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Abstract: This paper introduces a novel algorithm to find a geometric configuration of ultra-
wideband sources in order to provide optimal position estimation performance with Time-
Difference-of-Arrival measurements. Different from existing works, we aim to achieve the best
localization performance for a user-defined region of interest instead of a single target point.
We employ an analysis based on the Cramer-Rao lower bound and dilution of precision to
formulate an optimization problem. A Bayesian optimization-based algorithm is proposed to find
an optimal geometry that achieves the smallest estimation variance upper bound while ensuring
source placement constraints. The approach is validated through simulation and experimental
results in 2D scenarios, showing an improvement over a naive source placement.
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1. INTRODUCTION

Accurate indoor localization remains an open research
problem. Ultra-wideband (UWB) radio technology is a
promising solution (Hamer and D’Andrea (2018)) which is
lightweight and computationally inexpensive compared to
alternative state-of-the-art approaches such as simultane-
ous localization and mapping. Two-way ranging (TWR)
and time difference of arrival (TDoA) are the major lo-
calization approaches for UWB positioning systems and
have many promising applications in autonomous robotics
(Mueller et al. (2015); Hoeller et al. (2017)). Compared
with TWR, TDoA does not require two-way commu-
nication between a source and a target, thus enabling
localization of a large number of targets. However, the
performance of TDoA-based localization relies heavily on
the UWB source geometry due to its highly nonlinear
measurement model (Wang et al. (2019); Kaune (2012)).
In this work, we restrict our focus to TDoA-based local-
ization, as it is better scalable to large robotic swarms.

In TDoA-based UWB localization systems, UWB modules
on robots (called tags) receive radio signals from different
UWB sources (also called anchors) passively, compute the
difference of the arrival times (TDoA measurements) and
localize themselves based on the measurements. Compared
with the traditional centralized TDoA method involving
a single reference anchor (Meng et al. (2016)), another
common TDoA method, which we refer to as decentral-
ized TDoA, computes the TDoA measurements between
certain anchor pairs and consequently does not suffer
from communication constraints and single-anchor failure
(Meng et al. (2013), Ennasr et al. (2016)). Hence, we focus
on decentralized TDoA localization systems.

Extensive research has been performed regarding the op-
timal TDoA anchor geometry for a single target point in
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Fig. 1. The goal of this work is to find the optimal anchor
positions for decentralized TDoA localization on the
boundary of the rectangular space P to optimize the
localization performance in the area Ψ. In decentral-
ized TDoA localization systems, pairs of UWB an-
chors synchronize their clocks through communication
(dotted arrows) and provide TDoA measurements.

both centralized and decentralized TDoA systems. The
work in Wang et al. (2018) provided the derivation of
the anchor-to-tag angle rules for the centralized TDoA
approach through the Cramer-Rao lower bound (CRLB),
resulting in the well-known uniform angular array (UAA)
requirements. In Yang and Scheuing (2005), the optimal
geometry theory was extended to 3D for Platonic solids.
For the decentralized TDoA approach, the angle rules for
both static and moving target points were derived in Meng
et al. (2016). Most of the existing work on optimal TDoA
geometry (Wang et al. (2018); Meng et al. (2016)) focuses
on the performance of a single point. However, a localiza-
tion system should enable robots to localize themselves
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inside an entire region. Therefore, we aim to find the
optimal geometry for a region of interest. Extending the
existing optimal geometry approaches to find the optimal
geometry for an entire region is not trivial since the op-
timization problem becomes complicated and highly non-
linear. Instead of having strong geometric assumptions, an
alternative approach for sensor placement uses a Gaussian
process (GP) model from the area of machine learning to
approximate the spatial phenomena of sensor performance.
Then the sensor positions can be optimized by predicting
the effect of placing sensors at particular locations through
the learned GP model (Garnett et al. (2010)). Inspired
by this approach, in this paper, we present a Bayesian
optimization-based algorithm to find an optimal TDoA
anchor placement that provides satisfactory localization
performance for an entire region of interest. A decentral-
ized TDoA localization system is shown in Fig. 1.

