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Abstract: This paper studies set-membership estimation for discrete linear time-varying
systems subject to unknown disturbance and noise, which are bounded by ellipsoids. To
improve the existing ellipsoid-based set-membership estimation methods, we propose a new
set representation tool, called ellipsoid bundle, which combines the advantages of ellipsoids and
zonotopes for uncertainty set representation and computation. Then, ellipsoidal bundles are
used to design a new set-membership estimation method.
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1. INTRODUCTION

State estimation is an important topic in control theory
and engineering applications. However, a practical system
is usually affected by various model uncertainties, for
instance, process disturbances and measurement noises.
One of the most important problems in state estimation
is how to deal with such uncertainties to obtain reliable
estimations. Many existing state estimation methods are
designed based on stochastic theory, for instance the well-
known Kalman filter(Kalman, 1960). These methods usu-
ally assume that uncertainties have known probability dis-
tributions. However, in many situations, these probability
distributions are unknown. Some disturbances may even
not be random. Different from the state estimation meth-
ods based on stochastic system theory, set-membership
estimation methods only assume that model uncertainties
are unknown but bounded. This is a weaker assump-
tion, which can be satisfied in most practical systems.
Moreover, set-membership estimation methods can obtain
the reachable set of state instead of a single trajectory
estimation, which is useful in many applications. Recent-
ly, set-membership estimation has received considerable
attention and has been applied to various fields such as
fault diagnosis (Tang, Wang, and Shen, 2018; Xu, Tan,
Wang, Wang, Liang, and Yuan, 2019) and robust control
(Canale, Fagiano, and Milanese, 2009; Efimov, Räıssi, and
Zolghadri, 2013).

Set-membership estimation aims to construct a compact
set enclosing all admissible state values that are consistent
with the system model, the input and measurement data.
Many geometrical sets, for instance ellipsoids, polytopes
and zonotopes, have been used to design set-membership
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estimation methods. For different choices, an important
problem is how to make a tradeoff between estimation
accuracy and computation complexity. In the pioneering
work of Schweppe (1968), a recursive set-membership es-
timation method based on ellipsoids was proposed. The
ellipsoid-based methods have low computation complexity
and have attracted much attention (Fogel and Huang,
1982; Maksarov and Norton, 1996; Chernousko, 2005;
Zhang, Wang, Räıssi, and Shen, 2019). However, the es-
timations by the ellipsoid-based methods are usually con-
servative since a single ellipsoid is not able to describe
a complex reachable set of state. General polytopes can
be used to achieve more accurate set-membership estima-
tion (Blanchini and Miani, 2008), but the computation
complexity may be very high. Zonotopes, a special kind
of polytopes, provide a good tradeoff between estima-
tion accuracy and computation complexity. Recently, set-
membership estimation methods based on zonotopes have
received considerable attention (Alamo, Bravo, and Cama-
cho, 2005; Combastel, 2015; Tang, Wang, Wang, Räıssi,
and Shen, 2019).

The accuracy of existing methods based on ellipsoids is
limited by the shape of a single ellipsoid. However, the
ellipsoidal estimation sets have smooth boundaries, which
is a good property when the results are used for some
optimization purposes. Similarly, in the classical curve
fitting problem, splines are often preferred to piecewise
linear interpolation. In addition, it is more suitable to
use ellipsoids in some specific situations, for instance in
target tracking problems (Maksarov and Norton, 1996).
Considering these, this paper proposes a new set represen-
tation tool, called ellipsoid bundle, which combines the
advantages of ellipsoids and zonotopes. Like zonotopes,
ellipsoid bundles are able to describe complex convex sets.
Therefore, ellipsoid bundles can be used to design a set-
membership estimation method less conservative than the
ellipsoid-based method. Moreover, ellipsoid bundles also
have smooth boundaries. This paper has the following main
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contributions. First, we propose a new set representation
tool, ellipsoid bundle, which combines the advantages of
ellipsoids and zonotopes for uncertainty set representation
and computation. Second, the basic properties of ellipsoid
bundles are investigated. Third, a novel set-membership
estimation method is proposed based on ellipsoid bundles.
Finally, simulation results demonstrate the effectiveness of
the proposed set-membership estimation method.

2. PRELIMINARIES

The following notations are standard in this paper. Rm×n

and Rn denote the m× n dimensional and n dimensional
Euclidean spaces, respectively. A bold letter represents
a set in the rest of this paper. The symbols ≤ and ≥
are understood element-wise. Given a matrix P ∈ Rn×n,
P ≽ 0 (P ≼ 0) indicates that P is a positive (negative)
semidefinite matrix.

