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Abstract: We show preliminary results addressing the problem of resource allocation in bacteria
in the continuous bioreactor framework. We propose a coarse-grained self-replicator dynamical
model that accounts for the microbial population growth inside a continuous bioreactor, and
we study its asymptotic behavior. This is done through a dynamical systems analysis approach,
in order to provide conditions for the persistence of the bacterial population. We then study
the two most relevant cases of steady-state production in this scheme: 1) biomass production,
classical in high-tech industrial processes as well as in research environments; and 2) metabolite
production through the introduction of a heterologous metabolic pathway. Both problems are
explored in terms of the internal allocation control—which can be externally disrupted—and
the constant volumetric flow of the bioreactor; and analyzed through a numerical approach.
The resulting two-dimensional optimization problem is defined in terms of Michaelis-Menten
kinetics using the parameter values of previous works, and taking into account the constraints
for the existence of the equilibrium of interest.
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1. INTRODUCTION

Microorganisms continuously face environmental changes
in nature, and thus they have evolved to rapidly adapt
their physiology to cope with this unsteadiness. This is
achieved through reorganization of the gene expression
machinery, by dynamically allocating resources to differ-
ent cellular functions. Such natural allocation mechanisms
have been recently addressed in Giordano et al. (2016),
where the authors explored, among other things, how
bacterial populations respond to changes on the nutrient
concentration of the medium. This was done through the
so-called coarse-grained self-replicator models, widely used
in bacterial growth representations for their simplicity
and their capacity to reproduce observed experimental
behaviors, as shown in Koch (1988). These studies have
triggered interesting questions from the biotechnological
point of view, such as how to re-engineer the naturally-
evolved behaviors of the cell in order to attain specific
productivity objectives. Such is the subject matter ad-
dressed in Yegorov et al. (2018), Cinquemani et al. (2019)
and Yabo et al. (2019), where they considered the problem
of optimally producing a certain metabolite or protein of
interest in a engineered strain of Escherichia coli. The
latter is done by introducing the bacterial growth switch
designed in Izard et al. (2015), that allows to externally
modify the natural process of resource allocation so as to
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channel resources into the production of this compound of
interest. As exhibited in Huo et al. (2019), the importance
of such compounds arises from the potential of efficiently
and sustainably producing antibiotics, antitumor agents,
insecticides and immunosuppressive agents, among others.
In bacteria, the production of these metabolites draws
resources from the native pathways of the host cell used for
synthesizing biomass, and therefore there is always a com-
promise between these two objectives. One approach is to
model this trade-off through different cost functions, thus
obtaining multi-objective optimization problems. This is
done in Otero-Muras et al. (2019), where the authors seek
to maximize the production of a metabolite of interest
while minimizing the genetic burden caused by pathway
expression. In the work of Yegorov et al. (2018), the main
trade-offs behind the process are encompassed within a
single decision parameter, which considerably reduces the
complexity of the optimization problem. Based on these
results, we address in this work a different production
scheme: the Continuous Stirred-Tank Reactor (CSTR).
While resource allocation in bacteria has been extensively
studied in constant environments, both in steady-state and
in dynamic conditions (Molenaar et al. (2009)), how this
goes in continuous reactors is not immediate, as a feedback
occurs from the physiology of the cell to the environmental
conditions (Wortel et al. (2016)).

In this work, we show preliminary results addressing the
problem of resource allocation in bacteria in the CSTR
framework. We propose a coarse-grained self-replicator
dynamical model that accounts for the microbial pop-
ulation growth inside a continuous bioreactor, and we
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study its asymptotic behavior through a dynamical sys-
tems analysis approach, in order to provide conditions for
the persistence of the bacterial population. Then, we study
the two most relevant cases of steady-state production
in CSTRs: 1) biomass production, classical in high-tech
industrial processes as well as in research environments;
and 2) metabolite production, through the introduction
of a heterologous metabolic pathway. Both problems are
explored in terms of the internal allocation control—which
can be externally disrupted—and the constant volumetric
flow of the bioreactor; and analyzed through a numeri-
cal approach. The resulting two-dimensional optimization
problem is defined in terms of Michaelis-Menten kinetics
with the parameter values of Giordano et al. (2016), and
taking into account the constraints for the existence of the
equilibrium of interest.

2. MODEL DEFINITION

As previously stated, we formulate the problem of re-
source allocation in bacteria through coarse-grained self-
replicator models. We consider a growing bacterial popu-
lation in a CSTR of volume Vext. The bacterial population
is represented by a self-replicating system composed of
the gene expression machinery R (RNA polymerase, ribo-
somes...) and the metabolic machinery M (transporters,
enzymes...), both responsible of the cell growth. This
simplified scheme is based on the assumption that the
individual cells of the growing culture share the same
macromolecular composition. Additionally, we consider
the extension introduced in Yegorov et al. (2019): an
heterologous, artificially engineered pathway for the pro-
duction of a compound of interest X (Figure 1).

