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Abstract: Integrated assessment modelling of climate change aims to provide quantitative
solutions to inform international climate policy by employing models where socio-economic and
climatic systems are integrated. Among these models, DICE (Dynamic Integrated Climate-
Economy), is used to perform cost-benefit analysis that returns as output the optimal
emission reduction pathway. The model makes some important assumptions: future socio-
economic and climate system evolution is deterministic and economic damages of climate
change are a quadratic function of the atmospheric temperature. In this study, propose
a multi-objective stochastic optimal control problem formulation of the DICE model in
order to account for stochastic disturbances and to align with physical targets posed by
international agreements on climate change mitigation. The solutions are control policies
that can handle stochastic disturbances outperforming the static inter-temporal optimization
approach traditionally adopted. Moreover, such control policies are able to deal with multiple
objectives making explicit the trade-offs between economic and environmental objectives.

Keywords: Climate change impact and adaptation measures; Environmental decision support
systems.

1. INTRODUCTION

Integrated assessment models (IAMs) of climate change
use both simulation and optimization to explore different
policies aimed at reducing future climate change impacts
on the coupled human-natural Earth system (Parson et al.,
1997; Kelly and Kolstad, 1999). Such quantitative results
are used to inform policy makers and the public debate
about the stakes involved in the decision making process
(Weyant, 2017). Optimization models traditionally formu-
late cost-benefit analysis as a static optimization problem
under deterministic conditions and include uncertainty
considerations only a posteriori via sensitivity analysis
(Crost and Traeger, 2013).
Nonetheless, many uncertainties involved in both socio-
economic and climatic system call for an adaptive and
target based approach (Allen and Frame, 2007; Farmer
et al., 2015). For this reason, the problem has already
been framed under the optimal control perspective using
dynamic programming (Bahn et al., 2008; Webster et al.,
2012; Lontzek et al., 2015; Lemoine and Traeger, 2016) and
model predictive control (Weller et al., 2015; Hafeez et al.,
2016, 2017; Faulwasser et al., 2018). For a complete review
of optimal control practice in the context of integrated
assessment modelling of climate change see Kellett et al.
(2019).
Yet, to our knowledge, stochastic disturbances have been

considered in the problem either as output noise measure-
ment (Weller et al., 2015), implicitly trusting the equations
of the model, or as binary stochastic jumps which result
in alternative model trajectories (Lontzek et al., 2015).
In addition to that, the 2◦C threshold has been identified
as crucial in order to avoid triggering cascading tipping
points resulting in abrupt and catastrophic changes for
the Earth system (IPCC, 2018; Steffen et al., 2018). With
the Paris Agreement (UNFCC, 2015), many countries
agreed upon reducing GHGs emissions to keep the average
global temperature increase with respect to pre-industrial
temperatures well below 2◦C. Nonetheless, many IAMs
optimal policies still result in overshooting this temper-
ature threshold (Nordhaus, 2017). This points out that
economic analysis should be integrated with targets on
the climate system. Multi-objective optimization has been
used to handle the conflicting objectives in this context
by Garner et al. (2016) but not yet applied together with
optimal control techniques.
For the above reasons, we extend the well known DICE
model formulating a multi-objective stochastic optimal
control problem including a stochastic disturbance on the
atmospheric temperature transition equation and intro-
ducing a second objective, i.e. the sum of atmospheric
temperatures over the horizon, which is used as a proxy to
minimize climate change.
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2. BACKGROUND: DICE MODEL DESCRIPTION

