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Abstract: This paper proposes a data-driven immersion approach to obtain linear equivalents
or approximations of discrete-time nonlinear systems. Exact linearization can only be achieved
for very particular classes of systems. In general cases, we aim to obtain a finite-time linear
approximation. Our approach only takes a finite set of trajectories and hence an analytic model
is not required. The mismatch between the approximate linear model and the original system is
concretely discussed with formal bounds. We also provide a Koopman-operator interpretation
of this technique, which shows a link between system immersibility and the Koopman operator
theory. Several numerical examples are taken to show the capabilities of the proposed immersion
approach. Comparison is also made with other Koopman-based lifting approaches which use
radial basis functions and monomials.
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1. INTRODUCTION

Linearization of nonlinear systems is one of the most well-
known research topics in systems and control. The use
of linear equivalents or approximations allows us to use
standard techniques for linear systems to analyze complex
behaviors of nonlinear systems.Classic linearization meth-
ods includes the Jacobian linearization method and the
feedback linearization method (see, e.g., Section 4.3 & 13
of (Khalil, 2002)).

Another linearization method is the state immersion
method, which lifts a nonlinear system into a linear sys-
tem with a higher dimension, see, e.g., (Monaco and
Normand-Cyrot, 1983; Lee and Marcus, 1988; Menini and
Tornambè, 2009). Although the immersion method and
feedback linearization can be equivalent in the special case
where the immersion is a state diffeomorphism, they are
in general different as an immersion does not necessarily
preserve the dimension of the system. The immersibility
of a nonlinear system is also closely related to the notion
of flatness (Fliess et al., 1999). One successful application
of state immersion can be found in observer design for
nonlinear systems, see, e.g., (Krener and Isidori, 1983).
Recently, a new immersion technique has been proposed in
(Jungers and Tabuada, 2019) for continuous-time system
by the use of polyflows. Although a nilpotency property
is required for the exact immersion or linearization, the
approximation by polyflows often outperforms the Taylor
approximation in practice. The aforementioned immersion
techniques usually rely on the Lie derivatives of the tra-
jectories and thus are not directly applicable to systems
without an analytic model. In this paper, we will develop
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a data-driven immersion technique for discrete-time non-
linear systems and the analytic model of the system is
not needed. Inspired by the polyflows approximation in
(Jungers and Tabuada, 2019), we establish approximate
linearization in a finite time horizon with a discussion on
the mismatch. We will also show this immersion technique
has a connection with multivariate autoregressive (M-AR)
modeling (Harrison et al., 2003).

Operator-theoretic approaches like the Carleman lin-
earization (Kowalski and Steeb, 1991) and the Koopman
approach (see, e.g., (Williams et al., 2015) and the ref-
erences therein) are also promising frameworks to provide
an (infinite-dimensional) linear representation of nonlinear
systems. For numerical analysis, the infinite-dimensional
linear operator is often truncated into finite-dimensional
approximations. For instance, finite representations of the
Koopman operator can be obtained by using a finite num-
ber of observables, which have a few choices: predefined
basis functions (see, e.g., (Williams et al., 2015; Mauroy
and Goncalves, 2017; Korda and Mezić, 2018)), delay coor-
dinates (see, e.g., ) and neural networks models (Takeishi
et al., 2017). However, to the best of our knowledge,
connections between Koopman representations and the
system immersibility property are not mentioned in the
literature. In this paper, we will discuss their connections
and provide a Koopman interpretation of the proposed
immersion technique. We will also make a comparison with
Koopman-based approaches with radial basis functions
(Korda and Mezić, 2018) and monomials (Mauroy and
Goncalves, 2017).

The rest of the paper is organized as follows. The next
section gives the problem statement and a brief review of
on the Koopman operator. Section 3 presents the proposed
data-driven immersion approach. In Section 4, we will
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discuss some implementations issues. Some simulation
results are provided Section 5. Proofs of some theorems
and lemmas are not given due to page limitation.

