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Abstract: In this paper, Model Predictive Control (MPC) and Moving Horizon Estimator
(MHE) strategies using a data-driven approach to learn a Takagi-Sugeno (TS) representation of
the vehicle dynamics are proposed to solve autonomous driving control problems in real-time. To
address the TS modeling, we use the Adaptive Neuro-Fuzzy Inference System (ANFIS) approach
to obtain a set of polytopic-based linear representations as well as a set of membership functions
relating in a non-linear way the different linear subsystems. The proposed control approach is
provided by racing-based references of an external planner and estimations from the MHE
offering a high driving performance in racing mode. The control-estimation scheme is tested in
a simulated racing environment to show the potential of the proposed approaches.

Keywords: Takagi-Sugeno approach, Model predictive control, Autonomous vehicles,
Data-driven identification, Learning control

1. INTRODUCTION

In recent years, the amount of learning-based applications
has increased immensely. Particularly, in the autonomous
driving field, we have witnessed new approaches as the
end-end driving where the goal consists on guiding the
vehicle by means of using learning algorithms and input
sensors data. In Sallab et al. (2017), a deep reinforcement
learning framework is proposed that takes raw sensor
measurements as inputs and outputs driving actions. In
Bojarski et al. (2016), authors use a Convolutional Neural
Network (CNN) to obtain the appropriate steering signal
from the images of a single front camera.

Nowadays, from a control point of view, several strate-
gies are starting to use learning tools to improve their
capabilities while guaranteeing overall system stability. We
have witnessed an advance in this field reaching learning
techniques to adjust controllers, identify some parame-
ters inside models or even control non-linear systems. In
Lefèvre et al. (2015b,a), some solutions for controlling the
longitudinal velocity of a car based on learning human
behaviour are presented. Also, a Model Predictive Control
(MPC) technique using deep CNN to predict cost func-
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tions from the camera input images is developed in Drews
et al. (2017). In Rosolia and Borrelli (2017); Rosolia et al.
(2017); Rosolia and Borrelli (2019), the authors propose
a reference-free iterative MPC strategy able to learn from
previous laps information.

Most of the last approaches were based on learning some
policies to drive the vehicle independently of a physical
model. In this work, we are interested on learning a realis-
tic and accurate representation of the system dynamics to
improve the control performance. In Kabzan et al. (2019),
authors use a simple starting vehicle model which is en-
hanced on-line by learning the model error using Gaussian
process regression and measured vehicle data.

In this paper, we propose the use of ANFIS approach,
that is an adaptive neuro-fuzzy inference system, to learn
the vehicle model. In the same manner as artificial neural
networks, it works as a universal approximator (Jang,
1993). The main purpose of using ANFIS is to learn an
input-output mapping based on input data. This tool has
been widely used in other engineering fields (Ndiaye et al.,
2018; Jaleel and Aparna, 2019).

The main contribution of this work is to model accurately
a non-linear system as a structured Takagi-Sugeno (TS)
representation of the vehicle by means of using machine
learning tools and input data. In particular, this paper
takes advantage of the properties of ANFIS tool to learn
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Fig. 1. Real picture of the vehicle used for simulation

a data-driven TS system which will be later used by a
predictive optimal control to solve the driving problem.

The paper is structured as follows. Section 2 presents the
testing vehicle used in simulation. Section 3 details the
proposed learning-based method and its main components.
Section 4 formulates the control and estimation problems.
Section 5 introduces its application to a case study to
assess the methodology, as well as various performance
results. Finally, Section 6 presents several conclusions
about the method suitability.

2. TESTING VEHICLE

The Berkeley Autonomous Race Car (Gonzales et al.,
2016) (BARC 1 ) is a development platform for au-
tonomous driving to achieve complex maneuvers. This is a
1/10 scale RWD electric remote control (RC) vehicle (see
Figure 1) that has been modified to operate autonomously.
Mechanically speaking, this has been modified with some
decks to protect the on-board electronics and sensors.