The DICE (Dynamic Integrated Climate Economy) model
(Nordhaus, 1992, 2017) is an optimization model whose
aim is to maximize economic welfare of the coupled
climate-economy system over a predefined time horizon.
It was used to estimate the social cost of carbon (SCC)
(IAWG, 2013), value that should be adopted as a carbon
tax to internalize the economic damages produced by CO2

emissions, the only GHG explicitly modelled in DICE.
DICE is composed by three interconnected components:
carbon cycle, temperature and economy. The dynamical
system described in the model has six state variables: Mt,
i.e. the carbon masses of the three reservoirs used to model
the carbon cycle, Tt, the temperatures in the two boxes
used to model temperature dynamics, and Kt, the capital
stock in the economy.
In order to fully describe the coupled climate-economy
system, the model relies also on external input variables
whose trajectory is exogenously given. These are: total
factor productivity At, population Lt, carbon intensity of
the economy σt, backstop technology cost θ1

t , forcing due
to other GHGs FEXt and natural CO2 emissions Elandt .
The decision variables (or control variables) are two: the
emission control µt (i.e. the fraction of reduced emissions
with respect to a business-as-usual scenario) and the gross
savings rate st (i.e. the fraction of world GDP that is
reinvested in the economy). In its current version (DICE-
2016R), the model adopts a 5-year time step and an
horizon covering years from 2015 to 2515.
Using these variables, the dynamics of the model evolve
according to the following equations:

xt+1 = f(xt,ut,wt) (1a)

{wt}t=0,...,H−1 given (1b)

x0 given (1c)

t = 0, ...,H − 1 (1d)

xt =
[
MAT
t MUP

t MLO
t TAt TOt Kt

]
∈X (1e)

ut = [µt st] ∈ U (1f)

wt =
[
At Lt σt θ

1
t F

EX
t Elandt

]
∈W (1g)

where xt, ut and wt are respectively the state, control
and exogenous input variables, f(·) represents the state
transition function, t is the time index, and H is the
length of the horizon. X, U , W are the set of admissible
values for state, control and exogenous input variables
respectively.
In the following, we shortly describe the endogenous dy-
namics of the model. For a more detailed description of the
model and of the exogenous variables trajectories, please
refer to Nordhaus and Sztorc (2013).

2.1 Carbon cycle

The carbon cycle is described by a three-reservoir model.
The three reservoirs correspond to atmosphere, upper
ocean and biosphere, and deep ocean. The atmospheric
carbon reservoir has an additional input, CO2 emissions,
which are described in the economy component.
The transition equation for the carbon component is the
following:

Mt+1 = ΦM ∗Mt + [Et∆t/3.666 0 0]
T

(2a)

Mt =
[
MAT
t MUP

t MLO
t

]T
(2b)

ΦM =

[
1− φ12 φ12φ1 0
φ12 1− φ12φ1 − φ23 φ23φ2

0 φ23 1− φ23φ2

]
(2c)

where Mt [GtC] is the vector containing the three carbon
mass reservoirs (MAT

t atmospheric, MUP
t upper ocean

and biosphere, MLO
t deep ocean), ΦM is the transition

coefficients matrix, Et [GtCO2] are CO2 emissions, ∆t [y]
is the time step and the factor 3.666 converts [GtCO2] into
[GtC].

2.2 Temperature

As for the temperature component, a two-box model
describes atmospheric and ocean temperature dynamics
that evolve according to the following equations:

Tt+1 = ΦT ∗Tt + [ξ1Ft 0]
T

(3a)

Tt =
[
TAt TOt

]T
(3b)

ΦT =

[
β11 β12

β21 β22

]
(3c)

where Tt [◦C] is the vector containing atmospheric and
ocean temperatures (TAt and TOt respectively), ΦT is the
transition coefficients matrix. Ft [W/m2] is the radiative
forcing and is computed as follows:

Ft = η log2
(1−φ12)MAT

t +φ12φ1M
UP
t +Et∆t/3.666

MAT
1750

+ FEXt

(3d)
where MAT

1750 [GtC] is the mass of carbon in the atmosphere
in year 1750 and FEXt [W/m2] is radiative forcing due to
other greenhouse gases, exogenously given.