VM

(1-α) VR

α VR
VX

I

M

R

P

X

S

Fig. 1. Extended coarse-grained self replicator model in-
troduced in Yegorov et al. (2019), where the external
control I is able to influence how the precursors P are
distributed between the metabolic machinery M and
the gene expression machinery R.

The model describes essentially three chemical macroreac-
tions

S
VM−−→ P,

P
VR−−→ αR + (1-α) M,

P
VX−−→ X.

The first reaction—catalyzed by M—transforms the exter-
nal substrate S into precursor metabolites P at rate VM .
Then, the precursors are converted into macromolecules
R and M in a second reaction catalyzed by R, at rate
VR. The product X is also transformed from precursors
with rate VX , and is catalyzed by M . The natural resource
allocation choice is modelled by the parameter α ∈ [0, 1],
and represents the proportion of precursor allocated to
the gene expression machinery, while 1 − α indicates the
proportion allocated to the metabolic machinery. All mass
quantities S, P , M , R and X are described in grams,
and the rates in grams per hour. As is classical in CSTR
bioreactors, a constant volumetric flow rate F [L h−1]
generates both an inflow of fresh medium rich in substrate,
and an outflow of biomass and produced metabolites (see
Smith and Waltman (1995)). In order to externally control
the cell allocation strategy, we include in our scheme the
growth switch described in Izard et al. (2015). This method
has been developed in a certain E. coli strain, by reengi-
neering the transcriptional control of the expression of
RNA polymerase, a key component of the gene expression
machinery. Thus, by varying the inducer concentration in
the medium, it is possible to externally disrupt the natural
allocation α so as to channel resources into the production
of the compound X instead of into the production of
biomass. This mechanism is modeled as u(t) = I(t)α(t),
u ∈ [0, 1], where I is the external control and α the natural
allocation mechanism studied in Giordano et al. (2016).
While these two control functions are supposed to act
independently, we are interested in obtaining the optimal
combination of them. Thus, in this work, we restrict the
analysis to calculate the control input u, without decou-
pling the individual controls. Then, the time evolution of
the mass of each component can be written as

Ṡ = VSin − VM − VSout ,

Ṗ = VM − VR − VX − VPout ,

Ṁ = (1− u)VR − VMout ,

Ṙ = uVR − VRout ,

Ẋ = VX − VXout ,

where the inflow/outflow rates are defined as VSout = DS,
VPout = DP , VMout = DM , VRout = DR, VXout = DX,
VSin = Fsin, being sin [g L−1] the nutrient concentration
of the inflow of fresh medium, and D [h−1] the dilution rate
given by the relation F/Vext. Under the assumption that
the cytoplasmic density of the cells is constant throughout
the culture, we define the volume of the cell population
V [L] as V .

= β(M + R), where β [L g−1] corresponds to
the inverse of the cytoplasmic density. This definition is
based on the experiments of Bremer et al. (1996) showing
that macromolecules explain most of the biomass in mi-
crobial cells. Then, for the sake of convenience, quantities
of the system are expressed as concentrations, p

.
= P/V,

r
.
= R/V, m

.
= M/V, s

.
= S/Vext, x

.
= X/Vext, where

p, r and m [g L−1] are intracellular concentrations—
taken with respect to the cell population volume—of pre-
cursor metabolites, ribosomes (and other components of
the gene expression machinery) and metabolic enzymes
respectively; and s and x [g L−1] the extracellular concen-
trations of substrate and metabolite with respect to the
volume of the bioreactor Vext [L]. As a result, the sum
of concentrations m + r is equal to the constant 1/β. We
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then define the growth rate of the bacterial population µ
[h−1] as the relative variation of cell volume V̇/V without
considering the effect of the volumetric flow rate (i.e.
setting F = 0). Replacing with concentrations leads to
the system

S :



ṡ = D(sin − s)− vM (s,m)
V
Vext

,

ṗ = vM (s,m)− vR(p, r)− vX(p,m)− µ(p, r)p,

ṙ = u vR(p, r)− µ(p, r)r,

ṁ = (1− u) vR(p, r)− µ(p, r)m,

ẋ = vX(p,m)
V
Vext

−Dx,

V̇ = (µ(p, r)−D)V,

where vM (s,m), vR(p, r) and vX(p,m) [g L−1 h−1] are
the mass fluxes per unit volume obtained from dividing
the rates VM , VR and VX by V, and are now function of
the concentrations of system S. The growth rate becomes

µ(p, r)
.
=
V̇
V

∣∣∣∣∣
F=0

=
Ṁ + Ṙ

M +R

∣∣∣∣∣
F=0

= βvR(p, r).