The non-linear model used in this chapter for simulating
the BARC vehicle is presented as

v̇x = ar +
−Fyf sin δ − µg

m
+ ωvy

v̇y =
Fyf cos δ + Fyr

m
− ωvx

ω̇ =
Fyf lf cos δ − Fyrlr

I

αf = δ − tan−1

(
vy
vx
− lfω

vx

)
αr = − tan−1

(
vy
vx

+
lrω

vx

)
Fyf = d sin (c tan−1(bαf ))

Fyr = d sin (c tan−1(bαr))

, (1)

where the dynamic vehicle variables vx, vy and ω represent
the body frame velocities, i.e. linear in x, linear in y
and angular velocities, respectively. The control variables
δ and a are the steering angle at the front wheels and
the longitudinal acceleration vector on the rear wheels,

1 http://www.barc-project.com/

respectively. Fyf and Fyr are the lateral forces produced
in front and rear tires, respectively. This considers the
simplified ”Magic Formula” model for simulating lateral
tire forces where the parameters b, c and d define the shape
of the curve. Front and rear slip angles are represented as
αf and αr, respectively. m and I represent the vehicle
mass and inertia and lf and lr are the distances from the
vehicle center of mass to the front and rear wheel axes,
respectively. µ and g are the static friction coefficient and
the gravity constant, respectively. All the dynamic vehicle
parameters are properly defined in Table 1.

Table 1. Dynamic model parameters

Parameter Value Parameter Value

lf 0.125 m lr 0.125 m
m 1.98 kg I 0.03 kg m2

d 7.76 c 1.6
b 6.0 µ 0.1

In this work, with the aim of improving the simulation,
Gaussian noise has been introduced in the measured
variables as

n(·) ∼ N(0, Co(·)) (2)

where Co(·) is the signal covariance.

3. LEARNING THE TS MODEL

In this section, we present the modeling methodology used
for obtaining the TS representation of the vehicle dy-
namic model. ANFIS is an adaptive neuro-fuzzy inference
machine that is used for learning a particular structure
from input-output data (Jang, 1993). More in detail, this
modeling tool configures a neural network that learns from
IO data the dynamic behaviour of the vehicle using back
propagation technique and also employing the Recursive
Least Squares (RLS) method for adjusting additional pa-
rameters.

The methodology consists on providing a dataset to the
modeling algorithm (ANFIS). This is composed by vehicle
states and inputs that represents a set of particular driving
maneuvers guaranteeing rich enough data. Then, after
a learning-based procedure, this provides a set of linear
parameters, also known as consequent parameters, and
a set of premise parameters or non-linear parameters
that define the set of membership functions (MF) that
provide the non-linear relationships between the different
linear polynomials. One typical membership function is
the generalized Gaussian function.

However, obtaining the TS representation of a system by
means of using this resulting parameters is not trivial.
The procedure is based on performing some inverse steps
that ANFIS internally does. To address this problem
we have to follow a set of reformulating steps. First,
due to ANFIS algorithm can be only used for Multi-
Input Single-Output (MISO) systems where just an output
variable can be considered. Then, we split the system
in MISO sub-systems obtaining as many sub-systems as
state variables have the system. Our dynamic vehicle
model is a third order system so three sub-systems will
be obtained and three learning procedures will be carried
out. Once the algorithm has computed conveniently the
consequent and premise parameters for each one of the
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Fig. 2. Polytopic TS learning scheme for the vx sub-system
case

MISO sub-systems, we build the polytopic TS state-space
representation for each one of these sub-systems. To do
this, first, the polynomial representation of each sub-
system is formulated as

Pi = p1ivx + p2ivy + p3iω + p4iδ + p5ia+ p6i

∀i = 1, ..., Nv,
(3)

where Pi stands for a linear polynomial representation
of the dynamics of a sub-system at a particular states
configuration, pji, ∀j = 1, ..., Nζ , are the consequent
parameters obtained from ANFIS where Nζ stands for
the number of scheduling variables (see Figure 2) and Nv
represents the number of polytopic vertexes.

