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Abstract: The problem of intermittent, random actuator faults is important in many applica-
tions, such as in networked systems, in which there may be intermittent losses of communication
between the actuators and the plant. However, state estimation of such systems is rarely
addressed, with the majority of the work focusing on fault-tolerant control. In this work, the
Kalman filter is modified for state estimation of systems with intermittent actuator faults when
the fault rate is known. The proposed estimator is then extended to the case when the actuator
fault rate is unknown using the multiple model estimation algorithm. In addition, a sketch
of a proof of convergence for this technique is provided. Several simulations involving a DC
motor that experiences random actuator faults demonstrate the effectiveness of the proposed
techniques.
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1. INTRODUCTION

Many of the classic state estimation and control tech-
niques assume that all measurements contain some state
information, and actuators respond perfectly throughout
operation. However, sensors can randomly drop or delay
measurements, corrupt the measurement data, or fail com-
pletely. Likewise, actuators can intermittently lose commu-
nication with the system or fail in a variety of ways. The
development of state estimation techniques in the presence
of various types of sensor and actuator faults attempts to
address these issues.

State estimation in the presence of a variety of sensor faults
is addressed in work such as Nahi (1969), Hounkpevi and
Yaz (2006), Liang et al. (2011), Wang et al. (2012a), and
Gao et al. (2008) among others. These works cover a wide
range of system types and sensor faults, including random
faults with either known or unknown statistics.

The goal of many early investigations into systems with
actuator failures is simply to identify the failure mode of
the actuator, such as in Lane and Maybeck (1994) and
Menke and Maybeck (1995). More recent investigations at-
tempt to gain more information about the actuator failure,
as in fault estimation, rather than simply identifying the
failure mode. In Jiong-Sang Yee et al. (2002), an estimator
is designed for systems in which multiple, simultaneous,
and abrupt actuator failures can occur. The proposed
estimator identifies the ineffectiveness factor of the actu-
ator, which is included in the control to compensate for
the actuator failure. In these works, intermittent actuator
faults are not addressed, and it is assumed that the system
states can be measured.

Systems with intermittent actuator faults are often con-
sidered for networked or cooperative systems. However,
most of this work focuses on the control of such systems.
An interesting application to the control of continuous-
time networked systems appears in Tian et al. (2010). This
work considers intermittent, random actuator faults with
a known distribution. The authors propose a controller
that is designed using Lyapunov techniques, where the
observer gains are found by solving a set of LMIs. However,
estimation of the system states and the fault distributions
are not considered. Another application to networked sys-
tems appears in Peng et al. (2010). The authors develop
a robust state feedback control that is proven to be stable
in the sense of Lyapunov. The networked system model
includes plant uncertainty of a known form, intermittent,
random networked communication faults, and intermit-
tent, random actuator faults. The communication faults
and the actuator faults are of a known distribution, and
all of their statistics are known. Furthermore, the authors
assume all of the system states are directly measurable,
a common assumption in networked systems. It is shown
that as the probability of actuator faults increases, the
length of the permitted time delay to maintain stability
decreases. Random actuator faults in a bilinear system
are considered in Wang et al. (2012b), where it is assumed
that each of the actuators has a known fault probability.
The authors propose a robust control that satisfies mixed
general performance criteria and is found by solving a state
dependent LMI at each time step. The performance of the
control is verified by simulation of the inverted pendulum
on a cart.

While a large portion of the literature that addresses
the actuator fault problem focuses on the control of
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such systems, systems with intermittent, random actuator
faults are considered less frequently than systems with
true actuator failures. Furthermore, the state estimation
problem for such systems is rarely addressed.

In this work, a modified Kalman filter is proposed for
state estimation in the presence of random actuator faults.
Section 2 presents the derivation of the modified Kalman
filter for systems with random actuator faults with a
known fault rate. Section 3 extends the modified Kalman
filter to systems with random actuator faults with an
unknown fault rate using the multiple model estimation
algorithm, and a sketch of a proof of convergence is
presented. Simulations using a DC motor are presented
in Section 4 that demonstrate the effectiveness of the
proposed techniques. The paper concludes in Section 5.