2.3 Economy

The economy is modelled according to the Solow’s neo-
classical growth theory:

Yt = At(Kt)
γ(Lt)

1−γ (4a)

where Yt [trillion 2005 USD] is the economic output or
gross world product, At [−] is the total factor productivity
(exogenous variable), Kt [trillion 2005 USD] is the capital
stock and Lt [billions people] is the population (exogenous
variable).
CO2 emissions can be computed from economic output
based on the following:

Et = σtYt(1− µt) + Elandt (4b)

where total emissions Et [GtCO2] are the sum of nat-
ural emissions Elandt [GtCO2] and industrial emissions.
The latter are computed based on carbon intensity σt
[GtCO2/trillion 2005 USD], which is an exogenous vari-
able, and the emission control µt [−], which is a control
variable.
The emissions control comes at a cost which, together with
the economic damages due to climate change, reduces the
economic output as follows:

Y nett = Yt[1− a1Tt − a2(Tt)
2 − θ1

t (µt)
θ2 ] (4c)

where Y nett [trillion 2005 USD] is the net economic out-
put, a1 and a2 are parameters of the quadratic function
describing climate damages on the economy, θ1

t and θ2 are
parameters of the abatement cost function, exogenously
given.
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Last, the capital stock is the only endogenous state vari-
able for the economic component of the model and it
evolves according to the perpetual inventory equation:

Kt+1 = (1− δk)∆tKt + stY
net
t (4d)

where δk [−]is the depreciation rate of capital and st [−] is
the percentage of economic net output which is reinvested
in the capital stock, i.e. the savings rate which is a control
variable.

2.4 Original problem formulation

In the original DICE model the optimization problem is
formulated as follows:

max
{µt,st}t=0,...,H−1

Je (5a)

s.t. Eq. 1 (5b)

0 < µt <1 (5c)

0 < st <1 (5d)

where the objective function to be maximized is the
economic welfare, a function of the economic utility:

Je =

H−1∑
t=0

Ut
(1 + ρ)t

(6a)

Ut = Lt

[
(

(1−st)Y net
t

Lt
)1−α − 1

1− a
− 1

]
(6b)

where Ut is the utility, α is the elasticity of the marginal
utility of consumption, ρ is the pure rate of social time
preference, which provides the welfare weights on the util-
ities of different generations. The solution of the problem
defined in Eq. 5 yields the optimal sequence of emissions
control and savings rate.

3. PROBLEM FORMULATION

Equation 5 defines a single-objective deterministic non
linear programming problem which is traditionally solved
using static inter-temporal optimization under the hypoth-
esis of perfect foresight. These solutions are not adaptive
and yield the optimum objective value only in the reference
scenario considered during the optimization.

3.1 Introducing multiple objectives

As discussed in the introduction, in order to overcome the
limitations posed by a single-objective problem formula-
tion, we propose to introduce the following objective:

Jc =

h∑
t=0

TAt (7)

Indeed, this objective aims at minimizing the integral of
temperatures over the whole horizon, which is in line with
the goal of staying well below 2◦C aiming for 1.5◦C.
By introducing a second objective we align economic
objectives with agreements taken on the temperature goal
and explore the trade-offs between the cost-benefit analysis
and the climatic objective.

3.2 Introducing stochastic disturbances

Many uncertain parameters affect the model under exami-
nation, both on the socio-economic and on the climatic side
(Butler et al., 2014; Gillingham et al., 2018). In the context
of this work, we focus on the physical system only and

introduce an additive stochastic disturbance εT
A

t+1 modeled
as a white noise in the atmospheric temperature transi-
tion equation. In the following, we refer to atmospheric
temperature as its increase with respect to pre-industrial
temperature (IPCC, 2018).
First, we simulate the original DICE temperature model
(both atmospheric and ocean components, with coeffi-
cients adapted to be used with an annual time step)
using observed forcing obtained from the RCP database
(Meinshausen et al., 2011) and compare atmospheric tem-
perature with the average global temperature from the
HadCRUT4 dataset (Morice et al., 2012) (see Fig. 1).

Fig. 1. Atmospheric temperature as simulated by DICE
temperature model under historical radiative forcing
and historical observations (HadCRUT4).