Definition 1. Given two sets, X1 ⊂ Rn and X2 ⊂ Rn,
their Minkowski sum is defined as

X1 ⊕X2 = {x ∈ Rn : x = x1 + x2, x1 ∈ X1, x2 ∈ X2}.
Definition 2. An m-order zonotope is an affine transfor-
mation of the hypercube Bm = [−1, 1]m, i.e.

Z = ⟨p,H⟩ = {x ∈ Rn : x = p+Hz, z ∈ Bm},
where p ∈ Rn is the center of Z and H ∈ Rn×m defines
its shape and size.

Definition 3. A non-degenerate ellipsoid is defined as

{x ∈ Rn : (x− c)TP−1(x− c) ≤ 1}, (1)

where c ∈ Rn is the center of the ellipsoid and P ∈ Rn×n is
a positive definite matrix which determines its shape and
size.

This definition, though widely adopted in the literature,
does not cover degenerate ellipsoids, for which the matrix
P would be singular. The following definition (Durieu,
Walter, and Polyak, 2001) covering both degenerate and
non-degenerate ellipsoids will be adopted in the remaining
part of this paper.

{x ∈ Rn : x = c+ Lz, z ∈ Rm, zT z ≤ 1}, (2)

where c ∈ Rn and L ∈ Rn×m.

For non-degenerate ellipsoids (with non-singular P ), these
two definitions are equivalent with P = LLT . Moreover,
any matrix L ∈ Rn×m such that LLT is equal to the same
P defines the same set with (2). The parametrization of
an ellipsoid by L is thus clearly redundant. To avoid this
redundancy, in what follows, an ellipsoid will be denoted
by E(c, P ), with c representing its center and P = LLT .

Definition 4. The support function of a convex set S ⊂ Rn

in terms of a vector l ∈ Rn is defined as

ρS(l) = max
s∈S

lT s.

Lemma 1. (Schweppe, 1968) Given a non-degenerate ellip-
soid E(c, P ) defined as (1), its support function in terms
of l ∈ Rn is

ρE(c,P )(l) = lT c+
√
lTPl.

Although Lemma 1 was proposed for non-degenerate el-
lipsoids in Schweppe (1968), it can be easily extended to
the ellipsoids defined as (2).

Lemma 2. Give an ellipsoid E(c, P ) defined as (2) with
P = LLT , its support function in terms of l ∈ Rn is

ρE(c,P )(l) = lT c+
√
lTPl.

Proof. According to the definition of E(c, P ) in (2), we
have

ρE(c,P )(l) = max
x∈E(c,P )

lTx

= max
zT z≤1

(lT c+ lTLz)

= lT c+ max
zT z≤1

(lTL)z

= lT c+ ρE(0,I)(L
T l)

(3)

Since E(0, I) is a non-degenerate ellipsoid, then according
to Lemma 1 and (3), we have

ρE(c,P ) = lT c+
√
lTLLT l

= lT c+
√
lTPl.

2

Lemma 3. (Schweppe, 1968) Given two convex sets, S1 ⊂
Rn, S2 ⊂ Rn, and a vector l ∈ Rn, we have

ρS1⊕S2(l) = ρS1(l) + ρS2(l).

3. PROBLEM FORMULATION

Consider the following discrete-time system:{
xk+1 = Akxk +Bkuk + wk

yk = Ckxk + vk
(4)

where xk ∈ Rnx , uk ∈ Rnu and yk ∈ Rny are the vectors
of state, input and measurement output, respectively.
wk ∈ Rnx and vk ∈ Rny are the process disturbance
and measurement noise. Ak ∈ Rnx×nx , Bk ∈ Rnx×nu and
Ck ∈ Rny×nx are known matrices.

The process disturbance and measurement noise are as-
sumed to be unknown but bounded by known ellipsoids.

wk ∈ Qk = E(0, Qk), vk ∈ Rk = E(0, Rk), (5)

where Qk ∈ Rnx×nx and Rk ∈ Rny×ny are known pos-
itive definite matrices. These ellipsoidal assumptions are
particularly suitable in target tracking problems, where
uncertainties are naturally related to the Euclidean dis-
tance.

In addition, the initial state is also assumed to be unknown
but bounded by an ellipsoid.

x0 ∈ P0 = E(c0, P0), (6)

where c0 ∈ Rnx and P0 ∈ Rnx×nx is a positive definite
matrix.