2. STATE ESTIMATION WITH ACTUATOR FAULTS
WITH KNOWN STATISTICS

2.1 Problem Formulation

Consider a linear time varying stochastic system (1) in
which the set of actuators randomly fault with some con-
stant known rate. No input is applied during an actuator
fault, and the input is applied as expected when no fault
is present. The probability of the set of actuators faulting
at time k is constant, and each fault is independent of
subsequent faults.

xk+1 = Akxk + γkBkuk + Fkvk
yk = Ckxk + γkDkuk +Gkwk

(1)

Here, xk ∈ Rn is the state vector, uk ∈ Rq is the input
vector, and yk ∈ Rp is the measurement vector. The
system noise vector vk ∈ Rn, the measurement noise vector
wk ∈ Rp, and the initial state value x0 are independent
white random variables with Gaussian densities:[

x0

vk
wk

]
∼ N

([
x̄0

0
0

]
,

[
X0 0 0
0 Vk 0
0 0 Wk

])
(2)

Similarly, a fault at time k is modeled as a scalar Bernoulli
random variable γk with a value of 0 or 1:

γk ∼ B(ξ, (1− ξ)ξ) (3)

where ξ represents the constant success rate of the ac-
tuators; conversely, 1 − ξ represents the fault rate of the
actuators. Additionally, γk is ergodic and independent of
xk, vk, and wk.

2.2 Modified Kalman Filter Design

A modified Kalman filter (MKF) is derived to estimate the
states of the system in (1) using the information about the
fault rate of the actuator. Assume the estimator has the
following form, which will be shown to be an unbiased one:

x̂k+1 = Akx̂k + ξBkuk +Ko
k(yk − Ckx̂k − ξDkuk) (4)

where x̂0 = x̄0 and Ko
k is the estimator gain. The state

estimation error ek = xk − x̂k is

ek+1 = Akxk + γkBkuk + Fkvk −Akx̂k − ξBkuk
−Ko

k(yk − Ckx̂k − ξDkuk)

= (Ak −Ko
kCk)ek + (γk − ξ)(Bk −Ko

kDk)uk
+ Fkvk −Ko

kGkwk (5)

The expected value of the error dynamics is calculated
using the knowledge that vk and wk are zero mean and ξ
is the mean of γk

E[ek+1] = (Ak −Ko
kCk)E[ek] + E[γk − ξ](Bk −Ko

kDk)uk
+ Fk E[vk]−Ko

kGk E[wk]

= (Ak −Ko
kCk)ēk (6)

When x̂0 = x̄0, the initial error is E[e0] = ē0 = 0, and
all following errors are E[ek] = ēk = 0. Therefore, this
estimator is unbiased.

The gain of the estimator Ko
k is chosen to minimize the

second moment of the estimation error (equivalently, the
covariance of the states), resulting in a minimum variance
estimate. Define the second moment of the estimation error
as

Pk = E[eke
T
k ] = E[(xk − x̂k)(xk − x̂k)T ] (7)

Then by substituting (5) into (7) the progression of Pk is
found as

Pk+1 = E[((Ak −Ko
kCk)ek + (γ − ξ)(Bk −Ko

kDk)uk
+ Fkvk −Ko

kGkwk)

((Ak −Ko
kCk)ek + (γ − ξ)(Bk −Ko

kDk)uk

+ Fkvk −Ko
kGkwk)T ] (8)

After expanding, eliminating each of the independent zero
mean cross terms, and combining like terms, (8) simplifies
to

Pk+1 = AkPkA
T
k + FkVkF

T
k + ξ(1− ξ)BkukuTkBTk

− (AkPkC
T
k + ξ(1− ξ)BkukuTkDT

k )KoT
k

−Ko
k(CkPkA

T
k + ξ(1− ξ)Dkuku

T
kB

T
k )