As is classical in biology, we will make some assumptions
on the synthesis rates vM (s,m), vR(p, r) and vX(p,m) that
describe the macroreactions:

Assumption 2.1. Functions vM (s,m), vR(p, r) and
vX(p,m) meet vi(y, z) : R2 → R+, continuously differ-
entiable w.r.t. both variables, vi(0, z) = vi(y, 0) = 0,
vi(·) strictly monotonically increasing w.r.t. both variables:
∂
∂yvi(y, z) > 0,∀(y, z) ∈ R2

>0, ∂
∂z vi(y, z) > 0,∀(y, z) ∈

R2
>0, vi(·) bounded w.r.t. y: limy→∞ vi(y, z) = vi,max(z).

Assumption 2.1 encompasses all monotone increasing ki-
netics models, such as Michaelis-Menten. To simplify the
system, we propose the following change of variables: ŝ =
βs, p̂ = βp, r̂ = βr, m̂ = βm, x̂ = βx and V̂ = V/Vext. The
same is done for the synthesis rates v̂M = βvM , v̂R = βvR
and v̂X = βvX and for the parameter ŝin = βsin. Then,
dropping all hats yields system

S1 :



ṡ = D(sin − s)− vM (s, 1− r)V,
ṗ = vM (s, 1− r)− vX(p, 1− r)− µ(p, r)(p+ 1),

ṙ = (u− r)µ(p, r),

ẋ = vX(p, 1− r)V −Dx,
V̇ = (µ(p, r)−D)V,

where the dynamical expression of m has been omitted
since, as already shown, it can be expressed as m = 1− r.
In this first work, we will focus on a particular kind of
systems where the synthesis rate related to the metabolite
production depends on the growth rate:

Assumption 2.2. For r ∈ (0, 1), the metabolite pro-
duction rate vX(p, 1 − r) can be expressed in terms of
macromolecule synthesis rate vR(p, r) as

vX(p, 1− r) = c(r)vR(p, r),

being c(r) : (0, 1) → R+ a positive continuously differen-
tiable function.

As previously described, vX is catalyzed by m, while vR (=
µ) is catalyzed by r, which means that the balance between
M and R in the cell population will determine whether
the resources are being allocated to biomass growth or to
metabolite production. This trade-off is modeled through
the function c(r), and the fact that it does not depend
on p represents the assumption that the cell has the
same affinity to produce both biomass and metabolite
from the precursors P—even if the reactions consume
the precursors in different proportions. In the particular
case of Michaelis-Menten kinetics, such affinity is usually
represented in the half-saturation constant, as pointed out
in Johnson and Goody (2011). Indeed, one can see that, for
fixed values of r, both functions are simply proportional
for every value of p. Using Assumption 2.2, S1 becomes

S1 :



ṡ = D(sin − s)− vM (s, 1− r)V,
ṗ = vM (s, 1− r)− µ(p, r)(p+ c(r) + 1),

ṙ = (u− r)µ(p, r),

ẋ = c(r)µ(p, r)V −Dx,
V̇ = (µ(p, r)−D)V.

3. ASYMPTOTIC BEHAVIOR

In order to study the steady-state behavior of the system,
we fix u(t) = ū ∈ (0, 1) constant. We will start the analysis
of system S1 by defining its region of operation.

Lemma 3.1. The set, Γ =
{

(s, p, r, x,V) ∈ R5 :
sin ≥ s > 0, p > 0, x ≥ 0, 1 ≥ r ≥ 0, V ≥ 0} is positively
invariant for the initial value problem.

The lemma can be verified by analyzing the boundaries of
Γ, which is here omitted for the sake of brevity. Moreover,
we will suppose the following initial conditions for the
initial value problem:

sin ≥ s(0) ≥ 0, p(0) ≥ 0, r(0) > 0,
m(0) = 1− r(0) ≥ 0, x(0) ≥ 0, V(0) > 0.

(1)

3.2 Mass conservation

System S1 can be rewritten as{
ϕ̇ = Nvi − vµ µ(p, r) +D (sinvin − vout) ,

V̇ = (µ(p, r)−D)V,
where ϕ

.
= [s, p, r,m, x]T is the state vector of concentra-

tions in the system, N the stoichiometry matrix of the
internal reactions, vi the vector of internal fluxes, vin and
vout the vectors of inflows and outflows of the system
respectively—associated to the external variables—and vµ
the vector of dilution due to variation of the bacterial
volume—associated to the internal variables—defined as

N
.
=


−V 0 0
1 −1 −1
0 u 0
0 1− u 0
0 0 V

 ,
vin

.
= [1, 0, 0, 0, 0]T ,

vi
.
=

[
vM (s, 1− r)
vR(p, r)

vX(p, 1− r)

]
,

vµ
.
= diag(ϕ) [0, 1, 1, 1, 0]T ,

vout
.
= diag(ϕ) [1, 0, 0, 0, 1]T .