In this paper, we aim to obtain a convex set Xk ⊂ Rnx

such that
xk ∈ Xk, ∀k ≥ 0.

In order to increase the tightness of this convex set, we
need improve the existing ellipsoid-based methods. In this
paper, we will propose a new set representation tool and
design a set-membership estimation method based on the
proposed tool.

4. ELLIPSOID BUNDLE

The ellipsoid-based set-membership estimation methods
have low computation complexity. However, the estima-
tions obtained by the ellipsoid-based methods may be
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very conservative since a single ellipsoid has limitation
to describe a complex set. Compared to ellipsoids, zono-
topes (a special kind of polytopes) are able to describe
complex sets with finite parameters. Zonotopes provide a
way to make a good tradeoff between estimation accuracy
and computation complexity, but they have non-smooth
boundaries and are less suitable in some applications, like
in target tracking.

In order to overcome the drawbacks of the ellipsoid-based
methods, we define a new form of sets which combine some
characteristics of ellipsoids and zonotopes. To this end, we
need first review the relevant knowledge of zonotopes.

In fact, an m-order zonotope Z = ⟨p,H⟩ as in Definition 2
is also the Minkowski sum of the vector p and m centered
line segments as follows.

Z = p⊕
m⊕
i=1

Li, (7)

where
Li = {l ∈ Rn : l = aihi, ai ∈ [−1, 1]}

and hi is the i-th column of H.

Motivated by (7), we define a new form of sets, called
ellipsoid bundles, which are defined as follows.

Definition 5. An m-order ellipsoid bundle E(c,H) ⊂ Rn

is the Minkowski sum of the vector c and m centered
ellipsoids as follows.

E = c⊕
m⊕
i=1

E(0, Pi),

where c ∈ Rn and H = [P1, . . . , Pm], Pi ∈ Rn×n,
i = 1, . . . ,m, are positive semidefinite matrices.

Figure 1 presents a 2-order ellipsoid bundle in 3-dimensional
space.

Fig. 1. A 2-order ellipsoid bundle in 3-dimensional space.

Similar to zonotopes, the Minkowski sum and linear trans-
formation of ellipsoid bundles can be implemented by
simple operations.

Property 1 (Minkowski sum). Given two ellipsoid bundles,
E(c1,H1) and E(c2,H2), their Minkowski sum satisfies

E1 ⊕ E2 = E(c,H),

where c = c1 + c2 and H = [H1, H2].

Property 2 (Linear transformation). Given an m-order
ellipsoid bundle E(c,H) and a matrix M ∈ Rq×n, we have

ME(c,H) = E
(
Mc,L (M,H)

)
,

where

L (M,H) =
[
P̃1, . . . , P̃m

]
, P̃i = MPiM

T , i = 1, . . . ,m.

Property 1 and Property 2 are direct corollaries of the
definition of Minkowski sum and the linear transformation
of ellipsoids.

When applying ellipsoid bundles to set-membership esti-
mation, the order of the estimated ellipsoid bundles will
increase linearly with the time k, like in zonotope-based
estimators. To limit the computational burden, we need to
design a reduction method to enclose a high-order ellipsoid
bundle by a lower one, again like in the case of zonotopes.
To this end, we first introduce two necessary lemmas.

Lemma 4. (Durieu, Walter, and Polyak, 2001) Given the
ellipsoid bundle E(c,H), we can obtain a parameterized
ellipsoid E(c, Pα) enclosing E(c,H), where Pα satisfies

Pα =
m∑
i=1

1

αi
Pi,

where αi > 0 for all i ∈ {1, . . . ,m} and
∑m

i=1 αi = 1.

Lemma 5. (Durieu, Walter, and Polyak, 2001) In the
family of E(c, Pα), the minimal-trace ellipsoid containing
E(c,H) satisfies

αi =

√
tr(Pi)∑m

i=1

√
tr(Pi)

,

where tr(Pi) denotes the trace of Pi.

Based on Lemma 4 and 5, we propose a reduction method,
which can be described by the following theorem.

Theorem 1. Given an m-order ellipsoid bundle E(c,H) ⊂
Rn and a fix integer s(0 < s < m). Reordering E(0, Pi)

in decreasing trace of Pi yields E(c, H̃), where H̃ =[
Pσ(1), . . . , Pσ(m)

]
and σ(i) is a permutation of i =

1, . . . ,m. Then, we can obtain an s-order ellipsoid bundle
E
(
c,Rs(H)

)
such that E(c,H) ⊆ E

(
c,Rs(H)

)
, where

Rs(H) =
[
Pσ(1), . . . , Pσ(s−1), P̃

]
,

P̃ =
m∑
i=s

√
tr(Pσ(i))

m∑
j=s

Pσ(j)√
tr(Pσ(j))

.