Notation. The non-negative integer set is indicated
by Z+. For any x ∈ Rn and A ∈ Rn×m, ‖x‖p =

(
∑n
i=1 |xi|p)

1/p
(‖x‖ = ‖x‖2 by default), ‖A‖p =

supx 6=0 ‖Ax‖p/‖x‖p, and ‖A‖F =
√∑n

i=1

∑m
j=1 |aij |2. For

any two matrices A,B, A ⊗ B denotes the Kronecker
product and A[k] = A⊗ · · ·⊗︸ ︷︷ ︸

k times

A for k ∈ Z+.

2. PROBLEM STATEMENT AND PRELIMINARIES

2.1 Problem statement

We consider the following discrete-time nonlinear system

x(t+ 1) = f(x(t)), y(t) = h(x(t)), t ∈ Z+ (1)

where x(t) ∈ Rn is the sate vector, y(t) ∈ Rm is the output,
f : Rn → Rn and h : Rn → Rm are continuous functions.
For notational convenience, let

hhhM (x) = [(h(x))T · · · , (h(fM (x))T ]T ,∀M ∈ Z+. (2)

where fk(x) = f ◦ · · · ◦ f︸ ︷︷ ︸
k times

(x), f0(x) = x, ∀k ∈ Z+. This

paper is concerned with the linearization of the nonlinear
system (1) by lifting the dimension. More precisely, we aim
to immerse the system (1) into a linear system (ñ > n):

Σ(A,C) : x̃(t+ 1) = Ax̃(t), ỹ(t) = Cx̃(t), t ∈ Z+ (3)

where x̃(t) ∈ Rñ, ỹ(t) ∈ Rm, A ∈ Rñ×ñ, and C ∈ Rm×ñ.

2.2 The Koopman operator theory

The Koopman operator is able to represent nonlinear
dynamics into a (infinite-dimensional) linear framework.
Given an infinite-dimensional space F of observables g :
Rn → R, the Koopman operator K : F → F associated
with the system (1) is defined as: Kg = g◦f, ∀g ∈ F . Even
though the Koopman operator is always linear, computing
the infinite-dimensional K is often intractable in practice.
For numerical analysis, K will be restricted to a finite-
dimensional subspace, which leads to finite-dimensional
approximations of K. Given a finite set of observables
{g1, g2, · · · , gP } for some P ∈ Z+, a necessary and suf-
ficient condition is shown in (Takeishi et al., 2017) on the
existence of a linear operator G ∈ RP×P that satisfies
ggg(f(x)) = Gggg(x),∀x ∈ Rn, where ggg = [g1 g2 · · · gP ]T is
the vector of the P functions. The choice of the observables
{g1, g2, · · · , gP } plays a very important role in the finite-
dimensional approximation and the optimal choice is often
not clear. In this paper, we show that system immersion
provides another view of the Koopman operator theory.
We will discuss intrinsic connections between Koopman-
based lifting techniques and system immersion.

3. MAIN RESULTS

3.1 Immersibility and linear equivalents

Let us first give the definition of immersibility of discrete-
time nonlinear systems, see, e.g., (Monaco and Normand-
Cyrot, 1983; Lee and Marcus, 1988).

Definition 1. The system (1) is immersible into Σ(A,C)
given in (3) in X ⊆ Rn if there exists a map T : Rn → Rñ
such that h(f t(x)) = CAtT (x) for t ∈ Z+ and x ∈ X. It
is globally immersible into Σ(A,C) if X = Rn.

When the system (1) is globally immersible into a linear
system, it can be considered as the projection of the
linear system. We will construct a linear system and
establish its equivalence with the system (1). For any
M ∈ Z+ and γγγM := [γ0 γ1 · · · , γM ] ∈ Rm×m(M+1), we
define the following linear system, denoted by Σ(γγγM ) :=
Σ(γγγM , [Im 000m×Mm]),

x̃(t+ 1) = Γ(γγγM )x̃(t), ỹ(t) = [Im 000m×Mm]x̃(t) (4)

where

Γ(γγγM ) :=


000 Im 000 · · · 000
000 000 Im · · · 000
...

...
...

...
...

000 000 · · · 000 Im
γ0 γ1 · · · γM−1 γM

 . (5)

A necessary and sufficient condition of immersibility is
given in Theorem 1. Similar arguments can also be found
in (Monaco and Normand-Cyrot, 1983; Lee and Marcus,
1988), although the proof is slightly different.