This paper provides both theoretical localization perfor-
mance analysis and practical installation guidance during
the localization system design. With respect to this ob-
jective, this paper has three main contributions. First, we
introduce a novel optimal geometry problem that char-
acterizes localization performance inside an entire region
and formulate it as an optimization problem with soft
constraints. Due to the complexity of dealing with an
entire region (rather than a single point), we only consider
a 2D problem as a preliminary effort. Second, we model
the localization performance through a Gaussian process
and achieve an optimal UWB anchor placement through
Bayesian optimization. Finally, we compare the localiza-
tion performance inside two pre-defined regions between
baseline and optimal anchor placements in simulation and
experiment. To the best of our knowledge, our method is
the first to solve an optimal geometry problem with respect
to a pre-defined region.

2. PROBLEM STATEMENT

The goal is to achieve an optimal anchor geometry for a
decentralized TDoA localization system with respect to
a pre-defined region while considering anchor placement
constraints. In this section, we first define the decentral-
ized TDoA measurement model, region of interest, and
anchor placement constraints. Then we state the optimal
geometry problem.

2.1 Measurement Model

TDoA-based localization systems provide a position es-
timate for tags based on the differences of signal arrival
times. Without loss of generality, we assume that there is
a single tag. For a localization system with an even number
m of UWB anchors, the position of anchor i is denoted as
ai = [xi, yi]

T ∈ R2, i = 1, · · · ,m, and the position of the
tag is denoted as p = [x, y]T ∈ R2. For convenience, we

define a vector a =
[
aT

1 , · · · ,aT
m

]T ∈ R2m that contains
all the anchor positions. To facilitate our analysis, we
assume that the time of arrival (TOA) measurements from
each anchor i to the tag have a zero mean Gaussian noise
εi ∼ N (0, σ2

i ), where the variance σ2
i can typically be mea-

sured experimentally. For decentralized TDoA localization
systems, the set of m anchors are divided into disjoint pairs
and are denoted as Γ = {(1, 2), · · · , (m− 1,m)}. Given an

anchor placement a, the TDoA measurement model for an
anchor pair (i, j) ∈ Γ becomes

di,j(p,a) = ‖p− ai‖ − ‖p− aj‖+ εi + εj
= ri,j(p,a) + ni,j ,

(1)

where ri,j(p,a) indicates the distance difference of the
tag and anchors i and j given the anchor placement a,
ni,j ∼ N (0, σ2

i + σ2
j ) is the measurement noise, and ‖ · ‖ is

the Euclidean norm.

For a decentralized TDoA localization system with m
UWB anchors, stacking the TDoA measurements in (1)
into a column vector yields the measurement model

d(p,a) = r(p,a) + n, n ∼ N (0,Σd), (2)

where Σd is the covariance matrix of the TDoA mea-
surement errors. Assuming that the decentralized TDoA
measurements are independent and uncorrelated, Σd is of
the form

Σd = diag
(
σ2

1 + σ2
2 , · · · , σ2

m−1 + σ2
m

)
. (3)

For convenience, we drop the functional dependence and
indicate the TDoA measurements and distance differences
as d and r, respectively.

2.2 Region of Interest

The region of interest (ROI) Ψ ⊂ R2, indicated as the gray
region in Fig. 1, is expected to have good estimation per-
formance through the placement of anchors. Considering
obstacles inside the space, Ψ could be irregularly shaped,
for example, being non-convex or not connected. However,
we assume Ψ is compact and that the tag is inside the
ROI, p ∈ Ψ. As a preliminary effort, our measurement
model (2) also assumes line-of-sight propagation in the
region of interest and does not consider biases of UWB
measurements.