Then, simply by reorganising the terms in (3) as

Pi = [ p1i p2i p3i ]x+ [ p4i p5i ]u+ [ p6i ] (4)

the polynomial structure is transformed into the discrete-
time state-space representation given by

x+
i = Aix+Biu+ Ci ,∀i = 1, ..., Nv, (5)

where, in order to easy the comprehension from a control
point of view, Pi is represented as the sub-system i variable
at the next discrete step (x+

i ) with symbol + representing
the k + 1 discrete step. Ai, Bi and Ci define the so-called

vertex systems, x = [ vx vy ω ]
T

and u = [ δ a ]
T

.

At this point, we use the obtained premise parameters to
formulate the membership function. One of the most used
is the generalized Gaussian Bell function (GB). This is
defined by three parameters (a, b and c) as follows

ηm(ζo) =
1

1 + ζo−cmo
amo

2bmo
,

∀m = 1, ..., NMF ,∀o = 1, ..., Nζ ,

(6)

where ζ represents the ANFIS input vector of variables
(from now on we will refer to them as scheduling variables)
and NMF and Nζ represent the number of MF per schedul-
ing variable and the number of scheduling variables, re-
spectively. For a common case where NMF is two, then,
the normalized weights (µNi) are computed following

µi(ζ) =

Nζ∏
j=1

ξij(η0, η1),∀i = 1, ..., Nv, (7)

where ξij(·) corresponds to any of the weighting functions
that depend on each rule i. Then, using

µNi(ζ) =
µi(ζ)

Nv∑
j=1

µj(ζ)

,∀i = 1, ..., Nv, (8)

the normalized weights are obtained. Note that, each
scheduling variable ζo is known and varies in a defined
interval ζo ∈

[
ζo, ζo

]
∈ R. Finally, the polytopic TS model

for each sub-system is represented as

x+
j =

Nv∑
i=1

µNji(ζ)(Ajix+Bjiu+Cji) ,∀j = 1, ..., NG , (9)

where NG is the number of sub-systems.

Finally, for this work, we consider the third order dynamic
system presented in (1), which implies NG = 3. Then, the
overall TS system is represented as

x+ =

Nv∑
i=1

[
µN1i

µN2i

µN3i

]([
A1i

A2i

A3i

]
x+

[
B1i

B2i

B3i

]
u+

[
C1i

C2i

C3i

])
.

(10)
From now on, with the aim of an easier reading, the system
representation in (10) will be expressed as

xk+1 =

Nv∑
i=1

µNi(ζk)(Aixk +Biuk + Ci) . (11)

4. TS CONTROL AND ESTIMATION

In this section, we present the formulations for the MPC
and MHE techniques using the TS formulation (see Figure
(3)).

4.1 TS-MPC Design

When using a system dependent on some scheduling vari-
ables (TS system), computing the prediction of states
behaviour in a certain horizon can be a challenging task,
sometimes leading to errors in the instantiation since the
real future behaviour is unknown.

In this work, we propose the use of data coming from
two different locations to approximate in a better way the
predictive instantiation and avoid a lack of convergence
in the optimal procedure. On the one hand, data coming
from a planner is used which represents the desired states
behaviour for tracking the desired trajectory. On the other
hand, predicted states from the past optimal realisation
are also used to improve the TS model instantiation.

The model used in this section is the one presented in
(11) where the vector of scheduling variables is defined
as ζ := [ vx vy ω δ a ]. The use of this model allows to
formulate the MPC problem as a quadratic optimization
problem that is solved at each time k to determine the
control actions considering that the values of xk and uk−1

are known
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Fig. 3. Schematical view of the simulation set-up

min
∆Uk

Jk =

Hp−1∑
i=0

(
(rk+i − xk+i)

TQ(rk+i − xk+i)

+ ∆uk+iR∆uk+i

)
+ xTk+HpPxk+Hp

s.t. xk+i+1 =

Nv∑
j=1

µNj (ζk)(Aj x̂k+i +Bjuk+i + Cj)

uk+i = uk+i−1 + ∆uk+i

∆Uk ∈ ∆Π

Uk ∈ Π

xk+Hp ∈ χ
ye ∈ [ye, ye]

xk+0 = x̂k ,
(12)

where Π = {uk|Auuk = bu, uk ≥ 0} and ∆Π =
{∆uk|A∆u∆uk = b∆u,∆uk ≥ 0} constraint the system
inputs and their variations, respectively.