+Ko
k(CkPkC

T
k + ξ(1− ξ)Dkuku

T
kD

T
k

+GkWkG
T
k )KoT

k (9)

The optimal minimum variance estimator is obtained
by minimizing (9) through the estimator gain Ko

k by
completing the square. The minimal condition isKo

k = K∗k .
After simplification,

−K∗k
(
CkPkC

T
k + ξ(1− ξ)Dkuku

T
kD

T
k +GkWkG

T
k

)
KoT
k

= −
(
AkPkC

T
k + ξ(1− ξ)BkukuTkDT

k

)
KoT
k (10)

Matching terms in (10) yields the optional estimator gain:

K∗k =
(
AkPkC

T
k + ξ(1− ξ)BkukuTkDT

k

) (
CkPkC

T
k

+ξ(1− ξ)Dkuku
T
kD

T
k +GkWkG

T
k

)−1
(11)

The second moment of the estimation error is then

Pk+1 = AkPkA
T
k + FkVkF

T
k + ξ(1− ξ)BkukuTkBTk

−
(
AkPkC

T
k + ξ(1− ξ)BkukuTkDT

k

) (
CkPkC

T
k

+ ξ(1− ξ)Dkuku
T
kD

T
k +GkWkG

T
k

)−1 (
CkPkA

T
k

+ξ(1− ξ)Dkuku
T
kB

T
k

)
(12)

The MKF for random actuator faults with known fault
rate is defined by the estimator (4), the estimator gain
(11), and the state covariance dynamics (12).

3. STATE ESTIMATION WITH ACTUATOR FAULTS
WITH UNKNOWN STATISTICS

3.1 Problem Formulation

Consider a linear time invariant stochastic system (13) in
which the fault rate of the actuator is unknown. In this
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Fig. 1. Block diagram of the multiple model estimation
algorithm (Stengel (1994)).

problem, the probability that the set of actuators faults at
time k is an unknown constant.

xk+1 = Axk + γkBuk + Fvk
yk = Cxk + γkDuk +Gwk

(13)

In this formulation of the problem, 0 ≤ ξ ≤ 1 is an
unknown constant.

3.2 Multiple Model Estimation for Estimating Random
Actuator Fault Rate

This work combines the MKF proposed in Section 2
with multiple model estimation (MME) to simultaneously
estimate the states and the unknown actuator fault rate.
The MME algorithm proposed in Lainiotis (1971) can
estimate the parameter of a system using knowledge of the
states from system measurements and some assumptions
about the nature of the unknown parameter. In particular,
ξ is constant or slowly varying and lies within the bounded
region 0 ≤ ξ ≤ 1. This parameter space is quantized into
N possible values, and one of N estimators is designed
around each possible parameter value, or hypothesis. The
set of hypotheses is represented as Ξ = {ξ1, ..., ξi, ..., ξN}.
The posterior probability that ξ = ξi given the set of
measurement data up to the current time step is calculated
for each hypothesis ξi, and the posterior probability that
approaches 1 is associated with the hypothesis that is
closest to the true parameter value. This structure is
demonstrated in Fig. 1 (Stengel (1994)).

The posterior probability of each estimator can be found
using Bayes’ Rule, where p(·) is a probability density
function:

p(ξi|Yk) =
p(yk|Yk−1, ξi)p(ξi|Yk−1)∑N

m=1 p(yk|Yk−1, ξm)p(ξm|Yk−1)
(14)

Here, yk is the measurement at time k, Yk−1 is the set of all
measurements through time k − 1, and ξi is the hypoth-
esis to which the ith instance of the estimator is tuned.
Equation (14) is calculated recursively, where p(ξi|Yk−1)
is the previous value of the posterior probability. The non-
recursive portion can be calculated for Gaussian distribu-
tions as

p(yk|Yk−1, ξi) = (2π)−
p
2

∣∣∣Ω−1
k|ξi

∣∣∣ 12 e− 1
2 ỹ
T
k|ξi

Ω−1
k|ξi

ỹk|ξi (15)

where
ỹk|ξi = yk − ŷk|ξi (16)

is the innovations sequence of the estimator tuned to ξi,
and

Ωk|ξi = E[ỹk|ξi ỹ
T
k|ξi ] (17)

is the design covariance for the estimator tuned to ξi.