2.3 Anchor Placement Constraints

In most practical settings, the positions at which the
anchors can be installed can be restricted due to factors
such as accessibility and the physical geometry of the
space. In this paper, we assume the space is rectangular,
contains the ROI, and that the anchors must be placed
on the boundary of the space. More formally, the space
has the form P = [xmin, xmax] × [ymin, ymax] ⊂ R2, where
xmin, xmax, ymin, ymax ∈ R denote the space limits in the
plane. We denote the boundary of P as ∂P. Thus we
require that Ψ ⊂ P and ai = [xi, yi]

T ∈ ∂P, i = 1, . . . ,m.
For the placement of m anchors, we define a set B ⊂
R2m containing all possible geometric configurations of m
anchors such that a ∈ B if and only if ai ∈ ∂P, i =
1, . . . ,m.

2.4 Optimal Geometry Problem for a Region of Interest

In this section, we provide a metric to quantify the
performance of the tag’s position estimate using the TDoA
localization system. We use this metric to find an optimal
anchor geometry for a pre-defined ROI given placement
constraints. We propose that the optimal geometry of
UWB anchors corresponds to the smallest upper bound
of the estimation variance anywhere within Ψ. Given an
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anchor placement a and tag position p ∈ Ψ, an estimator
provides the position estimate p̂ = [x̂, ŷ]T ∈ R2, which
possesses a corresponding covariance matrix Σ(p̂|p,a).
The estimation is assumed to be unbiased. The specific
estimator we used in our experiments is introduced in
Sec. 5.2 (see (28)), although others may be used. In order
to evaluate the localization performance, we define an
A-optimal (Fedorov (2013)) type performance metric to
denote the localization variance at the position p, which
converts the covariance matrix Σ(p̂|p,a) into a scalar
using the diagonal entries only

V (p̂|p,a) =
√

Var(x̂|p,a) + Var(ŷ|p,a), (4)

where Var(x̂|p,a) and Var(ŷ|p,a) are the estimation vari-
ances of x̂ and ŷ. Hence, the upper bound of localization
variance in Ψ can be expressed as

M(a) = max
p∈Ψ

V (p̂|p,a), (5)

given an anchor placement a. We aim to find the optimal
placement of UWB anchors a? that reaches the smallest
M(a) given the anchor placement constraint:

a? = argmin
a∈B

M(a). (6)

3. OPTIMAL ANCHOR PLACEMENT

In this section, we propose a Bayesian optimization-based
approach (Fig. 2) to solve the optimization problem for-
mulated in Sec. 2. Through the analysis of the Cramer-Rao
lower bound (CRLB) and dilution of precision (DOP),
we introduce a set of angle constraints for each anchor
pair and compute the localization performance metric for
an anchor placement a. In order to analyze the highly
complex objective function, we model the relationship be-
tween an anchor placement and its estimation performance
with a Gaussian process and achieve an optimal solution
through Bayesian optimization.

3.1 Angle Constraints of Anchor Placement

Prior to solving the optimization problem in (6), we
introduce a set of angle constraints in this subsection
to reduce the solution space and thereby allow us to
more efficiently optimize the anchor placement. We assume
that the UWB localization system provides an unbiased
estimate p̂ of the tag position p through multilateration
using a TDoA measurement d. The CRLB is the most
commonly used benchmark for unbiased estimators (Wang
et al. (2018)). The variance of an unbiased estimate p̂ is
lower bounded by the CRLB

I−1(d|p) ≤ E
[
(p− p̂)(p− p̂)T

]
, (7)

where E(·) indicates the expectation and I(d|p) is the
Fisher information matrix (FIM). With the definition in
(2), we denote the probability density function of d by
f(d|p). The FIM was originally derived in Chan and Ho
(1994) and can be expressed as

I(d|p) =E
[
∂

∂p
ln(f(d|p))

∂

∂p
ln(f(d|p))T

]
=
∂rT

∂p
Σ−1

d

∂r

∂p
.

(8)

with Σd defined in (3). For simplification, we define

Anchor 
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metric          
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New UWB

anchor placement

Evaluate localization performance

Fig. 2. An optimal anchor placement is achieved through
a Bayesian optimization-based approach. In the nth
iteration, the localization performance F (an) of a
selected anchor placement an is evaluated at the
sampled points inside the region of interest Ψ. A
Bayesian optimization algorithm optimizes anchor
placements iteratively based on the performance at
selected anchor positions.