Proof. From Definition 5, the reordering of Pi in H does

not change the scope of E(c,H). Therefore, E(c, H̃) =
E(c,H).

The reordered ellipsoid bundle E(c, H̃) can be rewritten as

E(c, H̃) = E(c,H1)⊕ E(0,H2),

where
H1 =

[
Pσ(1), . . . , Pσ(s−1)

]
,

H2 =
[
Pσ(s), . . . , Pσ(m)

]
.

According to Lemma 4 and 5, E(0,H2) ⊆ E(0, P̃ ). Then,
by using Property 1 (Minkowski sum), we have

E(c, H̃) ⊆ E(c,H1)⊕ E(0, P̃ )

= E(c,
[
H1, P̃

]
)

= E
(
c,Rs(H)

)
.

It follows that E(c,H) ⊆ E
(
c,Rs(H)

)
. 2
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5. SET-MEMBERSHIP ESTIMATION BASED ON
ELLIPSOID BUNDLES

Based on the ellipsoid bundles described in Section 4,
we propose a new set-membership estimation method
for system (4). The proposed method obtains the set-
membership estimation of state by combining a single state
trajectory estimator with the reachable set estimation of
estimation errors based on ellipsoid bundles.

The single state trajectory estimator has the following
observer structure:

x̂k+1 = Akx̂k +Bkuk + Lk(yk − Ckx̂k), (8)

where x̂k ∈ Rnx is the state estimation and Lk ∈ Rnx×ny

is the observer gain matrix.

Define the estimation error as ek = xk − x̂k. Subtract (8)
from (4), then we obtain the following error system.

ek+1 = (Ak − LkCk)ek + wk − Lkvk. (9)

Based on the reachable set analysis of error system (9),
we can obtain the set-membership estimation of xk in the
form of ellipsoid bundles. The proposed method can be
described by the following theorem.

Theorem 2. For system (4), xk can be bounded by the
ellipsoid bundle E(x̂k,Hk), where Hk ∈ Rnx×(nx×m) satis-
fies

Hk+1 =
[
L (Ak − LkCk, H̃k), Qk, LkRkL

T
k

]
, (10)

where

H̃k =

{
Hk, m ≤ s,

Rs(Hk), m > s
(11)

and
H0 = P0, x̂0 = c0 (12)

and s is a fixed positive integer.

Proof. From (6) and (12), we have

x0 ∈ E(x̂0,H0).

When k ≥ 0, if xk ∈ E(x̂k,Hk), then according to Theorem

1 and (11), we have E(x̂k,Hk) ⊆ E(x̂k, H̃k). Therefore,

xk ∈ E(x̂k, H̃k).

Since ek = xk − x̂k, it follows that

ek ∈ E(0, H̃k).

Then, from (5) and (9), we have

ek+1 ∈ (Ak − LkCk)E(0, H̃k)⊕Qk ⊕ LkRk

= (Ak − LkCk)E(0, H̃k)⊕ E(0, Qk)⊕ LkE(0, Rk).
(13)

According to Property 1 and 2, (13) implies ek+1 ∈
E(0,Hk+1). Then, we have

xk+1 = x̂k+1 + ek+1 ∈ E(x̂k+1,Hk+1).

By induction, xk ∈ E(x̂k,Hk) holds for all k ≥ 0. 2

In order to increase estimation accuracy, we need design Lk

such that the size of E(x̂k+1,Hk+1) is minimized. Similar
to zonotopes, we propose the following size criterion for
the ellipsoid bundle E(x̂k+1,Hk+1).

Jk+1

(
E(x̂k+1,Hk+1)

)
=

p+2∑
i=1

tr(P k+1
i ). (14)

where Hk+1 =
[
P k+1
1 , . . . , P k+1

p+2

]
and p = min{m, s}.

Jk+1

(
E(x̂k+1,Hk+1)

)
is the sum of the squared half-axes

of all the ellipsoids E(0, P k+1
i ), i = 1, . . . , p + 2, which

determine the shape and size of the ellipsoid bundle
E(x̂k+1,Hk+1).

The above size criterion is similar to the F-radius of
zonotopes, which can provide an efficient way to design the
observer gain in real time. To minimize the size criterion
Jk+1, we propose the following theorem.

