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Abstract: Structural identifiablity of a third-order continuous time-invariant linear plant under
an intrinsic pulse-modulated feedback is analyzed. The model represents a biomedical system,
where the input signal to the continuous plant is immeasurable and the feedback modulation
functions have to be identified along with the continuous dynamics. It is shown that two
eigenvalues of the continuous plant system matrix (i.e. time constants), along with the times and
weights of impulses occurring during a finite time interval, are identifiable from the measurement
of one continuous system state over the interval in question. When an infinite time horizon is
considered, all parameters are identifiable, up to gain scaling and linear block permutations.
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1. INTRODUCTION

Identification of hybrid systems is a challenging and intri-
cate topic due to the nonlinear and non-smooth nature of
the underlying dynamics, Paoletti et al. (2007). Therefore,
it is motivated to consider specific classes of hybrid systems
before facing the problem in all its complexity.

Continuous systems with impulsive feedback, see Gelig and
Churilov (1998), appear in power electronics (e.g. dc-dc
converters, Almer et al. (2007)), mechanics (systems with
impacts, Menini and Tornambe (2001)) but are otherwise
not so common in engineered systems. Yet, from a mathe-
matical perspective, pulse-modulated impulsive control is
akin to the area of event- and self-triggered control that is
popular with theoreticians, e.g. Heemels et al. (2012). The
scenario featuring a feedback-modulated impulsive action
applied at non-commensurate time instants to control con-
tinuous dynamics arises more often in biological, medical,
and environmental contexts. In natural pulse-modulated
biological systems, the discrete feedback law is intrinsic to
the studied plant and typically has to be identified along
with the continuous dynamics.

Structural identifiability analysis concerns the uniqueness
of parameter values for a given model structure and
noise-free input-output data, Bellman and Åström (1970).
When the goal of modeling is data prediction, one can
manage without securing structural identifiability of the
model. On the other hand, when the model parameter
estimates serve as the basis of controller design or are
used for data classification, the property in question is of
paramount importance. An overview and comparison of
different methods for structural identifiability analysis in
systems biology is provided in Oana et al. (2011). Of these,
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the so-called direct method resembles the approach of the
present paper the most, but applications of this method
to models under intrinsic impulsive feedback are lacking
in the literature.

In hybrid systems, when the input to the continuous part
is not available for measurement, both the continuous dy-
namics and the discrete feedback law have to be identified
from the output signal only. When the feedback control
is due to a natural biological mechanism, the discrete
variables of the hybrid system are usually not measurable
and system (model) identifiability from the continuous
output has to be theoretically established.

A well-studied example of a biological pulse-modulated
feedback system is the testosterone regulation in the hu-
man male. It can be modeled as a third-order continuous
system, where the frequency and amplitude of the driving
impulses are determined by the feedback, Medvedev et al.
(2006); Churilov et al. (2009). Similar models exhibit-
ing sustained periodic and non-periodic oscillations arise
in other types of endocrine systems, such as cortisol or
growth hormone regulation. Since the described principle
is utilized in multiple biological systems, it is appropri-
ate to describe them in a common modeling framework,
which is known as the impulsive Goodwin’s oscillator, e.g.
Zhusubaliyev et al. (2015). A version of this model has
recently been applied to the pharmacokinetics of the anti-
Parkinsonian drug levodopa, where multiple blood con-
centration peaks of the drug are caused by a physiological
feedback acting on the pylorus, Runvik et al. (2020).

Pharmacokinetics is the study of the uptake, metabolism,
and elimination of drugs in the body, Gabrielsson and
Weiner (2016). A common modeling approach in this field
is the use of compartments, representing different sites in
the body reached by the drug.
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The continuous plant in this paper describes three com-
partments, while the impulsive feedback is used to capture
the so-called multi-peak phenomenon. The latter concept
describes a situation where a single administration of a
drug results in a plasma concentration profile with two or
more peaks, as opposed to a single peak which is gener-
ally expected and more common. Multiple physiochemical
and physiological mechanisms can cause this behavior,
Davies et al. (2010). In the present case, interrupted gastric
emptying is assumed to be the cause. Details about this
modeling approach, applied to the pharmacokinetics of
the Parkinson’s medication levodopa administered orally,
can be found in Runvik et al. (2020). An important dif-
ference compared to the case of endocrine regulation is
that the medication comes from an external source, while
the endocrine system is autonomous, which gives rise to
completely different dynamical behaviors.