Q =
∂rT

∂p
= [q1,2, · · · , qm−1,m], qi =

[
cos(θi(p,a))
sin(θi(p,a))

]
, (9)

where qi,j = qi − qj , cos(θi(p,a)) = (xi − x)/(‖p − ai‖),
sin(θi(p,a)) = (yi− y)/(‖p−ai‖). The angle of arrival of
the measurement from anchor i to tag p is θi(p,a) ∈ [0, 2π]
and later we indicate it as θip(a) for brevity. Then (8) can
be expressed as

I(d|p) = QΣ−1
d QT . (10)

According to the A-optimal type performance metric in
(4), we seek to find the anchor geometry that minimizes
the trace of the inverse of the FIM. By direct calculation,
the trace of the FIM can be expressed as

Tr(I(d|p)) =
∑

(i,j)∈Γ

2

σ2
i + σ2

j

[1− cos (θip(a)− θjp(a))]

6
∑

(i,j)∈Γ

4

σ2
i + σ2

j

,
(11)

where Tr(·) represents the trace of a matrix. The equality
holds if and only if θip(a)− θjp(a) = ±π,∀(i, j) ∈ Γ. One
can easily show that there exists the relationship

Tr(I−1(d|p)) >
4

Tr(I(d|p))
. (12)

Therefore, the optimal anchor placement a? should max-
imize the trace of the FIM to reach the CRLB and the
angle measurements from each anchor pair should satisfy
the angle rule θip(a)− θjp(a) = ±π,∀(i, j) ∈ Γ.

Considering an entire region, it is not feasible for all points
inside the region to satisfy the angle rule. Therefore, the
estimation inside the region can usually not reach the the-
oretical lower bound in (7). However, we can use relaxed
angle constraints as prior knowledge to reduce the solution
space of the optimization problem in (6). In Fig. 3, a sim-
ple anchor pair geometric configuration is demonstrated.
We represent the tag position as the red star and the
anchor positions as solid circles with θ∗ = θ2p − θ1p and

θ̃ = θ′2p − θ1p. Given the rectangular boundary anchor
placement constraint, for an anchor pair placement a1 and
a′2 with cos(θ̃) > 0, there always exists a better geometric
configuration of a1 and a2 with cos (θ∗) < 0 that provides
a lower estimation variance (according to (11)). Hence, we
aim to guarantee cos (θip(a)− θjp(a)) 6 0 for the points
p ∈ Ψ, which reduces the allowable set of anchor positions.
We define a restricted set of possible anchor placements as
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Fig. 3. An example of an anchor configuration with tag
p and anchors a1, a2 and a′2. The angle of arrival of
the measurements are indicated as θ1p, θ2p and θ′2p,
respectively.

A =

{
a ∈ B | π

2
6 |θip(a)− θjp(a)| 6 3π

2
,∀(i, j) ∈ Γ

}
.

(13)
This set of angle constraints reduces the solution space and
allows us to more efficiently optimize the anchor geometry
problem.

3.2 Performance Metric of TDoA Anchor Geometries

Given the restricted set of possible anchor configurations,
we now derive the A-optimal type performance metric
in (4) through dilution of precision (DOP). DOP is a
localization performance metric commonly used in satel-
lite navigation (Santerre et al. (2017)). Intuitively, DOP
establishes a connection between localization accuracy and
measurement accuracy. Based on the concept of DOP, we
derive an approximation for the localization performance
metric M(a) in this subsection for an arbitrary unbiased
estimator p̂. This approach follows Ledergerber et al.
(2015), but we derive the covariance matrix of the position
estimate through the measurement noise.

Suppose that the anchor placement a is fixed. With an
unbiased estimate p̂ = [x̂, ŷ]T , we linearize (2) around the
state p = [x, y]T to obtain a first order approximation
between the deviation error ∆p = p̂−p and the measure-
ment noise n:

n = H∆p. (14)

The matrix H is straightforward to derive and has the
form

H =


∂d1,2

∂x
(p)

∂d1,2

∂y
(p)

...
...

