer and Fike 1960). Consider the two matri-
ces A,M ∈ Rn×n, with A diagonalisable, that is, V−1AV =
diag(λ1, ...,λn) for some V ∈ Cn×n and λ1, . . . ,λn ∈ C. For
every (complex) eigenvalue β of A+M, there exists an index
i ∈ {1, . . . ,n} such that |β −λi| ≤Kp(V )‖M‖p.

Here we will only use the 2-norm and condition number K2,
and omit the subscripts for clarity.

To be able to apply the Bauer-Fike theorem, we need to assume
the diagonalisability of H(s).
Assumption 2. The transfer-function matrix H(s) = F(s)G(s),
with eigenvalues σ(H(s)) = {λ1(s), . . . ,λr(s)}, can be diago-
nalised by the change-of-basis matrix V (s), so that

V (s)−1H(s)V (s) = diag(λ1(s), ...,λr(s)).
Remark 3. For the important classes of MISO and SIMO sys-
tems, Assumption 2 is automatically satisfied. In fact, if F(s) is
a row vector and G(s) is a column vector, then H(s) is a scalar
function; if F(s) is a column vector and G(s) is a row vector,
then H(s) is a rank-one matrix, hence it is diagonalisable.
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We can now state and prove the main result of this section.
Theorem 4. Given the system (3)–(4) under Assumptions 1 and
2, stability is ensured for all networks with maximum con-
nectivity degree D and for all uncertainties with ‖∆H( jω)‖ ≤
∆max

H ( jω) if, for all i ∈ {1, . . . ,r} and ω ∈ R+,
min

ρ≤−(2D)−1
|λi( jω)−ρ|> K (V ( jω))∆max

H ( jω). (15)

Proof. Recalling that W−1LW is a diagonal matrix carrying the
eigenvalues {γk}N

k=1 in the diagonal, pre-multiplying the char-

acteristic polynomial p(s) = det
(

INr +L⊗(H(s)+∆H(s))
)

by

det((W ⊗ Ir)
−1) and post-multiplying it by det(W ⊗ Ir) yields

p(s) =
N

∏
k=1

det
(

Ir + γk
(
H(s)+∆H(s)

))
.

Let {βq(s)}r
q=1 denote the eigenvalues of H(s)+∆H(s). Then

the characteristic polynomial can be written as

p(s) =
r

∏
q=1

N

∏
k=1

(1+ γkβq(s)), (16)

which is stable if and only if each polynomial 1+ γkβq(s) is
stable. In view of Assumption 2, we can apply the Bauer-Fike
theorem; hence, there exists an index i ∈ {1, . . .r} such that
βq(s) = λi(s)+δλi(s), where

|βq(s)−λi(s)|= |δλi(s)| ≤K (V (s))‖∆H(s)‖
≤K (V (s))∆max

H (s).
Therefore, if all the uncertain complex functions λi(s)+δλi(s)
are stable for all possible scalar feedback gains γk ∈ σ(L),
where L is the generalised Laplacian matrix of any network
with maximum connectivity degree D, then the characteris-
tic polynomial p(s) is stable. Since Assumption 1 and Theo-
rem 1 guarantee that the nominal complex functions λi(s) are
stable (Remark 1), the proof can be concluded by applying
Lemma 1, where h̄(s) = λi(s), δh(s) = δλi(s) and δ max

h (s) =
K (V (s))∆max

H (s), for all i ∈ {1, . . .r}. �

The graphical condition (15) for robust stability is scalable,
because it can be checked locally and it is size- and topology-
independent. It allows stability-preserving plug-and-play mod-
ifications (Bendtsen et al. 2013; Riverso et al. 2013) to the
network as long as the maximum connectivity degree is D,
which can be checked only by the newly added nodes or arcs.

Some conservativeness is introduced by the Bauer-Fike theo-
rem, on which the proof of the result relies.

Let us now consider a suitable upper bound φ( jω) for the
spectral radius of H( jω),

|λi( jω)| ≤ φ( jω) for all i, for ω ∈ R+, (17)
and a suitable upper bound ξ ( jω) for the condition number
K (V ( jω)),

K (V ( jω))≤ ξ ( jω) for ω ∈ R+. (18)
Bounds of these types have been well studied in the literature;
for instance, Cheng (2014) presents a comprehensive survey on
bounds for condition numbers.

Then, a more conservative sufficient condition, which however
allows to assess robust topology-independent stability without
the need of computing the eigenvalues and eigenvectors of
H(s), is the following.
Corollary 1. Consider the system (3)–(4) under Assumptions 1
and 2 and define C as

C = sup
ω∈R+

{
φ( jω)

}
,

where φ( jω) is the bound in (17), and M as
M = sup

ω∈R+

{
ξ ( jω)∆max

H ( jω)
}
,

where ξ ( jω) is the bound in (18) and ‖∆H( jω)‖ ≤ ∆max
H ( jω).

Then, stability is ensured for all networks with maximum
connectivity degree D if

C +M < (2D)−1. (19)

Proof. Using the same decomposition as in the proof of Theo-
rem 4, the eigenvalues of matrix H(s)+∆H(s) can be written
as βq( jω) = λi( jω)+δλi( jω) for some i ∈ {1, . . . ,r}, where

|δλi( jω)|< K (V ( jω))‖∆H( jω)‖ ≤ ξ ( jω)∆max
H ( jω).

