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Abstract: Respiratory failure patients in the intensive care unit (ICU) require mechanical ventilation 

(MV) to support breathing and tissue oxygenation. Optimizing MV care is problematic. Significant 

patient variability confounds optimal MV settings and increase the risk of lung damage due to excessive 

pressure or volume delivery, which in turn can increase length of stay and cost, as well as mortality. 

Model-based care using in silico virtual patients can significantly affect ICU care, personalizing delivery 

and optimising care. This research presents a virtual patient model for pressure-controlled MV, an 

increasingly common mode of MV delivery, based on prior work applied to volume-controlled MV. This 

change necessitates predictions of flow and thus volume, instead of pressure, as the unspecified variable. 

A model is developed and validated using clinical data from five patients (N=5) during a series of PEEP 

(positive end expiratory pressure) changes in a recruitment maneuver (RM), creating a total of 242 

predictions. Peak inspiratory volume, a measure of risk of lung damage, errors were 56 [26-95]mL (10.6 

[5.3-19.1]%) for predictions of PEEP changes from 2-16cmH2O. Model fitting errors were all lower than 5%. 

Accurate predictions validate the model, and its potential to both personalise and optimise care. 

Keywords: Include a list of 5-10 keywords, preferably taken from the IFAC keyword list. 



1. INTRODUCTION 

Mechanical ventilation (MV) is a core therapy for intensive 

care patients suffering from respiratory failure (Slutsky, 

1993, Slutsky and Tremblay, 1998). A clinician set pressure 

and flow is delivered to the lungs, opening the alveoli and 

allowing for gas exchange. However, determining optimal 

ventilator settings to maximise oxygenation while minimising 

the risk of further damage through ventilator induced lung 

injury (VILI) (Amato et al., 1998, Ricard et al., 2003) is 

difficult.  

Staircase titration of PEEP (positive end expiratory pressure) 

to find the PEEP level with minimum elastance recruits new 

alveoli and ensures open alveoli do not collapse at the end 

expiration, preventing repetitive damage (Amato et al., 1998, 

Suarez-Sipmann et al., 2007, Suter et al., 1978). However, 

increasing pressures increases the risk of barotrauma and 

increasing volumes increases the risk of volutrauma (Briel et 

al., 2010), a balance between patient care and risk. 

The problem is one of risk balancing between low and high 

PEEP, and thus low and high pressure and volume settings. 

In addition, there is predictive risk when changing settings, 

where the ability to know if a change would lead to further 

damage, or no added recruitment value, would be useful 

before making it. There is thus a need for methods to provide 

better insight into optimal ventilator settings, predictive of 

changes in patient lung response to changes in care (Morton 

et al., 2019a). 

Model-based methods give clinicians real-time information 

on patient-specific lung condition to balance these risks, 

while ensuring adequate oxygenation and care. Recently, 

such models have shown accurate prediction of patient-

specific response to changes in care to help guarantee safety 

from barotrauma in volume-controlled MV (Morton et al., 

2018, Morton et al., 2019b). However, current medical 

practice prefers pressure controlled ventilation (PCV) in 

many ICUs (Major et al., 2018), and volutrauma in PCV is an 

equally damaging form of VILI.  

To date there are significant virtual patient development in 

the area of metabolic systems (e.g. (Chase et al., 2010, Evans 

et al., 2012, Chase et al., 2018, Dickson et al., 2018, Chase et 

al., 2011)). They are in clinical use for blood glucose control 

(Fisk et al., 2012, Stewart et al., 2016), but are emerging for 

cardiovascular and pulmonary systems (Chase et al., 2018, 

Morton et al., 2019a, Desaive et al., 2019). There is thus a 
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growing need to extend and bring these models into clinical 

practice to personalise care. 

This study is an initial model extension from volume-

controlled MV to PCV, including proof-of-concept validation 

on clinical data.  The goal is to provide accurate prediction of 

patient-specific response in pressure controlled ventilation.  

2. METHODS 

2.1 Data, Patients and Ethics 

This analysis uses data from a single RM from N=5 PCV MV 

patients under a BIPAP MV mode in Maastricht in 

November 2017 to January 2018. Data was obtained at the 

start of MV, captured at 125Hz. A proof-of-concept 

validation set. Ethics approval and use of this data for this 

study was provided by the institutional review board. 