State vector is x = [ vx vy ω ]
T

, x̂ is the estimated state

vector, r = [ vxr 0 ωr ]
T

is the reference vector provided

by the trajectory planner, u = [ δ a ]
T

is the control
input vector and Hp is the prediction horizon. The tuning
matrices Q ∈ R3x3 and R ∈ R2x2, are positive definite
in order to obtain a convex cost function. The closed
loop stability is guaranteed by introducing P ∈ R3x3

and χ which represent the terminal set and the terminal
constraint, respectively. Both are computed following the
design presented in Alcala et al. (2019). Note that the
time discretization is embedded inside the identification
procedure such that the learned TS system is already in
discrete-time.

4.2 TS-MHE Design

For the vehicle presented in Section 2, vehicle lateral
velocity (vy) is an unmeasurable variable and a necessary
state to perform the closed-loop control of the vehicle.
In this paper, we solve the estimation problem using the
MHE approach. The aim of the MHE is to compute the
current dynamic states by means of running a constrained
optimization, using a set of past data and employing a
system model for computing the current state. At this
point, using the presented TS model in (11), we can run a
quadratic optimization similar than in TS-MPC algorithm
for estimating the current dynamic states as follows

min
X̂k

Jk =

0∑
i=−Hp

(
wTk+iQwk+i + sTk+iRsk+i

)
,

s.t. x̂k+i+1 =

Nv∑
j=1

µNj (ζk)(Aj x̂k+i +Bjuk+i + Cj)

+ wk+i

yk+i = Cx̂k+i + sk+i

X̂k ∈ Xd

∀i = −Hp, ..., 0 ,
(13)

that is solved online for

X̂k =


x̂k−Hp+1

x̂k−Hp+2

...
x̂k+1

 ∈ RHp×s , (14)

where Xd is the constraint region for the dynamic states
and its defined as Xd = {xk|Axxk = bx, xk ≥ 0}. Hp

stands for the past data horizon and s the number of
states. Matrices Q = QT ∈ R3x3 and R = RT ∈ R2x2,
are positive definite to generate a convex cost function
and w and s represent the error of estimation and the
process noise, respectively. State and input vectors are

x̂ = [ vx vy ω ]
T

and u = [ δ a ]
T

. Note that, unlike MPC
technique, MHE strategy performs an optimization taken
into account a window of past vehicle data.

5. RESULTS

The data-driven model identification carried out by the
proposed approach is used to learn a state-space TS
formulation of the real vehicle dynamics. In Figure 4,
the membership functions learned for each input after the
offline identification procedure are shown in the left side.

a

Fig. 4. Input-Output scheme for the vx sub-system case

These represent the fuzzy rules that will be used online
for obtaining the current state-space representation. Note
that, since the discretization time is embedded in the input
data of the learning procedure, the selection of a different
sampling time is not allowed.

The way of evaluating the MPC and MHE strategies
using the data-driven approach presented is through a
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simulation scenario. In this, a racing situation is proposed
where the autonomous scheme presented in Figure 3 is
simulated.

First, at every sampling period, i.e. 30 Hz, the racing
planner provides the references for the control strategy
such that the vehicle will have to behave in a racing driving
mode, what directly implies a more challenging control
problem. Then, the TS-MHE optimal problem presented
in (13) is solved for estimating the current vehicle vector
state using past vehicle measurements. The next step is to
instantiate the TS model matrices for the prediction stage
using the approach presented in Section 2. Note that, both
the planning evolution information as the previous optimal
prediction are used to achieve a good guess of the future
values of the scheduling vector ζ.