∂dm−1,m

∂x
(p)

∂dm−1,m

∂y
(p)

 . (15)

Since we are interested in the variance of the estimated
position, we invert (14) and solve for ∆p:

∆p = H+n, (16)

where H+ = (HTH)−1HT is the pseudo inverse of H.
With the expression of (16), the covariance matrix of
estimated position can be expressed as

Σ (p̂|p,a) = E
[
∆p∆pT

]
= H+Σd(H+)T , (17)

where Σd is the covariance matrix of measurement noise
defined in (3). The performance metric M(a) in (5) for
the anchor placement a becomes

M(a) = max
p∈Ψ

√
Tr (Σ (p̂|p,a)). (18)

To further approximate the computation in (18), we select
sample points inside Ψ and evaluate the estimation vari-
ance of each sample point ps = [xs, ys]

T ∈ Ψ to represent
the localization performance within Ψ.

In order to incorporate the angle requirements derived in
Sec. 3.1, we introduce a penalty term into the performance
metric to penalize the anchor configuration a /∈ A. Then
the performance metric becomes

F (a) = M(a) + P (a), (19)

where

P (a) =

{
0, a ∈A
c, a /∈A (20)

is the penalty term and c > 0 is an adjustable constant
parameter. In summary, the original optimal geometry
problem in (6) has been transformed into

a? = argmin
a∈B

F (a). (21)

The formulation in (21) results in an optimization problem
with 2m decision variables.

3.3 Bayesian Optimization for Optimal Anchor Geometry

For a given anchor placement a, the performance metric
F (a) is obtained through computing the highly nonlinear
function (19) for each sample point. Hence, it is very com-
putationally expensive to solve the optimization problem
(21) through brute-force search. Therefore, we propose a
Bayesian optimization-based approach (see Fig. 2) to find
an optimal anchor placement a? that minimizes F (a).

First, we model the relationship between the anchor place-
ment a and the performance metric F (a) as a GP,

g(a) ∼ GP(µ(a), κ(a,a′)). (22)

where µ(·) and κ(·, ·) are the prior mean and the prior
covariance function, also known as kernel, of the GP.
Using the GP framework, the function value g(a) can be
predicted at an arbitrary input ã with a mean µ(ã) and
a covariance σ2(ã) based on a set of n past observations
(the training set) Dn = {ai, F (ai)}ni=1 (Rasmussen and
Williams (2005)). The expressions of the posterior mean
and variance at ã are

µ(ã) = kT (ã)K−1ĝ

σ2(ã) = κ(ã, ã)− kT (ã)K−1k(ã),
(23)

where K is the covariance matrix with the entries Ki,j =
κ(ai,aj), ĝ is a column vector of the observed function val-
ues F (ai), and the vector k(ã) = [κ(ã,a1), . . . , κ(ã,an)]T

contains the covariance between the new test point ã and
the observed data inDn. Here, we select a common squared
exponential kernel for the GP

κ(a,a′) = exp

(
−‖a− a′‖2

2l2

)
(24)

with the length scale l > 0.

We apply Bayesian optimization to find the minimum of
F (a) by iteratively sampling anchor placements inside the
set B. As a sample-efficient global optimization algorithm,
Bayesian optimization proposes sample points through an
acquisition function. Expected Improvement (EI) is a com-
mon acquisition function to balance the exploration and
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exploitation of the unknown function. In the nth iteration,
given past observation data Dn = {ai, F (ai)}ni=1, we fit a
GP to approximate (19) and denote the model as gn(a)
with the mean µn(a) and the variance σ2

n(a). Defining
g?n := mini F (ai), i = 1, . . . , n, the EI acquisition function
can be expressed as

EIn(a) = (g?n − µn(a))Φ (Z) + σn(a)φ (Z) , (25)

where Z :=
g?n − µn(a)

σn(a)
, and Φ and φ are the cumulative

distribution and probability density functions of the stan-
dard normal distribution (Shahriari et al. (2015)). Then
the next sample anchor placement is

an+1 = argmax
a∈B

EIn(a). (26)

Comparing to the original objective function F (a) in (21),
EIn(a) is smooth and allows easy evaluation of first and
second derivatives. Hence, the optimization problem in
(26) can be solved through a continuous first- or second-
order optimization method (Frazier (2018)).