Theorem 1. The system (1) is globally immersible into
Σ(A,C) defined in (3) if and only if there exist a finite
M ∈ Z+ and γγγM := [γ0 γ1 · · · γM ] ∈ Rm×m(M+1) such
that

h(fM+1(x)) = γγγMhhhM (x),∀x ∈ Rn. (6)

Proof of Theorem 1: (Sufficiency) Suppose there exist M ∈
Z+ and γγγM := [γ0 γ1 · · · γM ] such that h(fM+1(x)) =
hhhM (x),∀x. Hence, hhhM (f(x)) = Γ(γγγM )hhhM (x). Consider
the linear system in (4) with the sequence γγγM . We can
see that the system (1) is immersible into Σ(γγγM ) with
T (x) = hhhM (x). (Necessity) Suppose the system (1) is
immersible into the system (3). From Definition 1, we
know that there exists a function T : Rn → Rñ such that
h(f `(x)) = CA`T (x),∀` ∈ Z+ From the Cayley–Hamilton
theorem, there exist {αi ∈ R}ñ−1

i=0 such that h(f ñ(x)) =

C
∑ñ−1
`=0 α`A

`T (x) =
∑ñ−1
`=0 α`h(f `(x)). 2

The theorem above suggests that the system (1) with
the global immersibility property admits a M-AR model
(Harrison et al., 2003) in the form of (6). Hence, the
problem of finding linear equivalents or approximations
is coherently related to the identification problem of M-
AR models. The immersibility condition above also leads
to other properties.

Corollary 1. Suppose there exist a finite M ∈ Z+ and
γγγM := [γ0 γ1 · · · γM ] ∈ Rm×m(M+1) such that (6) is satis-
fied. Then, there exist a map T : Rn → Rñ and an observ-
able pair (C,A) with the components {T1(x), · · · , Tñ(x)}
being linearly independent and ñ ≤ (M + 1)m such that
AT (x) = T (f(x)) and CT (x) = h(x) for any x ∈ Rn. In
addition, if the system (1) is globally asymptotically stable
at the origin, A is Schur stable.

The following proposition shows the link between the
Koopman operator and the immersibility property.

Proposition 1. Suppose there exists a finite set of observ-
ables ggg(x) = [g1(x) g2(x) · · · gP (x)]T such that ggg(f(x)) =
Gggg(x) holds for some G ∈ RP×P and P ∈ Z+ with h(x) =
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vTggg(x) for some v ∈ RP×m. For any i ∈ {1, 2, · · · ,m},
let Mi be the minimal M that satisfies hi(f

M+1(x)) ∈
span{hi(x), hi(f(x)), · · · , hi(fM (x))},∀x ∈ Rn. Then, (i)
The system (1) is globally immersible into a linear system;
and (ii) Mi ≤ P for all i ∈ {1, 2, · · · ,m}.

Proof of Proposition 1: (i) From ggg(f(x)) = Gggg(x) and
h(x) = vTggg(x), h(fP (x)) = vvvTGPggg(x). Hence, from the
Cayley–Hamilton theorem, h(fP (x)) can always be ex-
pressed by a linear combination of {h(x), · · · , h(fP−1(x))},
which means the immersibility condition in Theorem 1
holds. (ii) This is a direct consequence of (i). 2

Proposition 1 shows that the finite-dimensional Koopman
representation implies global immersibility. Conversely,
global immersibility also leads to a finite-dimensional
Koopman representation by choosing the observables to
be {{hi(fk(x))}mi=1}Mk=0, where M satisfies (6).