Previous identifiability research for this type of systems
has often been aimed at endocrine systems. In Veld-
huis and Johnson (1986), an algorithm is proposed for
identifying and specifying pulses through identification of
statistically significant increases and decreases in a data
set. In Mattsson and Medvedev (2012), an observer-based
approach is used to identify the impulsive input signal
to a linear system, a method which is extended for state
estimation in Mattsson and Medvedev (2013). A notable
difference between these publications and the present work
is the inclusion of the feedback model in the identifiability
analysis. Notice that the classical results regarding identi-
fiability of linear time-invariant systems under feedback
(e.g. Forssell and Ljung (1999)) do not provide much
insight into the problem at hand as the input to the
closed-loop system is not persistenly exciting. Besides, the
dynamics are highly nonlinear and non-smooth, Zhusub-
aliyev et al. (2015). The results of this paper dealing with
the structural identifiablility conditions for a hybrid model
with an intrinsic impulsive feedback are therefore novel, to
the best of the authors’ knowledge.

The rest of the paper is organized as follows. First, the
linear plant and impulsive feedback law is presented, to-
gether with properties of the specific modulation func-
tions that are essential to this work. Then the structural
identifiability is analyzed in two steps; first with respect
to the parameters that directly influence the measured
output and then with respect to the remaining parameters,
including those of the modulation functions. Based on this
analysis, the main result is established.

2. MODEL EQUATIONS

Consider a linear system with jumps in the state vector

ẋ(t) = Ax(t), x(0) = x0, t 6= tn, n = 0, 1, . . . (1)

x(t+) = x(t−) + dnB, t = tn,

where x ∈ R3, the plus and minus superscripts denote
right- and left-sided limits respectively, tn, n = 0, 1, 2, . . .
defines a sequence of time instants when the system
undergoes instantaneous jumps, and dn determines the
amplitude of those jumps. The system matrices are

A =

[−b1 0 0
g1 −b2 0
0 g2 −b3

]
, B =

1

v
0
0

 , (2)

where b1, b2, b3, g1, g2, v are positive parameters, and the
output signal is given by

y = Cx, C = [0 0 1] . (3)

This hybrid system can equivalently be described using
impulsive input signals as

ẋ = Ax+Bξ(t), y = Cx,

where

ξ(t) =

∞∑
n=0

dnδ (t− tn) ,

and δ(·) is the Dirac delta function.

The model above follows the structure of the one proposed
for modeling testosterone regulation in Medvedev et al.
(2006); Churilov et al. (2009). In Runvik et al. (2020), it
is adapted to describe the pharmacokinetics of levodopa.
The first two components of x represent the levodopa
concentration in small intestine and blood, respectively,
while the third one stands for the dopamine concentration
in the brain. The jumps correspond to the instantaneous
relase of the drug from the stomach to the intestine due
to changes in the pylorus effective opening.

The levodopa concentration in blood is available for mea-
surement through blood samples. In the mathematical
analysis below, the discrete nature of the measurement
is disregarded and the measureable system output is

z = Dx, D = [0 1 0] . (4)

The signal y represents the (immeasurable) dopamine level
in the brain. It is hypothesised that dopamine contributes
to the feedback regulation of gastric emptying and modu-
lates the oscillative contractions of the pylorus. The feed-
back is impulsive and parameterized by the frequency and
amplitude modulation functions

tn+1 = tn + Φ(Cx(tn)),

dn = F (Cx(tn)).