4. OPTIMAL GEOMETRY ALGORITHM

The optimal anchor positions are found through an iter-
ative process: we select the sample anchor placement a
based on the acquisition scheme in (26), compute the per-
formance metric F (a) in (19) using sample points within
Ψ, refit the GP with the new observation, and repeat
the process. After a finite number of iterations (Srinivas
et al. (2009)), we can find an optimal anchor placement
a? which is the global minimum of the GP approximated
performance metric:

a? = argmin
a∈B

µ(a), (27)

where µ(a) indicates the posterior mean of the fitted
GP function. In order to reduce the dimension of the
GP, we used a mapping function to describe an anchor
position on the boundary of the space P during the
implementation. Hence, the GP is of m dimensions in the
proposed algorithm. The optimal geometry algorithm for
decentralized TDoA-based UWB localization systems is
outlined in Algorithm 1.

Algorithm 1: Optimal anchor geometry for TDoA
localization system.

Input : Number of anchors m, anchor placement
constraints B, and ROI Ψ
Hyperparameters of the GP

Output: Optimal placements of anchors

a = [a1, · · · ,am]
T

1 {ps} ←− sample points inside Ψ
2 A ←− the soft angle constraint (13)
3 a0 ←− initial guess of anchor placement

4 F0 ←− maxps

√
Tr (Σ (p̂s|ps,a0)) + P (a0), n← 1

5 Initialize GP with (a0, F0)
6 do
7 an ←− argmaxa∈B EIn−1(a)
8 Calculate observation F (an)
9 Update GP with (an, F (an))

10 n ←− n+1
11 while ‖an − an−1‖ > ε and n < maxiter

12 return a? corresponding to mina F (a)

Anchor

Anchor

Anchor

Tag

Anchor

Fig. 4. Ultra-wideband indoor localization system using
decentralized TDoA. Ranging measurements of the
same anchor pair are indicated with the same color
(red or blue).

The main loop (lines 6 – 11) repeatedly samples the
anchor placements through the acquisition function (25)
and updates the objective function based on the GP
framework. The algorithm is terminated if either (a) the
distance between two consecutive sample points is smaller
than the set parameter ε or (b) the iteration n is larger
than maxiter.

5. SIMULATION AND EXPERIMENTAL RESULTS

This section contains the simulation and experimental
results of the proposed optimal geometry algorithm. The
algorithm is implemented in Python using the GPy frame-
work (GPy (since 2012)). In what follows, we consider two
pre-defined ROIs, denoted as Ψ1 and Ψ2 (see Fig. 5). We
demonstrate that the simulation predictions agree with the
experimental results. Then we compare the improvement
in localization performance using the optimal placement
over a baseline placement for each ROI.

5.1 Experimental Setup

For 2D localization, we used 2 pairs of TDoA anchors
and placed the UWB anchors on tripods at a height of
1.55 m during the experiments. The anchor positions were
calibrated with a Leica Total Station and the installation
errors were within 1 centimeter. The experimental setup
is shown in Fig. 4. We used the Crazyflie 2.0 quadrotor,
UWB tags and anchors from Bitcraze’s Loco Positioning
System. A motion capture system is used as the ground
truth. The variances of UWB measurements, σ2

i = 0.03 m2

for i = 1, . . . ,m, were obtained from experimental data
using this system.

Without any further analysis, the naive anchor placement
approach is to place anchors in the corners of the room.
Therefore, we selected this configuration as the baseline
placement for both ROIs and compared the localization
performance with the optimal geometry.