Theorem 3. For the ellipsoid bundle E(x̂k+1,Hk+1) ob-

tained from (10), denote H̃k =
[
P̃ k
1 , . . . , P̃

k
p

]
, the optimal

Lk minimizing the size criterion Jk+1 satisfies

Θk =

p∑
i=1

P̃ k
i ,

Vk = CkΘkC
T
k +Rk,

Lk = AkΘkC
T
k V

−1
k .

(15)

Proof. From (10), we have

Hk+1 =
[
P k+1
1 , . . . , P k+1

p+2

]
,

where

P k+1
i =


(Ak − LkCk)P̃

k
i (Ak − LkCk)

T , 1 ≤ i ≤ p;

Qk, i = p+ 1;

LkRkL
T
k , i = p+ 2.

Then, from (14), we have

Jk+1 =

p∑
i=1

tr
(
(Ak − LkCk)P̃

k
i (Ak − LkCk)

T
)

+ tr(Qk) + tr(LkRkL
T
k ).

We can obtain the derivative of Jk+1 for Lk as follows.

∂Jk+1

∂Lk
= 2LkVk − 2AkPkC

T
k . (16)

Let (16) equal zero, we obtain (15). Therefore, the Lk

obtained from (15) is a stationary point. From (15),
we have Vk ≽ Rk. Since Rk is positive definite, Vk is
invertible. Therefore, the Lk obtained from (15) is the
unique stationary point. In addition, Jk+1 is a quadratic
function of Lk and is non-negative for any Lk, then Jk+1 is
a convex function of Lk. Therefore, the Lk obtained from
(15) is the optimal solution minimizing the size criterion
Jk+1. 2

Remark 1. The assumptions (5) and (6) can be relaxed as
follows.

wk ∈ E(0,Wk), vk ∈ E(0, Vk), x0 ∈ E(c0,H0),

which can be used to describe more complex sets of
uncertainties. In this case, the relevant adjustments of the
proposed method are trivial, i.e. P0 to H0, Qk to Wk,
LkRkL

T
k to L(Lk, Vk) and Rk to

∑nv

i=1 R
i
k, where nv is the

order of E(0, Vk) and Vk =
[
R1

k . . . Rnv

k

]
.

In fact, an m-order zonotope Z = ⟨p,H⟩ can be rep-
resented by an m-order ellipsoid bundle E(p,M), where
M =

[
h1h

T
1 . . . hmhT

m

]
and hi is the i-th column of H.

This is because that the line segment Li = {l ∈ Rn :
l = aihi, ai ∈ [−1, 1]} is actually the degenerate ellipsoid
E(0, hih

T
i ). In this case, zonotopes can be seen as a special
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kind of ellipsoid bundles. The proposed method can also
apply to the case with zonotope-bounded uncertainties.
Therefore, the proposed method has wide range of appli-
cations.

In some practical applications of set-membership estima-
tion for instance fault diagnosis, for the sake of simplicity,
the interval estimation including the upper and lower
bounds of the estimated state is usually derived from the
estimation set to serve as thresholds. For the proposed
method based on ellipsoid bundles, we propose the follow-
ing theorem to obtain the interval estimation of state.

Theorem 4. For system (4), we can obtain an interval
vector [xk, xk] such that xk ≤ xk ≤ xk, where xk and
xk satisfy {

xk = x̂k + ek
xk = x̂k + ek

where ek = −ek and

ek(j) =

m∑
i=1

√
P k
i (j, j), j = 1, . . . , nx.

Proof. According to Theorem 2, xk ∈ E(x̂k,Hk). Since
ek = xk − x̂k, we have ek ∈ E(0,Hk).

From Definition 5, we have

E(0,Hk) =

m⊕
i=1

E(0, P k
i ). (17)

Define lj ∈ Rnx as the vector with its j-th element equal
to 1 and the others equal to 0, where j = 1, . . . , nx. For

example, l1 = [1 0 . . . 0]
T
.

According to Lemma 2, we have

ρE(0,Pk
i
)(lj) =

√
lTj P

k
i lj

=
√

P k
i (j, j),

where P k
i (j, j) is the j-th diagonal element of P k

i .

Then, from Lemma 3 and (17), we have

ρE(0,Hk)(lj) =

m∑
i=1

ρE(0,Pk
i
)(lj)

=

m∑
i=1

√
P k
i (j, j)

= ek(j).