2.2 Virtual Patient Model 

Basis functions for volume-controlled MV virtual patient 

models were used to derive new formulations to predict 

outcome volumes, instead of pressures, for PCV input 

variables (Morton et al., 2018, Morton et al., 2019b). Its 

underlying structure is based on the well-known single 

compartment model (Bates, 2009b, Bates, 2009a), which has 

been well used and validated with clinical data (Chiew et al., 

2011, Chiew et al., 2015b, Chiew et al., 2015a, van Drunen et 

al., 2013a, van Drunen et al., 2013b, van Drunen et al., 2014), 

assuring a proven foundation model.  

The initial model used in (Morton et al., 2018, Morton et al., 

2019b) is defined: 

 

                                   
 

(1) 

where P(t) is the airway pressure delivered by the ventilator 

(cmH2O), PEEP is the positive end-expiratory pressure 

(cmH2O), V(t) is integral of the flow delivered, Q(t) (L/s), 

from time, t=0, for each breath, and Vm = 1L.  

The recruitment elastance basis function term (V-Vm)2 is set 

to zero for V >Vm and is piecewise parabolic with respect to V 

at a given PEEP. The recruitment and distension elastances, 

E1 and E2 (cmH2O/L), and flow resistances, R1 and R2 

(cmH2O*s/L), are found from measured data and linear least 

squares regression.  

The goal is to use measured pressure data, P(t), to identify 

flow (Q(t)) in PCV, the opposite of the approach in (Morton 

et al., 2018, Morton et al., 2019b). Identification yielded R2 ~ 

0 because most MV flows are laminar (Morton et al., 2019b), 

and was thus removed from analysis. 

2.3 System Identification Method 

Data is identified breath to breath, beginning at the first flow 

Q > 0L/s, and ending when Q = 0L/s, covering inspiration 

and expiration. PEEP is the minimum measured pressure, 

which can differ from the ventilator set value. A median 

breath was developed from all breath data available at each 

PEEP level of the staircase recruitment maneuver.  

E1, E2, R1 are identified using linear least squares regression 

for the median breath at each PEEP, from: 

 

(2) 

Since PEEP, P(t), Q(t), and thus V(t) integrated from the 

known input Q(t) are known, the variables can be identified 

using least squares and Equation (2). 

However, in specific, data for each breath analysed was 

truncated to 60 points to provide equal weighting to both 

inspiration and expiration data (30 points each), where 

inspiration had (median [IQR]) 27 [23 – 30] data points. 

Hence, the value of 30 splits the data into approximately 

equal sections. It also minimises near-zero flow data at the 

end of expiration, which ensures a more robust least squares 

problem. There are thus 60 equations and 3 unknowns. 

Because flow and volume are related, forward simulation of 

flow from known input pressure data was performed using 

Newton’s method. An initial guess of Q(t) = 3L/s constant 

flow is used to start the iterative process, where this value is a 

typical peak value in adult ICU MV. Each iteration updated 

this flow to be more physically realistic, including negative 

expiratory flow. Since volume is the integral of flow, the 

process employs two equations: 

 

(3) 

 

(4) 

Equations 3-4 are iterated until maximum flow converges to 

0.1% or less change or a maximum of 500 iterations.  

2.4 Model Prediction 

Prediction validation examined the upward increasing PEEP 

arm of the RM, since risk arises from increasing pressure and 

PEEP, rather than reducing pressures. Predictions were made 

for all possible upward PEEP changes covering one or more 

steps. The number of predictions studied for each prediction 

interval size are shown in Table 1, where the total number of 

predictions is 242, which is large enough and across enough 

PEEP levels to ensure a robust proof-of-concept validation. 

When PEEP rises, there is an increase in retained lung 

volume at the end of expiration, Vfrc, due to recruitment. Vfrc 

> 0 when PEEP rises and Vfrc < 0 when it falls. The change in 

the value of Vfrc for a change in PEEP is calculated iteratively 

with a starting estimated value of 0.05L (50mL) using a zero-

flow condition from Equation (1) defined (Morton et al., 

2018, Morton et al., 2019b): 

 

(5) 
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Table 1. Number of predictions studied for each interval size 

of increasing PEEP (N=242 total) 

Increase in PEEP Number of Predictions 

0 cmH2O 46 

2 cmH2O 42 

4 cmH2O 37 

6 cmH2O 32 

8 cmH2O 27 

10 cmH2O 22 

12 cmH2O 17 

14 cmH2O 12 

16 cmH2O 7 

2.5 Model Validation 

The values are identified at a given PEEP level for E1, E2 and 

R1, and used to predict flow, Q(t), and volume, V(t), at higher 

PEEP levels using the known pressure controlled input, P(t). 