The model described above is known as the impulsive
Goodwin’s oscillator when applied to the testosterone reg-
ulation in the human male, Zhusubaliyev et al. (2015). In
the original formulation of this model, the weights and
times of the impulses are only determined by the output
signal y, making the system completely autonomous. Later
generalizations included the introduction of continuous
exogenous input signals, representing basal hormonal se-
cretion or capturing circadian rhythm, Medvedev et al.
(2018). These can be incorporated in the amplitude modu-
lation function, as demonstrated in Mattsson et al. (2016).

To represent the pharmacokinetic system, an external sig-
nal is also required, in this case to account for the availabil-
ity of the drug. Therefore, the amount of levodopa in the
stomach r(t) is introduced. For a single oral administration
of the drug, the dynamics of this state are governed by

r(t+n ) = r(t+n−1)− dn, r(t0) = d, (5)

where d denotes the administered dose. The modulation
function can then be defined to include two factors as

F (Cx, r) = f(r)F0(Cx), (6)

where f(r) reflects the amount of levodopa in the stomach.
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2.1 Modulation Functions

It is assumed that Φ(·) is non-decreasing, F (·) is non-
increasing, and both are bounded according to

0 < Φ1 ≤ Φ(·) ≤ Φ2, (7)

0 ≤ F1 ≤ F (·) ≤ F2,

for fixed Φ1, Φ2, F1, F2. The simplest type of function sat-
isfying these conditions (that is not constant) is a sigmoid
function. In previous work on the impulsive Goodwin’s
oscillator, such as e.g. Churilov et al. (2009), Hill functions
were used to represent the modulation functions

Φ(θ) = k1 + k2
(θ/h)p

1 + (θ/h)p
, (8)

F (θ) = k3 + k4
1

1 + (θ/h)p
, (9)

where k1, k2, k3, k4, h and p are positive parameters.

The following property of the Hill functions will be used
in the oncoming identifiability analysis.

Lemma 1. Consider the Hill functions defined by (8) and
(9). Let k1 and k3 be known constants and the values
F (θi), Φ(θi) be available for some sequence {θi}. The
remaining parameters can then be uniquely determined
if and only if {θi} includes at least three distinct elements.

Proof. Follows from the main result in Heidel and Mal-
oney (1999). 2

Corollary 1. Let F (·) and Φ(·) be given by (8) and (9). If
F (0) and Φ(0) are fixed, all function parameters can be re-
covered from F (θ1), F (θ2), F (θ3) and Φ(θ1),Φ(θ2),Φ(θ3),
where θ1, θ2, θ3 are positive and distinct.

When the impulsive Goodwin’s oscillator is adapted to
pharmacokinetic modeling, the same class of frequency
modulation functions as in the endocrine case can be used,
whereas the amplitude modulation function is given by
(6). The amplitude modulation function in the feedback is
captured by the Hill function

F0(θ) = F0(θ;h2, p2) =
1

1 + (θ/h2)p2
, (10)

again with positive parameters h2, p2. Since 0 ≤ F0(·) ≤ 1,
it is required that 0 ≤ f(θ) ≤ θ, to stay in touch
with the biophysical background. A natural choice of f(·)
that satisfies this requirement is a smoothed saturation
function. The identifiability analysis is facilitated by the
following property of F0.

Lemma 2. Let {θ′i} and {θ′′i }, i ∈ I ⊆ N be positive
sequences and h′, h′′, p′, p′′ be positive parameters. If
F0(θ′i;h

′, p′) = F0(θ′′i ;h′′, p′′) for all i ∈ I, then

θ′′i =
h′

h
′′ p
′′

p′
θ
′ p
′′

p′

i ,

for all i ∈ I.