The model is able to capture the average behavior of the
average global temperature but the residuals time series
{ηt}t=1850,...,2018, computed as:

ηt = THadCRUT4
t − TAt (8a)

is correlated and its mean is significantly different from
zero. Since a process noise has to be identified, we can
see the time series of residuals {ηt}t=1850,...,2018 as the
realization of an AR(1) process:

ηt+1 = βy11ηt + εT
A

t+1 (8b)

Therefore, differencing the residuals time series using the
auto-regressive coefficient βy11, i.e. the annual time-step
equivalent of β11 in Eq. 3, we obtain the time series

{εTA

t }t=1851,...,2018, whose components are approximately
uncorrelated and normally distributed as shown in Fig. 2.

The temperature model showed in Eq. 3 is modified
accordingly:

Tt+1 = ΦT ∗Tt + [ξ1Ft 0]
T

+
[
εT

A

t+1 0
]T

(9a)

εT
A

t+1 ∼ N(0, σ2
TA) (9b)
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Fig. 2. Residuals of auto-regressive differentiation: time
series (top panel); auto-correlation (middle panel);
KDE probability density estimation, normal distribu-
tion inferred from data and histogram (bottom panel).

where the variance of the time series {εTA

t }t=1851,...,2018

is used as an estimate for σ2
TA , which is set equal to

0.01284 [(◦C)2]. The derived stochastic temperature model
is demonstrated over the different historical and future
forcing derived from the RCPs in Fig. 3.

Fig. 3. Stochastic temperature model simulations under
historical and future forcing of the four RCPs.

3.3 Multi-objective stochastic optimal control problem

The multi-objective stochastic optimal control problem
can be formulated as follows:

min
p

E
{εt}t=1,...,H

| − Je Jc| (10a)

s.t. Eq. 1 (10b)

ut = p(t,xt) (10c)

ut ∈ U(xt) (10d)

εt+1 ∼ φt(·) (10e)

|µt+1 − µt| < 0.2 (10f)

|st+1 − st| < 0.1 (10g)

µ0 = 0.039 (10h)

s0 = 0.258 (10i)

where the uncertainty is filtered using the expected value
operator over the different objectives realizations, Eq. 1
has been updated to consider the stochastic temperature
model in Eq. 9, p(·) is the control policy, U(xt) is the
set of admissible control variables, φt(·) is the stochastic
disturbance probability density function.
Last, additional constraints on the control variables are
added introducing Eqqs. 10f - 10i for control regularization
and initialization purposes.

3.4 Evolutionary Multi-Objective Direct Policy Search

In order to solve the problem defined in Eq. 10, we use
the Evolutionary Multi Objective Direct Policy Search
(EMODPS) method (Giuliani et al., 2016). EMODPS is
a simulation-based-optimization algorithm that optimizes
the parameters of a control policy defined as a non-linear
approximating network using the self-adaptive evolution-
ary algorithm Borg MOEA (Hadka and Reed, 2013). In-
deed, EMODPS was proved to handle successfully nonlin-
ear multi-objective optimal control problems, as the one
examined in this case, by overcoming the need for linear
systems hypothesis and scaling well with respect to the
introduction of multiple objectives (Giuliani et al., 2018).
The EMODPS algorithm is coupled with the CDICE
model (Garner et al., 2016) as implemented by Lamon-
tagne et al. (2019) to replicate the original DICE model,
that allows simulating open-loop sequences of control vari-
ables. The model has been modified in order to determine
the control at each time step by using closed-loop control
policies which map state observations into control vari-
ables.