3.2 A family of nonlinear systems with global immersion

For certain families of nonlinear systems, the immersibility
property (6) always holds. One special family of polyno-
mial systems is given as follows

ξ(t+ 1) = Aξξ(t) + ϕ(z(t)), z(t+ 1) = Azz(t) (7a)

y(t) = Cξξ(t) + ϕ̄(z(t)) (7b)

where ξ ∈ Rnξ , z ∈ Rnz , y ∈ Rm, Aξ ∈ Rnξ×nξ , Az ∈
Rnz×nz , Cξ ∈ Rm×nξ , and ϕ : Rnz → Rnξ and ϕ̄ : Rnz →
Rm are polynomial functions of degree d ∈ Z+, given by,
ϕ(z) := F0 +F1z

[1] + · · ·+Fdz
[d] and ϕ̃(z) := F̄0 + F̄1z

[1] +

· · ·+F̄dz[d] with z[0] = 1, and Fi ∈ Rnξ×niz and F̄i ∈ Rm×niz
for i ∈ {0, 1, · · · , d}. The following lemma is needed.

Lemma 1. For any A ∈ Rr×r, and r, d ∈ Z+, the following
properties hold. (i) For any z ∈ Rr and k ∈ Z+, (Az)[d] =
A[d]z[d], and (Ak)[d] = (A[d])k. (ii) For any polynomial
function ψ of degree d, there exist M ∈ Z+ and {αi ∈
R}Mi=0 such that ψ(AM+1z) =

∑M
i=0 αiψ(Aiz).

With Lemma 1, the following theorem can be derived.

Theorem 2. The system (7) is globally immersible into a
linear system in the form of (3).

Proof of Theorem 2: From Lemma 1, we know that there
existM ∈ Z+, {αi}Mi=0 and {ᾱi}Mi=0 such that ϕ(AM+1

z z) =∑M
i=0 αiϕ(Aizz) and ϕ̄(AM+1

z z) =
∑M
i=0 ᾱiϕ̄(Aizz). Let

x̃1 = ξ, x̃i+2 = Aξx̃i+1 + ϕ((Az)
iz) for i = 0, 1, · · · ,M .

It can be verified that

x̃i(t+ 1) = x̃i+1(t), i = 1, 2, · · · ,M + 1, (8)

x̃M+2(t+ 1) = Aξx̃M+2(t) + ϕ((Az)
M+1z(t))

= −α0Aξx̃1(t) +

M−1∑
i=0

(αiI − αi+1Aξ)x̃i+2(t)

+ (αMI +Aξ)x̃M+2(t) (9)

Similarly, let z̃i = ϕ̄((Az)
i−1z) for all i = 1, 2, · · · ,M + 2.

It can be also verified that

z̃i(t+ 1) = z̃i+1(t), i = 1, 2, · · · ,M + 1, (10)

z̃M+2(t+ 1) = ϕ̄((Az)
M+2z(t))

=

M∑
i=0

ᾱiϕ̄(Ai+1
z z(t)) =

M∑
i=0

ᾱiz̃i+2(t) (11)

Let x̃ = [x̃T1 · · · x̃TM+2]T and z̃ = [z̃T1 · · · z̃TM+2]T . The
construction above leads to the following linear system:
x̃(t + 1) = Ã1x̃(t), z̃(t + 1) = Ã2z̃(t), where Ã1 ∈
Rnξ(M+2)×nξ(M+2), Ã2 ∈ Rnz(M+2)×nξ(M+2) are defined
in (8) - (9) and (10)-(11) respectively. We can see that
y(t) in (7) can be expressed as Cξx̃1(t) + z̃1(t). Hence, the
system (7) is immersible to the system (8) - (11). 2

From Theorem 2, the following corollary can be derived.

Corollary 2. If the system (1) is globally immersible into
a system in the form of

x̄(t+ 1) = Āx̄(t), ȳ(t) = C̄(x̄(t)), t ∈ Z+ (12)

where x̄(t) ∈ Rn̄, ȳ(t) ∈ Rm, Ā ∈ Rn̄×n̄, and C̄ : Rn̄ → Rm
is a polynomial function, it is also globally immersible into
a linear system in the form of (3).

Proof of Corollary 2: This is a direct consequence of
Theorem 2, because (12) is a special case of (7). 2

This corollary suggests that using a polynomial output
in (3) does not necessarily generalize the class of linear
equivalents of the system (1).