Proof. Follows from equating F0(θ′i) and F0(θ′′i ) and
solving for θ′′i . 2

2.2 Model Solutions

An important difference between modulation functions (9)
and (6) is that the latter allows for impulse weights that

Fig. 1. Simulation of pharmacokinetic model with impul-
sive feedback. The upper plot also depicts the firings
of the impulsive feedback (in red). The plotted se-
quence represents the impulse weights dn.

are not strictly positive. The following result states that,
with a modulation function in the form of (6), the model
solutions asymptotically converge to zero, in contrast with
the self-sustained behaviours of the impulsive Goodwin’s
oscillator which lacks equilibria by design.

Lemma 3. (Runvik et al. (2020)). Consider the discrete
system obtained by sampling of (1), (2), (3) and (5) at
the firing times of the impulsive feedback. If the frequency
modulation function is bounded according to (7), the am-
plitude modulation function satisfies

0 ≤ F (·, η) ≤ η,
and F (·, η) = 0 ⇐⇒ η = 0, then the unique equilibrium
of the system at x0 = 0, r0 = 0 is asymptotically stable.

As a consequence of Lemma 3, the corresponding continu-
ous solutions also tend to the same equilibrium. This is ex-
pected, as the solutions to a pharmacokinetic model have
to die out after the drug dose has depleted. A simulation
illustrating this converging behavior is shown in Fig. 1.
The model parameters are selected for the solutions to
resemble experimentally observed excursions of levodopa
concentration. Notice also the intrinsic positivity of the
system is implied by the matrix A in (2) being Metzler.

The following lemma proves that, for a typical class of f(·),
the impulse weights decay faster than exponentially.

Lemma 4. Let F (·, ·), given by (6), determine the input
impulses of (1), with r(t) governed by (5). Let (10)
define F0(·) and f(θ) satisfy 0 ≤ f(θ) ≤ θ as well as
limθ→0 f(θ) = θ. Then, ∀ε > 0, there exists an index k > 0
such that F (Cx(tn+1), rn+1) ≤ εF (Cx(tn), rn), ∀n ≥ k.

Proof. See Appendix A. 2

3. CONTINUOUS SUBSYSTEM

The structural identifiability analysis is divided into two
distinct steps. In the first step, described in this section,
the continuous subsystem defined by x1 and x2 in (1) is
analyzed with respect to identifiability of b1 and b2 as
well as the times and weights of the impulses. The second
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step, covered in Section 4, involves the identification of b3,
together with the parameters of the modulation functions,
from the identified impulses.

The identification of model parameters in exponentially
decaying signals is well studied, see e.g. Landaw and DiS-
tefano (1984). Provided that the impulse times are known,
this analysis can be naturally generalized to the case when
a linear system is excited with multiple impulses. With un-
known impulse times, the task becomes more complicated
due to the nonlinear dependence of the impulse times on
the output. However, structural identifiability can still be
proven according to the analysis below.

Introduce the following sequences

c
(n)
1 = c

(n−1)
1 +

dn
b2 − b1

eb1tn−1 , c
(1)
1 =

d0 + x1(0)

b2 − b1
,

c
(n)
2 = c

(n−1)
2 − dn

b2 − b1
eb2tn−1 , c

(1)
2 = −d0 + x2(0)

b2 − b1
.

In between impulses, the measurement z(t) is given by

z(t) =
g1
v

(c
(n)
1 e−b1t +c

(n)
2 e−b2t), tn−1 < t < tn. (11)

It follows from the structure of (11) that any scaling of the
impulse weights is indistinguishable from a corresponding
change in g1 or v, which implies that the scaling of the
impulses and these parameters are not identifiable per se.
The symmetry of (11) with respect to b1 and b2 prevents
discrimination between these parameters.

For any interval between impulses, up to the scalings and
permutations mentioned above, the parameters of (11)

(including the values of c
(n)
1 and c

(n)
2 ) are identifiable, since

exponential functions with distinct half-lives (represented
by b1 and b2) are linearly independent. When comparing

between intervals of different length, the values of c
(n)
1

and c
(n)
2 always differ. The impulse times can therefore

be uniquely determined as the times when the identified

values of c
(n)
1 and c

(n)
2 change. Finally, (11) implies that

the impulse weights also are determined (up to scaling) by
the measured signal. The following result therefore holds.