Fitting error assesses model validity and structure. Prediction 

error assesses clinical validity in using the model and 

methods to personalise and guide care. 

Safety from volutrauma is assessed in the prediction error for 

peak inspiratory volume (PIV) at a new PEEP level. This 

predicted value includes estimated Vfrc and any error in that 

value, which is directly computed from the clinical data at a 

PEEP change for comparison. Hence, if fitting error is low, 

indicating good model structure to the observed dynamics, 

then prediction error, independent of fitting error, assesses 

clinical safety and validity of the model and methods, 

although it is expected these errors move in tandem.  

Root Mean Square (RMS) error is the average sum-squared 

error over the breath. Percentage RMS error normalises this 

value to pressure level for fair comparison across a wide 

range of PEEP values. PIV error is calculated as absolute 

value (mL) and percentage error. Finally, since flow and 

volume are related, peak flow is also compared. Per Table 1, 

predictions are made from 1-8 PEEP levels upward or 

forward, for ΔPEEP ranges of 6-22cmH2O.  

 

3. RESULTS 

3.1 Model Fit 

The model fit of volume assessed across all PEEP levels is 

shown in Table 2 noted as a prediction over PEEP change of 

zero (0cmH20 PEEP change). Prediction of PIV had absolute 

error (median [IQR]) of 8.8 [5.2 – 12.2] mL, with an RMS 

error of 21.2 [16.0 – 26.5]mL. The fitting RMS error was 37 

[25 - 64]mL (18.3 [11.9 - 28.1]%). There was peak flow error 

of -1 [-0.7 - -1.2]L/s, and RMS error 11 [6-24]mL/s. Model 

flow error was overall larger than volume error, as slight 

timing offsets in modelled vs. measured flow with steep 

gradients magnified error, but overall area under the curve 

(volume) was similar. 
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3.2 Model Prediction of Flow 

Figure 1 and Table 2 present all prediction errors (non-zero 

PEEP changes). For all PEEP prediction intervals studied, 

peak flow had (median [IQR]) absolute prediction error of 

0.86 [0.65 - 1.18]L/s. The percentage absolute error was 13.9 

[11.1 - 18.0]%. for each prediction interval, including zero 

for the fitting error case.  

Differences in RMS and mean (signed) error, compared to 

mean (absolute) error shows the general shape of flow is 

captured well over the breath, but timing is not necessarily 

precise with peaks and troughs occurring at slightly different 

times. Figure 2 shows a typical prediction, where the RMS 

and mean (signed error) were each 0.024L, but mean 

(absolute) error was 0.326L. The error in maximum flow 

estimation was 0.590L/s.  
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Figure 1: Specific error results for model prediction. a) Error 

(L) in predicting peak inspiratory volume across all PEEP 

interval sizes. b) Error (%) in predicting peak inspiratory 

volume across all PEEP interval sizes. c) RMS Error (L) in 

predicting lung mechanics across all PEEP interval sizes. 

Note that timing errors in flow leading to larger flow errors 

are less evident in (integrated) volume values. However, it 

should be noted volume is the more clinically relevant metric 

for risk and patient safety. Thus, a model developed 

originally for volume-controlled ventilation translates well in 

accuracy to pressure-controlled ventilation based on the low 

volume prediction errors. 

Finally, clinically important PIV error over all PEEP changes 

predicted across had (median [IQR]) error of 56 [26-95]mL 

(10.6 [5.3-19.1]%) with 95th percentile absolute error of 

160mL. These errors are summarised for each ΔPEEP 

prediction interval in the boxplots in Figure 1.  

4. DISCUSSION 

Model fit yielded volume and flow results fitting measured 

values well over all RM steps. This outcome indicates the 

model structure, and thus the specific basis functions used in 

(Morton et al., 2018, Morton et al., 2019b), are thus more 

broadly validated across volume and pressure controlled MV. 

The results show it captures the observed physiology of 

elastance in recruitment and distension well. This overall 

result should be expected as the MV mode is not expected to 

significantly impact physiological mechanical properties for 

relatively small differences between MV modes. 

 

 

 

 
Figure 2: Specific prediction results for Patient 1, fitting the 

model to a PEEP of 10 cmH2O and predicting lung 

mechanics up to a PEEP of 22 cmH2O. 