At this point, the quadratic optimal problem (12) is solved
using the estimated state variables and the references
coming from the trajectory planner. Once the optimal
control actions (δ and a) are computed they are applied to
the simulation vehicle presented in (1). As a consequence,
the vehicle change its state and this is measured by the
net of sensors. Besides, with the aim of adding more
realistic conditions to the problem, white Gaussian noise
magnitudes are added to measured states with zero mean
and covariances

Covx = 1× 10−6 , Coω = 4× 10−8 . (15)

Both TS-MPC and TS-MHE algorithms are coded in
MATLAB framework. Yalmip and GUROBI (Gurobi Op-
timization, 2015) are used for solving a quadratic opti-
mization problem and running on a DELL inspiron 15
(Intel core i7-8550U CPU @ 1.80GHzx8). In the controller,
the tuning aims to minimize the longitudinal and angular
velocity while computing smooth control actions. The di-
agonal terms of the weighting matrices in the cost function
and prediction horizon of (12), found by iterative tuning
until the desired performance is achieved, are

Q = 0.65 [ 0.4 10−6 0.6 ],

R = 0.35 [ 0.7 0.3 ],

Hp = 6 .

(16)

The TS-MPC input constraints are defined as

Au =

 1 0
−1 0
0 1
0 −1

 , bu =

 0.249
0.249

4
1

 , (17a)

A∆u =

 1 0
−1 0
0 1
0 −1

 , b∆u =

 0.05
0.05
0.5
0.5

 . (17b)

In the estimator, the tuning aims to minimize the process
noise while guessing the right value of vy by using the TS
model. The diagonal terms of the weighting matrices in the
cost function and past horizon of (13), found by iterative
tuning until the desired performance is achieved, are

Q = 0.5 [ 0.25 0.5 0.25 ],

R = 0.5 [ 0.5 0.5 ],

Hp = 10 .

(18)

The TS-MHE state region is defined in the polytope

Ax =


1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

 , bx =


2.7
−0.1
0.12
0.12
1.96
1.96

 . (19a)
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Fig. 5. Vehicle states throughout the simulation. Horizon-
tal red lines represent the upper and lower limits

Figure 5 shows both the reference and the response for
each one of the velocity variables. Note that, the vehicle
lateral velocity (vy) cannot be measured and hence, the
signal presented is the estimated one. It can be seen
that the controller is able to perfectly track the proposed
references although having little troubles when driving in
racing mode, i.e. after 85 seconds. Horizontal red lines
represent the polytope boundaries for each one of the
scheduling variables that in this approach coincide with
the state and input vehicle variables. Note that, this
limits are imposed in the learning stage by the maximum
and minimum values of the input signals, i.e. scheduling
variables.

In Figure 6, the optimal control actions are shown as
well as their discrete time variations which are the ones
minimized in the cost function of (12). Note that the
steering angle reaches the upper and lower limits at some
points while the rear wheel acceleration moves in a wider
range.

Finally, after observing a good tracking performance in
last figures, we present the elapsed time per iteration of
the TS-MPC in Figure 7. It can be seen that, using a
prediction horizon of 6 steps, the quadratic solver is able
to obtain an average of 4.8 ms. This is one of the most
remarkable results of this approach.

6. CONCLUSIONS

In this paper, a learning-based approach for identifying the
dynamics of the vehicle and formulating them as a TS rep-
resentation has been presented. Then, a TS-MPC strategy
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Fig. 6. Control actions and their time derivative variables
throughout the simulation. Horizontal red lines rep-
resent the upper and lower limits
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Fig. 7. Computational time required by the TS-MPC
throughout the simulation

has been proposed as the approach to solve autonomous
driving control problems under realistic conditions in real-
time. In addition, using racing-based references provided
by an external planner the controller makes the vehicle
to perform in racing mode. The control strategy has been
tested in simulation showing high performance potential
in both reference tracking and computational time. How-
ever, this approach share the limitation of learning-based
procedures where you can only do what you learn.
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