Proposition 1. Assume that the system given by (1), (2)
and (3) is subject to k impulses within the time interval
τ1 < t1 < . . . < tk < τ2. Then the time instants and
weights of the impulses {dn, tn}, n = 1, . . . , k, as well
as the parameters b1 and b2, can be recovered from the
measurement z(θ), θ ∈ [τ1, τ2], where z is given by (4).

4. DISCRETE SUBSYSTEM

The structural identifiability of b3 and the parameters
of the modulation functions is now addressed, under the
assumption that the impulse times and weights and the
parameters b1 and b2 are known. A necessary condition
for structural identifiability can be stated directly.

Lemma 5. Let modulation function (8) determine the
times of the impulsive input to (1) with the initial con-
dition x0 = 0. If less than five impulse times are known
for this system, then the parameters of the frequency
modulation function cannot be uniquely determined.

Proof. With less than five known impulse times, there are
no more than three intervals between impulses. Since the

first interval determines k1, there are at most two intervals
left to determine the remaining three parameters. Then,
Lemma 1 implies that there are multiple parametrizations
of the frequency modulation function yielding the same
time intervals for the same inputs. 2

The rest of this section aims at finding sufficient identifia-
bility conditions. The main difficulty in this analysis is that
the input signal to the modulation function is intrinsic to
the feedback loop and not measured. The function

f∗(x, y, z, φ) =

(z − y) e−xφ +(x− z) e−yφ +(y − x) e−zφ

(y − z)(z − x)(x− y)
(12)

will be used to show how the value of b3 influences the
output.

Lemma 6. Let (12) define f∗(·, ·, ·, ·) and θ1, θ2, θ3, θ4 be
distinct positive parameters such that θ1 < θ2 < θ3 < θ4.
Then

lim
φ→∞

f∗(θ1, θ2, θ3, φ)

f∗(θ1, θ2, θ4, φ)
=
θ1 − θ4
θ1 − θ3

,

and
f∗(θ1, θ2, θ3, φ)

f∗(θ1, θ2, θ4, φ)
<
θ1 − θ4
θ1 − θ3

for all φ ∈ R+.

Proof. See Appendix B. 2

Lemma 7. Let S′ be given by (1) with

A =

−b1 0 0
g1 −b2 0
0 g2 −b′3

 , B =

1

v
0
0

 ,
the output

y′ = Cx, C = [0 0 1] ,

and the input impulses according to (8) and (6), where

F0(θ) =
1

1 + (θ/h′2)p
′
2

,

and (5) determine the dynamics of r(t). Define S′′ in the
same way, but with double primes on the corresponding
parameters and variables. Assume furthermore that

• The initial conditions for S′ and S′′ are given by
x0 = 0 and d is fixed,

• b′′3 ≥ b′3 > min(b1, b2),
• f(θ) satisfies 0 ≤ f(θ) ≤ θ and f(θ) = 0 ⇐⇒ θ = 0

for both systems.

If the impulse times and weights are identical between S′

and S′′, then

lim
t→∞

y′(t)

y′′(t)
=

min(b1, b2)− b′3
min(b1, b2)− b′′3

,

Proof. See Appendix C. 2

By combining Lemma 7 and Lemma 2, the following result
is now obtained.

Lemma 8. Let the systems S′ and S′′ be defined as in
Lemma 7. If all impulse times and weights coincide be-
tween the two systems and f(·) has at most one parameter
to identify, then the parametrizations of the amplitude
modulation functions of the two systems are identical and
b′3 = b′′3 .
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Proof. See Appendix D. 2

All auxiliary results are now in place to proceed with the
main result of the paper.