4. RESULTS

The performance of the solutions obtained for the problem
defined in Eq. 10 using control policies is shown in Fig. 4
and compared with the optimal solution of the problem
defined in Eq. 5 under the same stochastic disturbance.
Along the horizontal axis the value of the climatic ob-
jective can be read while on the vertical axis the eco-
nomic utility is reported. Since our aim is to maximize
economic utility and minimize the sum of atmospheric
temperature over the horizon, the ideal solution would be
in the top left corner. As an additional information, since
it strongly correlates with the temperature objective, the
average atmospheric temperature reached at year 2100 is
reported for each solution using a color scale from green
(low temperature) to red (high temperature).
First, it is easy to notice that the static optimization
solution is dominated by all control policy solutions that
achieve better economic and climatic performance. Indeed,
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Fig. 4. Solutions of the multi-objective stochastic opti-
mal control problem. The solution obtained via static
optimization is reported too. Scores obtained in cal-
ibration and validation over 10000 simulations are
shown. Additionally, the color bar shows the average
atmospheric temperature at 2100.

the best control policy with respect to the economic ob-
jectives is able to improve the economic utility while com-
mitting to less warm temperature by 0.2◦C at 2100 and
in the future. This proves that under stochastic conditions
static optimization is outperformed by closed-loop control
policies that can better deal with stochastic disturbances
(Bennett, 1996).
In addition to that, the Pareto front exhibits a strong
trade-off between the objectives, especially when we want
to achieve very low temperatures. This is in line with
the expectation that a strong reduction of temperatures
implies high abatement costs resulting in a substantial
departure from a purely economic analysis.
Now we will focus on the trajectories of atmospheric
temperature and control variables for the control policy
solution marked with the letter A in Fig. 4. This solu-
tion can substantially improve the economic utility with
respect to the static optimization solution while substan-
tially improving the temperature objective reaching an
average 2.5◦C temperature increase with respect to pre-
industrial levels.
For example, looking at this policy trajectories in Fig.
5, when temperatures are higher than expected, emission
control increases in order to make the effort more effective
in reducing temperature increase in the long term. On the
other hand, if temperature does not increase as expected,
there is more space to spread the abatement effort over
time. This happens from 2040 on as until that time a
strong increase in reduction is profitable under the cost-
benefit perspective too and all the solutions propose the
same level of emission control until 2035.
Additionally, the role played by the savings rate is also
relevant, even tough this is usually not even optimized but
supposed constant. When the temperature is lower than
average, since climate damages are low and abatement
effort increases slowly, more economic output is available
to gain some extra consumption and the savings rate
decreases accordingly. In the opposite case, when tem-

peratures are higher than expected, the economy is more
affected and emission control has to increase rapidly lead-
ing to higher costs. Nevertheless, investments (i.e. savings
rate) have to increase in order to bring economic output
and capital stock closer to their expected trajectories at
the next step. This reduces consumption in the short term
but ensures that at next step enough capital is available to
eventually increase emissions control, hedge against future
climate damages and guarantee future consumption.

Fig. 5. Trajectories for the control policy solution attaining
similar economic objective value of static optimiza-
tion solution. Atmospheric temperature (top panel);
emission control (middle panel); savings rate (bottom
panel). Dashed lines display five different realizations
of atmospheric temperature and corresponding con-
trol variables. The solid red line represents the average
over 50 realizations.

5. CONCLUSION

In this work, we reformulated the DICE integrated assess-
ment model as a multi-objective stochastic optimal control
problem by: (i) adding stochastic disturbances on atmo-
spheric temperature transition equation; (ii) introducing
an objective on the physical climate system. The solution
of the problem provides a set of Pareto-optimal control
policies that outperform the standard static optimization
approach and provide new perspective on the integration
of standard cost-benefit analysis with environmental tar-
gets. Further research will focus on the introduction of
other stochastic disturbances, that are especially needed in
the economic component (Gillingham et al., 2018; Farmer
et al., 2015). We also recognize that the constraints added
on the control variables (Eqqs. 10f-10g) limit significantly
the chance of reaching a 2◦C target and we plan to further
verify those assumptions too. Moreover, the employment
of climatic models with a higher level of detail than the
one considered in the original DICE model, might allow
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exploring solutions which are hidden and in line with the
2◦C long term temperature goal.
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