5.2 Localization Performance Evaluation

The localization performance of the baseline and optimal
anchor placements are evaluated in both simulation and
experiment. In simulation, we uniformly sampled 2400
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(a) baseline geometry simulation (b) optimal geometry 1 simulation (c) optimal geometry 2 simulation

(d) baseline geometry experiment (e) optimal geometry 1 experiment (f) optimal geometry 2 experiment

Fig. 5. Localization performance comparisons between simulation (a,b,c) and experiment (d,e,f). The shapes inside the
4m×6m space indicate the region of interest Ψ1 (left) and Ψ2 (right). Different anchor pairs are indicated with
different colors (red or blue). The orange point represents the sample point with the largest estimation variance
during simulation. The color plots show V (p̂|p,a) for baseline and optimal geometries. With the optimal anchor
placements, the localization variances are smaller (indicated as lighter color) inside both the regions of interest.

points inside the 4m × 6m space P and computed the
estimation variance (17) at each sample point ps =
[xs, ys]

T ∈ P for both the baseline and optimal anchor
geometries for Ψ1 and Ψ2. During the experiments, we
uniformly selected 42 sample points with the same height
as the anchors inside the space. For testing the localization
performance of UWB measurements, we fixed the Crazyflie
with the UWB tag at each sample point ps and collected
the TDoA measurements and ground truth data at the
baseline and optimal anchor placements for each ROI.

For the 2D localization problem, we used the multilater-
ation method as an unbiased offline estimator (Betke and
Gurvits (1997)). Given an anchor placement a correspond-
ing to Ψj and the TDoA measurement d, the estimated
position p̂s of sample point ps ∈ Ψj can be computed as

p̂s = argmin
p̄s∈R2

∑
(i,j)∈Γ

[‖p̄s − ai‖ − ‖p̄s − aj‖ − di,j(ps,a)]
2
,

(28)
by using Newton’s method for optimization. Since (28) is
a convex problem, an unique minimum exists.

To obtain an empirical estimate of the distribution of
p̂s, we collected N independent TDoA measurements{
d(1), · · · ,d(N)

}
and solved for the corresponding position

estimate
{

p̂
(1)
s , · · · , p̂(N)

s

}
based on (28), where the super-

scripts denote the measurement indexes. Before sending
the raw measurements into the estimator, we performed
outlier rejection and lowpass filtering to remove high-
frequency noise. The empirical value for (4) is obtained

Fig. 6. The localization performance of optimal geometries
with 6 anchors (in the first row) and 10 anchors (in
the second row) in simulation. The anchor pairs are
indicated with the same color and the range of the
color bars are the same as Fig. 5.

by

Vemp(p̂s) =
√

Varemp(x̂s) + Varemp(ŷs), (29)

with Varemp(x̂) being the empirical variance of the error

values (x̂
(1)
s −xs, ..., x̂(N)

s −xs) and analogously for y. The
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Fig. 7. A summary of the localization error with baseline and optimal UWB anchor placements. (a) Comparison of the
worst localization performance for Ψ1 and Ψ2. (b) Comparison of the average localization error over 20 sample
points. With optimal anchor placements, both the largest and average estimation variances in Ψ1 and Ψ2 are
smaller as compared to the baseline anchor placement.

Table 1. Localization Performance for the Baseline
Geometry and Optimal Geometries in Simulation.

Baseline
4 anchors

Optimal
4 anchors

Optimal
6 anchors

Optimal
10 anchors

F [m] for Ψ1 0.082 0.080 0.070 0.053

F [m] for Ψ2 0.085 0.079 0.073 0.055

(xs, ys) is obtained from the ground truth. The comparison
of the simulation and experimental results with 4 anchors
are demonstrated in Fig. 5. It can be observed that the
simulation and experimental results show similar trends.
Hence, it is reasonable to use the proposed algorithm to
find the optimal anchor placement in simulation. With
the baseline placement, the localization performance in-
side a pre-defined region is not optimized. With the op-
timal anchor geometry, however, the worst-case estima-
tion variance inside the pre-defined region is minimized.
Consequently, the region is guaranteed to achieve the best
estimation performance given the anchor installation con-
straint.