5. HYBRID SYSTEM

Structural identifiability of the complete model, given by
(1), (2), (3) and (5), under impulsive feedback defined
by (6), (8) and (10), is now analyzed. In summary, it is
established that the time constants of the first two system
states as well as the times and weights of the impulses
can be identified according to Proposition 1. The identifi-
ability of the remaining parameters can then be analyzed
by considering the consequences of assuming two distinct
in parameters models producing the same measured out-
put. For the assumed initial conditions and modulation
functions, Lemma 7 can be used, which eliminates non-
unique parametrizations of the amplitude modulation and
non-unique b3. This also eliminates the possibility of non-
unique frequency modulation parameters.

Proposition 2. Consider the system defined by (1), (2)
and (3), with impulsive feedback given by (8), (6) and
(10), with r(t) governed by (5). The parameters listed
in Table 1 are then structurally identifiable, up to the
indicated permutations and scaling, from a continuous
measurement of z(t), given by (4) for t ∈ [0,∞), under
the following conditions:

• The initialization of the system is given by x0 = 0
and r(t0) = d is fixed,
• b3 > min(b1, b2),
• f(·) has at most one parameter to identify, denoted
α,
• 0 ≤ f(θ) ≤ θ and f(θ) = 0 ⇐⇒ θ = 0.

Table 1. Structurally identifiable parameters.
∗Identifiable up to permutation. ∗∗Identifiable

up to scaling.

Parameter location Parameter name

Continuous plant b1
∗ b2

∗ b3
Impulse train tn dn

∗∗

Frequency modulation function k1 k2 h p
Amplitude modulation function h2 p2 (α)

Proof. Structural identifiability of b1, b2 and the se-
quences tn and dn follows from Proposition 1. Lemma 8
yields that h2, p2 and (if it exists) α are structurally
identifiable, since the same conditions as in Lemma 8 are
used. Finally Corollary 1 gives that k1, k2, h and p are
structurally identifiable, since y(t0) = 0 and there are more
than four impulses in the considered time horizon. 2

Notice that the initial conditions stated in Theorem 2
are consistent with a typical levodopa pharmacokinetic
experimental protocol, where a Parkinson’s patient with
limited endogenous dopamine production receives a single
dose of levodopa after an overnight washout.

6. CONCLUSION

Structural identifiability of a hybrid system with intrinsic
impulsive feedback and immeasurable input has been
analyzed. A necessary condition, based on the form of the

frequency modulation function, is formulated in terms of
the number of feedback impulses. This provides a useful
lower bound on the amount of data needed for estimating
the parameters for this type of model.

A sufficient condition for structural identifiability is ob-
tained only under restrictive assumptions, indicating the
difficulty of establishing general theoretical results with
regard to identifiability in the considered class of models.
Possible future work includes extending the analysis to
other systems of similar structure, such as different ver-
sions of the impulsive Goodwin’s oscillator.
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Appendix A. PROOF OF LEMMA 4

Let xn = x(t−n ), rn = r(t−n ) for notational simplicity. It
follows from Lemma 3 that limn→∞ dn = 0. Based on this
fact and the properties of F0(·) and f(·), it is then for all
α < 1 possible to find an index k such that F0(Cxn) >

√
α,

f(rn) >
√
αrn, for all n ≥ k. One then has

F (Cxn+1, rn+1)

F (Cxn, rn)
=
f(rn+1)F0(Cxn+1)

f(rn)F0(Cxn)

≤ f(rn+1)

f(rn)F0(Cxn)
≤ rn+1

f(rn)F0(Cxn)

≤ rn+1√
α
√
αrn

=
rn+1

rn

1

α
.

Since
rn+1 = rn − F (Cxn, rn) ≤ rn − αrn,

it follows that
rn+1

rn

1

α
≤ rn − αrn

rn

1

α
=

1− α
α

.

By letting α = 1/(ε+ 1) the sought inequality is obtained.