 

Peak inspiratory volume was predicted across PEEP interval 

increases of 4 cmH2O with (median [IQR] and median error 

of 40 [20 - 70] mL (6.3%), increases of 8 cmH2O with error 

of 70 [40 - 100] mL (12.3%) and increases of 12 cmH2O with 

error of 110 [50 - 140] mL (19.3%). Importantly, prediction 

intervals of 12cmH2O or more are not clinically relevant or 

likely, as smaller steps are more typical. However, the 

relatively low PIV error for these large intervals provides a 

more robust validation of the model and its potential clinical 

use. Equally, the much lower error at clinically relevant 

PEEP change intervals validates the safety and efficacy likely 

to result in clinical use.  

In some cases, PIV prediction and RMS fit percentage errors 

can be large. However, in some cases, the volume increases 

to be estimated are very small making these errors, which 

have small absolute errors in mL, seem larger than they are in 

clinical terms. More directly, small absolute errors have little 

meaning, even if the percentage error is large.  

More specifically, the largest tidal volume in this study was 

0.82 L (median [IQR] of 0.51 [0.39 – 0.63]). However, 

functional residual capacity of the lung for a health adult is 

1.8L to 2.4L for women and men. The tidal volumes are thus 
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a measurable fraction of this capacity, but changes in tidal 

volume between PEEP steps may be much smaller. Thus, 

small changes may not be predicted well, but those relatively 

larger errors are not clinically meaningful in absolute value. 

Similarly, the results show some larger flow prediction 

errors, but much lower volume prediction errors. The flow 

errors arise primarily from small differences in timing 

between rapidly changing flow during a breath in the data 

and in the identified model prediction. The overall shapes are 

very close, but errors can appear large. However, these errors 

are effectively cancelled in integrating to get volume, 

indicating these errors, while appearing large, are not 

meaningful in difference. More specifically, low mean values 

for the signed errors in these cases further show any over or 

under prediction in flow cancels. 

Prior work by Morton et al (2018; 2019a,b) showed errors in 

estimating Vfrc in Equation (5) were relatively and clinically 

small. They thus had lesser impact on predicted pressures in 

those prior cases, but in proportion where smaller Vfrc error 

led to smaller predicted pressure error. The same proportion 

and impact should hold true in this case for predicted volume. 

Hence, improving Vfrc estimation should improve the errors 

reported here. 

In context, this is the first virtual patient model with accurate 

prediction for any form of MV. This work extends it from 

volume controlled MV to the equally to more commonly 

used pressure controlled mode of MV. This prediction is in 

comparison to a wide range of models, which accurately fit 

data but cannot predict changes to MV settings (Schranz et 

al., 2011, Schranz et al., 2012a, Schranz et al., 2012b, 

Sundaresan et al., 2009, Sundaresan and Chase, 2011, 

Sundaresan et al., 2011, Morton et al., 2019a), which is 

critical clinically. The model and results are thus unique. 

Overall, a predictive lung mechanics method has been used to 

forward predict volume over a recruitment maneuver. 

Prediction accuracies are clinically relevant with a median 

error or 10.6% over all predictions, and much lower error 

over smaller PEEP changes. Such predictions can be used to 

inform clinical care, as they provide insight to tidal volume, 

in the context of achieving recruitment and minimising 

volume trauma. 

5. CONCLUSIONS 

The results of this study show the proposed model, already 

validated in volume-controlled ventilation, can provide good 

prediction in pressure-controlled ventilation MV modes. This 

extension thus show the model dynamics and approach cover 

both major forms of ventilation. More importantly, the results 

show the potential, with further in depth studies, to 

significantly impact the personalisation and optimisation of 

MV care, and to reduce the risk of ventilator induced lung 

injury in all forms. 

More specifically, low fitting errors indicate the model 

captures all observed dynamics of clinical importance. 

Accurate forward prediction of peak inspiratory volume 

ensures the virtual patient model can act as a safe means to 

predict clinically relevant values, despite slightly larger errors 

in flow prediction. The model presented is thus a first of its 

kind virtual patient for pressure-controlled ventilation with 

initial proof-of-concept validation. Finally, these outcomes 

all show the virtual patient model for volume-controlled 

ventilation generalises very well to pressure controlled 

modes, and thus is a further validation of the underlying 

models and methods in its generalisation here. 
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