3.3 The lifting method

From the immersibility condition in Theorem 1, we formu-
late the following problem, ∀M ∈ Z+,

∆M := inf
γγγM

sup
x∈Rn

‖h(fM+1(x))− γγγMhhhM (x)‖∞ (13)

where γγγM ∈ Rm×m(M+1). The following lemma is needed.

Lemma 2. For any M ∈ Z+, let ∆M be defined in (13).
The sequence {∆M}∞M=0 is non-increasing.

From Lemma 2, the basic idea is to increase M until ∆M

is sufficiently small. Then, with the solution γγγM , we can
construct Σ(γγγM ) as defined in (4). Suppose the system
(1) is globally immersible to some linear system, from
Theorem 1, there always exists a M such that ∆M = 0.
The relation between the Koopman operator and system
immersibility, as stated in Proposition 1, allows us to
establish a Koopman interpretation of the formulation
(13). Consider {{hi(fk(x))}mi=1}Mk=0 as the observables,
with the Koopman operator K, we have

KhhhM (x) = hhhM (f(x)). (14)

Such observables are called delay coordinates in (Susuki,
2015; Arbabi and Mezic, 2017). With the solution γγγM from
(13), Γ(γγγM ) defined in (5) can be considered as a finite-
dimensional approximation of the Koopman operator.

In general, Problem (13) is nonconvex and computing its
exact solution is difficult. For this reason, we aim to obtain
a numerical solution by using a finite set of initial states.
Given N initial states, denoted by ΩN := {x1, · · · , xN}, a
numerical approximation of Problem (13) can be given by
the least squares regression

min
γγγM

∑
x∈ΩN

‖h(fM+1(x))− γγγMhhhM (x)‖2. (15)

This formulation does not require explicit knowledge of
f(x) and h(x) and hence it can be solved under a data-
driven framework. In fact, Problem (15) is a simple least
square approximation problem and can be easily solved
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with the classical pseudo inverse technique. For complete-
ness, we give an explicit expression of the solution. Let

ΘN =
[
h(fM+1(x1)) · · · h(fM+1(xN ))

]
(16)

ΠN =
[
hhhM (x1) · · · hhhM (xN )

]
. (17)

Let the solution of Problem (15) be denoted by γ̂γγM :=
[γ̂0, γ̂1, · · · , γ̂M ]. Suppose ΠN is full row rank, the solution
γ̂γγM can be uniquely be expressed as

γ̂γγM = ΘNΠ+
N (18)

where + denotes the pseudo inverse. The optimum of
Problem (13) is approximated by

δ̂(M,ΩN ) = max
x∈ΩN

‖h(fM+1(x))− γ̂γγMhhhM (x)‖∞ (19)

The lifting method is summarized in Algorithm 1. When
{{hi(fk(x))}mi=1}Mk=0 are not linearly independent, ΠN will
not be full row rank. In this case, we can first remove the
redundant functions before using the lifting algorithm. The
details are not given due to page limitation.

Algorithm 1 Data-driven lifting for linearization

Input: ΩN and some given tolerance δ > 0

Output: M , γ̂γγM and δ̂(M,ΩN )
Initialization: Set M = 0;

1: For any x ∈ ΩN , generate the trajectory hhhM+1(x);
2: Compute ΘN and ΠN from (16) and (17) respectively;

3: Obtain γ̂γγM and δ̂(M,ΩN ) from (18) and (19) respec-

tively. If δ̂(M,ΩN ) ≤ δ, terminate; otherwise, set
M ←M + 1 and go to Step 1.

The algorithm above is similar to the Krylov method
proposed in Rowley et al. (2009), where the (M + 1)th

iterate is approximated by a linear combination of the
previous iterates, i.e., γγγM in (15) becomes a vector in
RM+1 instead of a matrix in Rm×(M+1)m. This also shows
the connection to the Koopman operator framework. If the
global immersibility property holds, the algorithm above
converges in finite time, as stated in the following theorem.

Theorem 3. Given N initial states ΩN , Algorithm 1 con-
verges for any δ > 0. Suppose the system (1) is globally
immersible to some linear system in the form of (3). Then,

there exists M ∈ Z+ such that δ̂(M,ΩN ) = 0, where

δ̂(M,ΩN ) is defined in (19). In addition, if ΠN , defined in
(17), is full row rank, the system (1) is globally immersible
to Σ(γ̂γγM ), where γ̂γγM is given in (18).