The state estimate is generated by weighting the individual
estimates from the set of conditional filters by its posterior
probability:

x̂k|k−1 =

N∑
i=1

x̂k|k−1,ξip(ξi|Yk) (18)

where x̂k|k−1,ξi is the state estimate produced by the
estimator tuned to ξi.

3.3 Convergence Proof

Proof of convergence of the MME algorithm is provided
in Anderson and Moore (2005), and a sketch of how that
proof is revised in this application is provided here. It is
shown that the modified Kalman filter satisfies all of the
convergence criteria.

Criterion 1. A minimum variance unbiased estimator is
compatible with MME if the innovations sequence ỹk is
asymptotically Gaussian and asymptotically wide sense
stationary.

Criterion 2. The estimator using MME converges if for
ξi 6= ξj , either ỹk|ξi−ỹk|ξj fails to approach zero as k →∞,
or Ωk|ξi 6= Ωk|ξj , or both.

Sketch of Proof. First consider Criterion 1. It was
proven that the MKF is a minimum variance unbiased
estimator in the derivation of the filter in the previous
section. Next, consider the statistics of the innovations
sequence given by

ỹk = yk − ŷk
= C(xk − x̂k) + (γk − ξ)Duk +Gwk (19)

Note that, ỹk is not Gaussian due to the presence of γk
in the measurement. However, the limiting distribution
may be used since the sequence follows the behavior of the
probabilities as k → ∞. The Bernoulli distributed γk is a
special case of the binomial distribution. Then, by the Cen-
tral Limit Theorem, γk can be approximated as Gaussian
as k → ∞. With this approximation, ỹk becomes a linear
combination of independent Gaussian distributed random
variables. Therefore ỹk can be considered asymptotically
Gaussian.

Consider the statistics of ỹk as k → ∞. The final part
of Criterion 1 is that ỹk is asymptotically wide sense
stationary. The mean of the innovations sequence is

E[ỹk] = C E[ek] + E[γk − ξ]Duk +GE[wk]

= 0 (20)

which is constant for all k. Since ỹk is zero mean, the
second moment and the design covariance are equal and
are calculated as follows:

Ωk = E
[
ỹkỹ

T
k

]
= CPkC

T + ξ(1− ξ)DukuTkDT +GWGT (21)

Since (13) is time invariant, (12) approaches a constant
value P when k → ∞ and uk = u is constant (such as in
steady state). Then (21) simplifies to

lim
k→∞

Ωk = CPCT + ξ(1− ξ)DuuTDT +GWGT (22)
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demonstrating that the second moment and design co-
variance are finite and independent of time as k → ∞.
Therefore, the innovations sequence of the MKF is asymp-
totically wide sense stationary for time invariant systems
when the limit of the input is constant, and Criterion 1 is
satisfied, indicating that the MKF is compatible with the
MME algorithm.

Next consider the convergence of the MME algorithm as-
suming Criterion 2 is satisfied. Without loss of generality,
assume the true parameter is given by ξ = ξ1. For i 6= 1
define the sequence assuming p(ξi|Yk) is asymptotically
Gaussian:

Lk = [p(ξi|Yk)][p(ξ1|Yk)]−1

=
|Ω−1
k|ξi |

1/2 exp(− 1
2 ỹ
T
k|ξiΩ

−1
k|ξi ỹk|ξi)

|Ω−1
k|ξ1 |

1/2 exp(− 1
2 ỹ
T
k|ξ1Ω−1

k|ξ1 ỹk|ξ1)
Lk−1 (23)