Hence
|βq( jω)| ≤ |λi( jω)|+ |δλi( jω)| ≤ C +M , ∀ω ∈ R+.

If

C +M < min
z∈ζ (S )

|z|= 1
2D

, (20)

where S = {z ∈ R : 0 ≤ z ≤ 2D}, then the distance between
λi( jω)+ δλi( jω) and the set ζ (S ) is larger than zero for all
i and for all possible bounded realisations of the uncertainty,
which ensures topology-independent robust stability of all net-
works with maximum connectivity degree D. �

Corollary 2. Consider the system (3)–(4) under Assumptions 1
and 2, let C and M be defined as in Corollary 1 and define

T =
1

2(C +M )
. (21)

Then, stability is ensured for all networks where each node i
satisfies di < T .

Proof. With T as defined in (21), the inequality (19) becomes
D < T and is of course satisfied if and only if di < T for all
i = 1, . . . ,N, since D= maxi=1,...,N{di}. �

Corollary 2 gives fully local sufficient conditions for robust sta-
bility, which are independent of the network size and topology
and do not even rely on the shared knowledge of the maxi-
mum connectivity degree. As long as each node satisfies the
local condition, new arcs and nodes can be added, removed
or modified, and the overall networked system remains stable.
Furthermore two separate stable dynamic networks can be con-
nected and, as long as all the connecting nodes satisfy the local
condition, the resulting dynamic network is stable.
Remark 4. The conditions in Theorems 2 and 4 allow us to
verify if, given a maximum connectivity degree D, we have
topology-independent stability for all networks with node dy-
namics F(s) and arc dynamics G(s), possibly in the presence of
homogeneous bounded uncertainties. The conditions in Corol-
laries 1 and 2 can be alternatively interpreted as providing the
largest D such that all networks with maximum connectivity
degree D, node dynamics F(s) and arc dynamics G(s) are
guaranteed to be (robustly) stable.
Example 4. In an arbitrary network, assume that all node and
arc dynamics are nominally as in Example 1 and are affected
by suitably bounded, but unknown, homogeneous uncertainties.
The bound K (V ( jω))∆max

H ( jω) is reported in magenta in
the first panel of Figure 2, which shows that the graphical
robust stability condition (15) in Theorem 4 is satisfied for
all networks with maximum connectivity degree D = 5. The
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condition is satisfied up to D= 8, but violated for D≥ 9.
For the given transfer functions, we have the bounds

C = 0.0616 and M = 0.0384.
Therefore, by Corollary 2, topology-independent stability is
guaranteed for all networks where the connectivity degree is
di < 5 for each i ∈ {1, . . . ,N}. This shows that the condition in
Corollary 2 is more conservative.
In the absence of uncertainties, M = 0, Corollary 2 allows
for a maximum connectivity degree of 8: each node could be
connected to 8 other nodes and the network would remain
stable. This is conservative, because the condition in Theorem
2 is satisfied for values of D up to 17.
Example 5. Consider an arbitrary network with nominal node
and arc dynamics as in Example 2, affected by unknown, ho-
mogeneous uncertainties that are suitably bounded. The bound
K (V ( jω))∆max

H ( jω) is reported in magenta in the second
panel of Figure 2, which shows that the graphical robust stabil-
ity condition (15) in Theorem 4 is satisfied for all networks with
maximum connectivity degree D= 5. The condition is satisfied
up to D= 9, but violated for D≥ 10.
Since, for the given transfer functions, we have the bounds

C = 0.016 and M = 0.0426.
Corollary 2 guarantees topology-independent stability for all
networks, regardless of the number of nodes and of the net-
work topology, if the connectivity degree is di < 8.5 for each
i ∈ {1, . . . ,N}. The increased conservativeness of the condition
in Corollary 2 is reduced in this example.
If there were no uncertainties (M = 0), the maximum con-
nectivity degree according to Corollary 2 would become 31.
However, the condition in Theorem 2 is satisfied for values of
D that are even more than 40.

5. CONCLUSIONS AND FUTURE WORK

We have investigated the stability of homogeneous dynamic
networks where both the nodes and the arcs have MIMO dy-
namics, described by the uncertain transfer-function matrices
F +∆F and G+∆G respectively. The transfer-function matrices
F and G are assumed to be stable and the uncertainties bounded.
In the nominal case, we have provided a stability condition that
is topology-independent and exclusively relies on the knowl-
edge of the maximum connectivity degree of the network. The
condition constraints the Nyquist diagram of the poles of the
transfer-function matrix H = FG. In the presence of homo-
geneous uncertainties, the topology-independent condition for
robust stability depends on the magnitude of the uncertainty and
relies on the bound for the eigenvalues of uncertain matrices
given by the Bauer-Fike theorem. An advantage of the obtained
conditions, which guarantee robust stability regardless of the
network size and topology, is that they can be checked locally
to ensure stability of the network also when nodes and arcs
are added or removed online (Bendtsen et al. 2013; Riverso
et al. 2013). Future research aims at providing robust stability
conditions when possibly heterogeneous uncertainties affect
both node and arc dynamics. In this case, it is currently unclear
whether topology-independent conditions can be achieved or
the network interconnection needs to be taken into account
when assessing robust stability of the overall dynamic network.
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