Proof of Theorem 3: The convergence is a direct conse-
quence of Lemma 2. Suppose the system (1) is globally
immersible to some linear system, from Theorem 1, there
exist M ∈ Z+ and γγγM such that h(fM+1(x)) = γγγMhhhM (x)
for any x ∈ Rn. Hence, γγγM is a solution to Problem (15)

and the optimum is exactly 0. As a result, δ̂(M,ΩN ) = 0.
If ΠN is full rank, γγγM is the unique the solution. 2

Although the linear system Σ(γ̃γγM ) obtained from the
lifting method in Algorithm 1 can be exactly equivalent
in some cases, as shown in Theorem 3, it can only be
considered as an approximate linearized system in general.
We will formally discuss about the mismatch in the next
subsection.

3.4 Approximate immersion and mismatch

We then discuss approximate immersibility, which is for-
mally defined below.

Definition 2. Given X ⊆ Rn, tf ∈ Z+ and ε > 0, the
system (1) is (ε, tf )-immersible into Σ(A,C) in (3) with
ñ ≤ mtf in X if there exists a map T : X → Rñ such
that max0≤t≤tf ‖h(f t(x))−CAtT (x)‖∞ ≤ ε,∀x ∈ X. The
corresponding linear system is called a (ε, tf )-linearized
system of the system (1).

A bound on mismatch between the linearized system and
system (1) is provided below.

Lemma 3. Given X ⊆ Rn, δ > 0 and tf ∈ Z+, suppose

there exist M ∈ Z+ and γγγM ∈ Rm×m(M+1) such that
max0≤k≤tf ‖h(fM+1+k(x)) − γγγMhhhM (fk(x))‖∞ ≤ δ, ∀x ∈
X. Let

ε̄(δ,γγγM ; tf ) :=

tf−1∑
`=0

‖[Im 000]Γ(γγγM )`
[

000
Im

]
‖∞δ. (20)

Then, for any t̄ ∈ {0, 1, · · · , tf}, the system (1) is
(ε̄(δ,γγγM ; t̄), t̄)-immersible into Σ(γγγM ) in X.

To compute the bound on the mismatch in Lemma 3, for
generally nonlinear systems, we have to solve a problem of
infinite number of linear constraints. For this reason, we
use use the scenario approach (Calafiore, 2010). Suppose
the initial conditions ΩN are randomly and uniformly
sampled from X with the corresponding trajectories for
the given tf , the sampled problem is given by

max
0≤k≤tf ,x∈ΩN

‖h(fM+1+k(x))− γγγMhhhM (fk(x))‖∞ (21)

This problem can be converted into a linear optimization
problem with 1+m2(M+1) variables and 2mN(tf+1) lin-
ear inequality constraints. Let (δ∗(ΩN ), γγγ∗M (ΩN )) denote
the optimum of the sampled problem (21). Adapted from
Theorem 3.3 in (Calafiore, 2010), the following theorem
can be achieved.

Theorem 4. Given X ⊆ Rn and tf ∈ Z+, let ΩN be the set
of N initial conditions that are randomly and uniformly
sampled from X and (δ∗(ΩN ), γγγ∗M (ΩN )) be the solution of
Problem (21). For any c ∈ (0, 1), d ∈ Z+, let Φ(c; d,N) =∑d
j=0

(
N
j

)
cj(1 − c)N−j . Then, given c ∈ (0, 1), with

probability no smaller than 1 − Φ(c; tfm
2 + 1, N), for

any t̄ ≤ tf , the system (1) is (ε̄(δ∗(ΩN ), γγγ∗M (ΩN ); t̄), t̄)-
immersible into Σ(γγγ∗M (ΩN )) in no smaller than 1 − c of
the region in X

As shown in (Calafiore, 2010), Φ(c; tfm
2 + 1, N) can be

computed by the regularized incomplete beta function
I(c; a, b). The overall procedure for determining the ap-
proximate linearized system is summarized as below.