The natural logarithm of the progression of this sequence
is evaluated when the estimator is a minimum variance
estimator and ỹk|ξ1 is asymptotically wide sense stationary,
resulting in

lim
n→∞

ln

(
Lk+n−1

Lk−1

)
= −α (24)

for some α > 0. Then, from the definition of Lk,

lim
k→∞

p(ξi|Yk)

p(ξ1|Yk)
= 0 (25)

4. SIMULATION EXAMPLES

4.1 Physical System

To test the performance of the MKF for systems with
known actuator fault rates and MME using the MKF for
systems with unknown actuator fault rates, the discretized
model of a per-unitized DC motor with random actuator
faults (26) is used.[

ik+1

ωk+1

]
=

[
0.9802 −0.0002
0.0094 0.9048

] [
ik
ωk

]
+ γk

[
0.0198
0.0001

]
vk (26)

Here ik is the armature current in Amps, ωk is the
rotational speed of the rotor in radians per second, and
vk is the commanded voltage applied to the armature in
Volts. The measurement equation is given by

yk = Cxk + γkDuk (27)

For the system with known fault rates,

C = [0 1] , D = 0 (28)

indicating that only the rotor speed is measured. For the
system with unknown fault rates,

C =

[
0 1
0 0

]
, D =

[
0
1

]
(29)

indicating the applied input is measured in addition to
the rotor speed. The inclusion of a nonzero D is necessary
in this case to satisfy Criterion 2 of MME. The sampling
period of the system is T = 0.01 s. The model has been
per-unitized so that rated operation is achieved when a
healthy step input is applied. The intermittent actuator
fault at each time step is represented by γk, which is a
Bernoulli random variable that assumes a value of either
zero (indicating an actuator fault) or one (indicating
successful actuation) with mean 0 ≤ ξ ≤ 1.

4.2 Known Actuator Fault Rate Results from the MKF

Seven different values of ξ are considered when ξ is
available to the estimator, and 50 independent simulations
are performed for each value of ξ. The seven values of ξ
are: ξ = 0.1, ξ = 0.3, ξ = 0.5, ξ = 0.7, ξ = 0.75, ξ = 0.85,
and ξ = 0.9. The peak percent errors (PE) and the
mean square errors (MSE) of the estimates of ik and ωk
averaged over the 50 simulations are presented in Table 1.
Although the magnitude of the peak percent errors tends
to be large, particularly at low success rates, the mean
squared error remains very small. This indicates that the
average error in estimation is very small, as expected from
the analysis of the mean error. Furthermore, the peak error
decreases as the success rate of the actuator increases.
This is because fewer interruptions to the system actuation
occur, resulting in smaller variations in the state values.

Table 1. Average peak percent errors in state
estimation when ξ is known (50 iterations).

max |PEi| max |PEω | MSEi MSEω

ξ = 0.1 151% 12.6% 1.7e−3 1.00e−3
ξ = 0.3 54.7% 4.8% 2.7e−3 1.00e−3
ξ = 0.5 29.8% 2.7% 2.9e−3 1.00e−3
ξ = 0.7 19.2% 1.8% 2.8e−3 1.00e−3
ξ = 0.75 16.4% 1.5% 2.5e−3 1.00e−3
ξ = 0.85 12.1% 1.2% 2.1e−3 1.00e−3
ξ = 0.9 9.2% 0.88% 1.7e−3 1.00e−3

4.3 Unknown Actuator Fault Rate Results from the MME

The set of simulations in 4.2 are repeated assuming the
success rate of the actuator is not available to the estima-
tor. Thus, the modified Kalman filter with multiple model
estimation is used to simultaneously estimate the system
states and the actuator success rate. The hypothesis set
that is used in these simulations is given in (30) and
consists of five hypotheses within the parameter space of
ξ. Note that two of the values of ξ that are simulated,
ξ = 0.75 and ξ = 0.85, are not within the hypothesis set.