Since ek ∈ E(0,Hk), then according to Definition 4, we
have

ek(j) = lTj ek ≤ ρE(0,Hk)(lj), j = 1, . . . , nx.

It follows that
ek ≤ ek. (18)

Note that E(0,Hk) is centrosymmetric, which implies that
−ek ∈ E(0,Hk). In the same way, we can obtain −ek ≤ ek.
It follows that

ek ≥ −ek = ek. (19)

Since xk = x̂k + ek, then from (18) and (19), we have

x̂k + ek ≤ xk ≤ x̂k + ek.

2

6. SIMULATION RESULTS

In this section, a numerical example in the form of (4)
is used to demonstrate the performance of the proposed
method. The example has the following parameters.

Ak =

[
0.3 + 0.2 sin(0.5k) −0.7− 0.2 sin(0.25k)

0.6 −0.5 + 0.3 cos(0.5k)

]
,

Bk =

[
1
1

]
, Ck = [1 + 0.2 sin(0.2k) 0] .

In the simulation, the input is set as uk = 0.4 sin(0.5k).

Since ellipsoid bundles have many similar characteristic-
s to zonotopes, we compare the proposed method with
the Zonotopic Kalman Filter (ZKF) in Combastel (2015).
However, zonotope-based methods including ZKF assume
that disturbances and noises are bounded by certain zono-
topes, usually boxes, which is different from the proposed
method. To make comparisons, we consider the following
two cases.

Case 1. In the simulation, wk, vk and x0 are set bounded
by ellipsoids as in (5) and (6) with

Qk = 0.0025I2, Rk = 0.0025I2, P0 = 0.04I2.

For ZKF, which requires zonotopes bounding wk, ck and
x0, we use the smallest boxes enclosing the corresponding
assumed ball-shaped uncertainty sets:

Qk ⊂ Wk = ⟨0, 0.05I2⟩, Rk ⊂ Vk = ⟨0, 0.05I2⟩,
P0 ⊂ X0 = ⟨0, 0.2I2⟩.

In the simulation, the reduction order of the proposed
method is set as s = 5 and that of ZKF is set as
10. The simulation results are shown in Figure 2, which
shows that the proposed method can obtain more accurate
estimation results. Therefore, the proposed method is more
suitable for the case with ellipsoid-bounded disturbances
and noises.

0 5 10 15 20 25 30 35 40
-0.5

0

0.5

0 5 10 15 20 25 30 35 40
-0.5

0

0.5

Fig. 2. The interval estimation of xk in case 1.

Case 2. The assumed ball-shaped uncertainty sets for wk,
vk and x0 in Case 1 put ZKF at a disadvantage w.r.t. the
proposed method. To make a fair comparison, in this case,
wk, vk and x0 are randomly generated within the following
zonotopes.

wk ∈ Wk = ⟨0, 0.05I2⟩, vk ∈ Vk = ⟨0, 0.05I2⟩,
x0 ∈ X0 = ⟨0, 0.2I2⟩.
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The proposed method requires ellipsoid bundles bounding
wk, ck and x0. If we use the smallest ellipsoids enclosing the
corresponding assumed square-shaped uncertainty sets,
the proposed method will be clearly put at a disadvantage.
Note that Wk, Vk and X0 can also be represented by
ellipsoid bundles as follows.

Wk = E(0,Wk), Vk = E(0, Vk), X0 = E(0,H0),

where

Wk =

[
0.0025 0 0 0

0 0 0 0.0025

]
, Vk =

[
0.0025 0 0 0

0 0 0 0.0025

]
,

H0 =

[
0.04 0 0 0
0 0 0 0.04

]
.

The simulation results are shown in Figure 3 and 4. They
show that the estimation results obtained by ZKF and
the proposed method are close, but the ones by the pro-
posed method are more accurate. Therefore, the proposed
method can also deal with the zonotope-bounded uncer-
tainties and can even obtain more accurate estimation
results than the zonotope-based method.
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Fig. 3. The interval estimation of xk(1) in case 2.
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Fig. 4. The interval estimation of xk(2) in case 2.

7. CONCLUSION

In this paper, we propose a new set representation tool,
ellipsoid bundle, which combines certain advantages of

ellipsoids and zonotopes. The basic properties of ellipsoid
bundles are investigated. Then, a novel set-membership
estimation method is proposed based on ellipsoid bundles.
Both ellipsoid-bounded uncertainties and zonotope-based
ones are considered. Simulation results have demonstrated
the effectiveness of the proposed set-membership estima-
tion method.
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