4. IMPLEMENTATION ISSUES

4.1 Regularization

To improve numerical stability, we can consider the regu-
larized version of Problem (15):

min
γγγM

N∑
i=1

‖h(fM+1(xi))− γγγMhhhM (xi)‖2 + ρ‖γγγM‖2F , (22)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

890



Algorithm 2 The data-driven method for computing an
approximate linearized system and mismatch bounds

Input: tf , β, c, M , and X

Output: γγγ∗M (ΩN ) and {ε̄(δ∗(ΩN ), γγγ∗M (ΩN ); t̄)}tft̄=0

1: Initialization: Determine N such that I(c; tfm
2 +

2, N−tfm2−1) ≥ 1−β. Randomly and uniformly sam-
ple N points ΩN in X and generate {hhh2tf (x)}x∈ΩN .

2: Solve Problem (21) and obtain (δ∗(ΩN ), γγγ∗M (ΩN ));
3: Compute ε̄(δ∗(ΩN ), γγγ∗M (ΩN ); t̄) from (20) using

(δ∗(ΩN ), γγγ∗M (ΩN )) for any t̄ ∈ {0, 1, · · · , tf};

where ρ > 0 is some given parameter. The solution of the
regularized problem becomes ΘNΠT

N (ΠNΠT
N + ρI)−1.

4.2 Speed-up strategies for computing mismatch bounds

Although Problem (21) is a linear optimization problem,
as N increases, the number of constraints grows and
it will take increasing amount of memory to solve the
problem. To speed up the computations in Algorithm
2, a standard strategy is to approximate the solution of
Problem (21) with the least squares solution by solving

minγγγM
∑
x∈ΩN

∑tf
k=0 ‖h(fM+1+k(x)) − γγγMhhhM (fk(x))‖2.

Note that the solution of this problem is different from
the solution of Problem (15) as it takes the trajectories
from 0 to tf + M + 1 while Problem (15) only take the
trajectories from 0 to M + 1. Another speed-up strategy
for solving Problem (21) is to use distributed consensus
algorithms, see, e.g., (Notarstefano and Bullo, 2011).

4.3 Model reduction

For some nonlinear systems, the dimension of the lin-
earized system can be very high, especially when there are
limit cycles and chaotic behaviors. Hence, it is necessary
to reduce the model of the linearized system. From the
perspective of Koopman operator theory, instead of using
the full observables in (14), we take fewer observables with
linear transformation. The details are not given due to
page limitation.

5. SIMULATION RESULTS

Example 1. (The LaSalle example). We consider the fol-
lowing nonlinear system (LaSalle, 1986): x+

1 = − x2

1+x2
1
, x+

2 =
0.9x1

1+x2
2
, y = [x1, x2]T . This example is globally asymptoti-

cally stable at the origin. We consider the linearization in
the region X = {x ∈ R2 : ‖x‖∞ ≤ 1}. With Algorithm 1,
we uniformly randomly generate 1000 samples and shows

the values of δ̂(M,ΩN ) for different values of M in Figure
1 for 50 realizations of ΩN . Although there is no formal
guarantee, the linearized system is already a good approx-
imation to the original nonlinear system when M = 3.
We then use Algorithm 2 to obtain a linearized system
with the probabilistic guarantee derived in Theorem 4. Let
β = 0.05, c = 0.01, and tf = 50. We take N to be 5× 104

to make sure that I(c; tfm
2+2, N−tfm2−1) ≥ 1−β. The

comparison between the original system and the solution
from Algorithm 2 is made in Figure 2 with the mismatch
bounds, which are denoted by the vertical grey lines.