Ξ = {0.1, 0.3, 0.5, 0.7, 0.9} (30)

The peak percent errors and the mean square error of the
estimates averaged over the 50 simulations are presented
in Table 2. Here, the magnitude of the peak percent errors
tends to be smaller than when the actuator success rate is
known and decreases as the actuator success rate increases.
This estimation improvement is a result of measuring the
applied input to the system as in (29), which provides
additional state information to the estimator. In addition,
the mean squared error remains very small, indicating the
average estimation error is very small.

Table 2. Average peak percent errors in state
estimation when ξ is unknown (50 iterations).

max |PEi| max |PEω | MSEi MSEω

ξ = 0.1 14.1% 1.2% 1.00e−3 1.00e−3
ξ = 0.3 2.2% 0.19% 1.00e−3 1.00e−3
ξ = 0.5 1.2% 0.11% 1.00e−3 1.00e−3
ξ = 0.7 0.89% 0.08% 1.00e−3 1.00e−3
ξ = 0.75 0.75% 0.08% 1.01e−3 1.00e−3
ξ = 0.85 1.8% 0.17% 1.03e−3 1.00e−3
ξ = 0.9 0.95% 0.09% 1.01e−3 1.00e−3
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Fig. 2. The posterior probabilities for each hypothesis
when ξtrue = 0.1.

Fig. 3. The posterior probabilities for each hypothesis
when ξtrue = 0.3.

An estimate of ξ can be found by examining the posterior
probabilities of each of the hypotheses. Plots of the poste-
rior probabilities when ξ is within the hypothesis set are
presented in Fig. 2 through Fig. 6. Note that the posterior
probability associated with the hypothesis that matches
the value of ξ approaches one, while all of the other
posterior probabilities approach zero. Thus, the multiple
model algorithm correctly identifies the value of ξ in all
of the performed simulations. In addition, the algorithm
generally converges in under one second, and a favored
hypothesis emerges as quickly as 0.1 to 0.2 seconds into
the simulations.

The remaining two simulations consider the estimate of ξ
when the true value of ξ is not within the hypothesis set.
Plots of the posterior probabilities when ξ is not within
the hypothesis set are presented in Fig. 7 and Fig. 8.
In this scenario, the multiple model algorithm converges
to the hypothesis that is closest to the true value of ξ.
The convergence time of the multiple model estimation
algorithm is slightly longer because the algorithm needs
additional time to eliminate the incorrect hypotheses.
Despite the increase in convergence time, the algorithm
consistently identifies the hypothesis that is closest to the

Fig. 4. The posterior probabilities for each hypothesis
when ξtrue = 0.5.

Fig. 5. The posterior probabilities for each hypothesis
when ξtrue = 0.7.

Fig. 6. The posterior probabilities for each hypothesis
when ξtrue = 0.9.
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Fig. 7. The posterior probabilities for each hypothesis
when ξtrue = 0.75. Note ξtrue is not within the
hypothesis set.

Fig. 8. The posterior probabilities for each hypothesis
when ξtrue = 0.85. Note ξtrue is not within the
hypothesis set.

true value of ξ. The error in estimating ξ can be decreased
by selecting a more finely quantized hypothesis set.

5. CONCLUSION

In this work, a modified Kalman filter is proposed that
estimates system states in the presence of intermittent
actuator faults with a known fault rate. The proposed filter
is extended to systems with intermittent actuator faults
when the fault rate is unknown by combining it with the
multiple model estimation algorithm. A simulation study
is presented that considers a wide range of fault rates of
the actuator. It is demonstrated that the modified Kalman
filter estimates the system states reasonably well when the
fault rate is known. In addition, the peak percent error in
the estimate decreases as the success rate of the actuator
increases. When the actuator success rate is unknown, the
modified Kalman filter using multiple model estimation
simultaneously estimates the system states and the success
rate of the actuator. Furthermore, the peak percent error
in the state estimate is smaller with the addition of the
multiple model estimation algorithm due to the additional

state information provided by the measurement of the
applied input. Future work includes investigating how dif-
ferent control methods (such as closed-loop control) affect
convergence of the multiple model estimation algorithm
and extending the modified Kalman filter to multiple fault
rates for multiple actuators.
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