Appendix B. PROOF OF LEMMA 6

The limit can be calculated directly. To prove the inequal-
ity, notice that f∗(θ1, θ2, θ3, φ) is positive for φ > 0 since
the denominator is positive and

(θ3 − θ2)e−θ1φ + (θ1 − θ3)e−θ2φ + (θ2 − θ1)e−θ3φ

= e−θ2φ((θ3 − θ2)e(θ2−θ1)φ + θ1 − θ3 + (θ2 − θ1)e(θ2−θ3)φ)

> e−θ2φ(θ3 − θ2 + θ1 − θ3 + θ2 − θ1) = 0,

where the inequality is obtained from the relation

aebt + be−at > a+ b (B.1)

for a, b, t > 0. f∗(θ1, θ2, θ4, φ) is then also positive. Now
consider the fraction

f∗(θ1, θ2, θ3, φ)

f∗(θ1, θ2, θ4, φ)

θ1 − θ3
θ1 − θ4

=
(θ3 − θ2)e−θ1φ + (θ1 − θ3)e−θ2φ + (θ2 − θ1)e−θ3φ

(θ4 − θ2)e−θ1φ + (θ1 − θ4)e−θ2φ + (θ2 − θ1)e−θ4φ

× θ2 − θ4
θ2 − θ3

=
hn(φ)

hd(φ)
.

The positivity of f∗ implies that hn(φ) and hd(φ) are
negative when φ > 0 and zero when φ = 0. The sought
inequality is therefore equivalent to the condition hn(φ)−
hd(φ) > 0 for all φ > 0. This difference becomes

hn(φ)− hd(φ) = (θ2 − θ1)

× ((θ4 − θ3)e−θ2φ + (θ2 − θ4)e−θ3φ + (θ3 − θ2)e−θ4φ)

= (θ2 − θ1)e−θ3φ

× ((θ4 − θ3)e(θ3−θ2)φ + θ2 − θ4 + (θ3 − θ2)e(θ3−θ4)φ)

> (θ2 − θ1)e−θ3φ(θ4 − θ3 + θ2 − θ4 + θ3 − θ2) = 0,

where the inequality again is obtained from (B.1).

Appendix C. PROOF OF LEMMA 7

The output of S′ can be written as

y′(t) = g1g2

(
n∑
i=0

di
v
f∗(b1, b2, b

′
3, τi)

)
,

where τi = t− ti and

n = arg max
i∈N
ti<t

ti.

With the very similar expression for y′′(t), one gets

y′(t)

y′′(t)
=

∑n
i=0 dif

∗(b1, b2, b
′
3, τi)∑n

i=0 dif
∗(b1, b2, b′′3 , τi)

.

As every numerator-denominator pair in the sums con-
verges to the stated limit according to Lemma 6 and the
impulse weights tend to zero as n → ∞, the whole ratio
also converges to this value.

Appendix D. PROOF OF LEMMA 8

The initial conditions and the form of F (·, ·) imply that if
f(·) has a parameter to identify, it is fixed from the first
impulse, since F0(0) = 1. This requires F0(tn, h

′
2, p
′
2) =

F0(tn, h
′′
2 , p
′′
2) for all impulse times tn, so Lemma 2 gives

y′′(tn)

y′(tn)
=

h′

h
′′ p
′′

p′
y′(tn)

p′′
p′ −1.

Combining this result with Lemma 7 rules out p′2 6= p′′2 ,
as y′(tn)/y′′(tn) would not be positive and bounded in
that case, because y′(t) tends to zero. If p′′2 = p′2 then
y′(tn)/y′′(tn) = h′′2/h

′
2. But this can only be fulfilled if

h′′2 = h′2, and b′3 = b′′3 as

y′(t1)

y′′(t1)
=
f∗(b1, b2, b

′
3,Φ(Cx(t0)))

f∗(b1, b2, b′′3 ,Φ(Cx(t0)))
<

min(b1, b2)− b′3
min(b1, b2)− b′′3

,

if b′3 6= b′′3 from Lemma 6, while

lim
t→∞

y′(t)

y′′(t)
=

min(b1, b2)− b′3
min(b1, b2)− b′′3

,

from Lemma 7.
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