Example 2. (Two-dimensional logistic map). Consider the
two-dimensional logistic map in (López-Ruiz and Pérez-
Garcia, 1991): x+

1 = (3x1 + 1)x2(1 − x2), x+
2 = (3x2 +

0 2 4 6
0

0.1

0.2

0.3

0.4

Fig. 1. The values of δ̂(M,ΩN ) for different values of M
for the LaSalle example.
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Fig. 2. Comparison and mismatch between the original
system and the linearized system for the LaSalle
example: (a) & (b) M = 1; (c) & (d) M = 3

1)x1(1−x1) with y = [x1, x2]T . We consider the lineariza-
tion in the region X = {x ∈ R2 : x ≥ 0, ‖x‖∞ ≤ 1}.
As shown in (López-Ruiz and Pérez-Garcia, 1991), there
are two limit cycles in X. We use the same setting in the
previous example except that tf = 100. Again, we take N
to be 5 × 104 and generate N trajectories. As mentioned
in Section 4.2, we can use the least squares solution to
speed up the linearization procedure. The comparison of
the trajectories starting from two initial states [0.1 0.8]T

and [0.7 0.4]T is given in Figure 3 for two different choices
of M . As we can see, the linearized system is already a
good approximation to the original system when M = 30.

0 0.2 0.4 0.6 0.8 1
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1
The original system
The linearized system

(a)

0 0.2 0.4 0.6 0.8 1
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0.4

0.6

0.8

1
The original system
The linearized system

(b)

Fig. 3. Trajectories for the logistic map example: (a)
M = 25; (b) M = 30.

Example 3. (Van der Pol oscillator). In the rest of this
section, we will make comparison with other Koopman-
based approaches. Consider the uncontrolled Van der Pol
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oscillator (Korda and Mezić, 2018): ẋ1 = 2x2, ẋ2 =
−0.8x1 + 2x2 − 10x2

1x2 with y = [x1, x2]T . We discretize
the continuous system using the Runge-Kutta four method
with discretization period Ts = 0.1. Consider the same
setting in (Korda and Mezić, 2018), we simulate 200
trajectories over 1000 sampling periods and the initial
conditions are generated randomly and uniformly in the
unit box X = {x ∈ R2 : ‖x‖∞ ≤ 1}. We take 100
radial basis functions in (Korda and Mezić, 2018) in the
form of g(x) = ‖x − x0‖2 log(‖x − x0‖), where x0 is
randomly selected with the uniform distribution on X.
The state itself is also contained in the basis functions.
Hence, the dimension of the lifted state-space is 102 in
total. Then, we consider the Koopman approach with
monomials (Mauroy and Goncalves, 2017). For a fair
comparison, we use monomials with the maximal degree
being 13, given by {xs11 x

s1
2 : s1 + s2 ≤ 13, s1, s2 ∈ Z+}.

The number of monomials is 15!/(13!2!) = 105. For
the proposed approach, we will take M = 30 and the
dimension is 62, which is much smaller. We solve the
regularized problem in Section 4.1 with ρ = 10−6. Consider
the two initial conditions used in (Korda and Mezić, 2018):
x(0) = [0.5 0.5]T and x(0) = [−0.1 −0.5]T , the trajectories
(over 1000 sampling periods) of the different approaches
are shown in Figure 4. We can see that the proposed
approach is able to get a better approximation with a lower
dimension.

-1.5 -1 -0.5 0 0.5 1
-2

0

2 True trajectory
Koopman (radial basis functions)
Koopman (monomials)
Our approach (M = 30)

(a)

-1.5 -1 -0.5 0 0.5 1
-2

0

2 True trajectory
Koopman (radial basis functions)
Koopman (monomials)
Our approach (M = 30)

(b)

Fig. 4. Comparison of different approaches for the Van
der Pol oscillator: (a) x(0) = [0.5 0.5]T ; (b) x(0) =
[−0.1 − 0.5]T

6. CONCLUSIONS

In this paper, we have presented a data-driven immer-
sion technique for the linearization of discrete-time non-
linear systems without an analytic model. A necessary
and sufficient condition is shown for exact linearization
of certain nonlinear systems. For arbitrary nonlinear sys-
tems, we consider approximate immersion with the bounds
on system mismatch. The proposed technique also has
a Koopman interpretation by considering the outputs as
the observables. Finally, we have demonstrated the perfor-
mance of the proposed technique on several examples with
a fixed point and limit cycles. A comparison simulation is
made between the proposed approach and Koopman-based
approaches that use radial basis functions and monomials.
From the comparison, we have shown that the proposed
approach is able to achieve a better approximation with a
smaller lifted dimension.
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