We also show how the results vary with the number of
anchors in simulation. Fig. 6 shows the localization perfor-
mance for the optimal geometries with 6 and 10 anchors.
Table 1 summarizes these simulation results together with
the baseline geometry with 4 anchors shown in Fig. 5
(a). We drop the function dependence and indicate the
performance metric as F for convenience. Compared to the
optimal geometries in Fig. 5 (b) and (c), the localization
system provides better performance as more anchors are
available, but the optimization problem requires more iter-
ations to converge as one would expect. We summarize the
localization performance reductions (% Red.) of optimal
geometries with 6 and 10 anchors as compared to the
optimal geometry with only 4 anchors in Table 2.

Table 2. Summary of Localization Performance Re-
ductions of Optimal Geometries in Simulation.

Optimal 6
anchors, Ψ1

Optimal 10
anchors, Ψ1

Optimal 6
anchors, Ψ2

Optimal 10
anchors, Ψ2

% Red. 12.5% 33.7% 7.6% 30.4%

Incorporating the soft angle constraint in (19)-(21) accel-
erates the optimization process. Without the soft angle
constraint, the Bayesian optimization algorithm requires
more iterations to converge to an optimal geometry.

5.3 Performance Evaluation inside the ROI

Finally, to evaluate the actual localization performance
inside the ROI, we selected 20 points ps inside each region
Ψj and collected UWB measurements and the ground
truth position data from the motion capture system.

We compute the RMS localization error at each sample
point and for each of the N measurements

e(ps) =
[
e

(1)
s , · · · , e(N)

s

]T
, (30)

where e
(i)
s =

√
(x̂

(i)
s − xs)2 + (ŷ

(i)
s − ys)2, and compare the

localization performance between baseline and optimal ge-
ometries. Using the vector entries, we compute the empir-
ical mean and variance for each sample point. We indicate
the largest variance over the selected sample points as the
worst localization performance and the average variance of
all sample points as the average localization performance.
In Fig. 7, we show the worst and average localization
performance through box plots where the center red lines
indicate the median and the lower and upper boundary
are at the 25 and 75 percentiles of the errors. We note
that, in practice, the TDoA measurements may have a
non-zero bias (as seen in Fig. 7); in future work, we aim to
explore learning-based approaches to compensate for the
non-zero mean bias in TDoA measurements (Ledergerber
and D’Andrea (2017)).

We present the performance metric F (a), and the largest
and average localization variances of the RMS error for
each anchor placement in Table 3. In experiments, we
compute the performance metric as

F (a) = max
ps

Vemp(p̂s) (31)

Compared to the baseline placement, we can see that the
performance metric F (a), and maximum and average vari-
ances of the localization error are smaller in the optimal
anchor geometries for both ROIs in experiment. With the
optimal anchor placement, the reductions of the average
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Table 3. Localization Performance in Experiments

F [m]
Maximum RMS
Variance [m2]

Average RMS
Variance [m2]

Optimal
geometry 1

0.1142 0.0039 0.0027

Baseline
geometry 1

0.1200 0.0046 0.0043

Optimal
geometry 2

0.1082 0.0045 0.0033

Baseline
geometry 2

0.1255 0.0072 0.0062

estimation variances for Ψ1 and Ψ2 are 41.30% and 46.77%
respectively. These results reveal that robots can achieve a
significantly better localization performance in the entire
region of interest with the optimal anchor placement. In
addition, the results from this algorithm reach the smallest
upper bound of the estimation variance inside the region
given the anchor placement constraints. Based on this
analysis, we can determine the localization quality of a
specific anchor configuration prior to physically installing
the anchors, thus saving time and effort.

6. CONCLUSION

The algorithm developed in this paper finds an optimal
anchor configuration of a decentralized TDoA-based UWB
localization system with respect to a pre-defined region
of interest. Leveraging the analysis based on the CRLB
and DOP, we imposed a set of soft angle constraints for
each UWB anchor pair and benchmarked the localization
performance of the region through an A-optimal perfor-
mance metric, given an anchor placement. The optimal an-
chor placement was found through the proposed Bayesian
optimization-based algorithm. We showed in experiment
that the optimal anchor placement reduced the average
localization variance and provided a better localization
performance inside the entire pre-defined region of interest.
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