By studying the left null space of N , it can be seen that
there are two mass conservation laws related to the total
mass inside the bioreactor.
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Definition 3.3. We define the quantities

w1
.
= s+ (p+m+ r)V + x = s+ (p+ 1)V + x,

w2
.
= s+

(
p+

r

ū

)
V + x.

These quantities tend asymptotically to wi = sin as
t → ∞, since they obey the dynamical equations ẇi =
D (sin − wi) for i = 1, 2 which simplifies the analysis of
the asymptotic behavior of the system.

Lemma 3.4. The ω-limit set of any solution of system S1

lies in the hyperplanes

Ω1
.
=
{

(s, p, r, x,V) ∈ R5 : s+ (p+ 1)V + x = sin
}
,

Ω2
.
=
{

(s, p, r, x,V) ∈ R5 : s+
(
p+

r

ū

)
V + x = sin

}
.

Further on, we will use Lemma 3.4 to analyze system S1

through its limiting system.

3.5 Limiting systems

Lemma 3.4 involves two mass conservation laws, so it can
be used to reduce subsystem S1 by two dimensions. We
will start by analyzing the asymptotic behavior of r: when
t→∞, w1 = w2, and then

s+ (p+ 1)V + x = s+
(
p+

r

ū

)
V + x ⇒ r = ū

meaning that, as t → ∞, r will converge to the value ū.
Additionally, we can express x = sin− s− (p+ 1)V and so
the limiting system of S1 becomes

S′1 :


ṡ = D(sin − s)− v̄M (s)V,

ṗ = v̄M (s)− µ̄(p)(p+ c̄+ 1),

V̇ = (µ̄(p)−D)V,

with flows v̄M (s)
.
= vM (s, 1 − ū), v̄R(p)

.
= vR(p, ū),

v̄X(p)
.
= vX(p, 1 − ū) and c̄

.
= c(ū). Convergence of the

limiting system S′1 to the original S1 will be addressed
later, after fully describing the asymptotic behavior of S′1.

3.6 Local stability

For notation purposes, we will start the analysis defining
the following function.

Definition 3.7. We define the function

f̄(p)
.
= v̄R(p) + v̄X(p) + µ̄(p)p = µ̄(p)(p+ c̄+ 1).

We note that f̄(p) > 0, f̄ ′(p) > 0,∀p ∈ Γ (positive and
monotonically increasing). Then, the local stability of the
system is given by the following lemma.

Proposition 3.8. System S′1 can admit two equilibria:
the interior equilibrium Ei

.
= (si, pi,Vi), and the washout

equilibrium Ew
.
= (sin, pw, 0) where

pi : {p ∈ R : µ̄(p) = D} , (2)

pw :
{
p ∈ R : f̄(p) = v̄M (sin)

}
, (3)

si :
{
s ∈ R : v̄M (s) = f̄(pi)

}
, (4)

Vi =
D(sin − si)
v̄M (si)

. (5)

Moreover, if values pi, pw and si exist, they are unique.

Proof. The uniqueness of pi in µ̄(p) = D comes from the
fact that µ̄(p) is strictly monotonically increasing w.r.t. p
and so, if there exist an intersection between µ̄(p) and D,
it should be unique. A similar argument can be used in
v̄M (s) = f̄(pi) and f̄(p) = v̄M (sin), where both functions
are also strictly monotonically increasing so, if there exist
an intersection between the functions and the constants,
it should be unique.

It is possible to find bounds on p by defining a time-
varying upper bound pup(t) with dynamical equation

˙pup ≤ v̄M (sin)−f̄(pup). In this case, pup converges towards
the equilibrium point p = pw that satisfies (3). Moreover,
the vector field at p = pw is null, and so a new invariant
set Γ′ ⊂ Γ can be defined as

Γ′ =
{

(s, p,V) ∈ R3 : sin ≥ s > 0, pw ≥ p > 0, V ≥ 0
}
.

To sum up, the local behavior of equilibria can be de-
scribed as follows:

• If µ̄(pw) ≥ D:
· Ei exists and is locally stable
· Ew exists and is locally unstable

• If µ̄(pw) < D:
· Ei does not exist
· Ew exists and is locally stable

where the details of the analysis are omitted due to lack
of space.

3.9 Global analysis

Using the theory of asymptotically autonomous systems
developed in Thieme (1992), it is possible to establish
that the limiting system S′1 has the same asymptotic
behavior as the full 5-dimensional system S1. However,
a thorough global stability analysis of the limiting system
S′1 is omitted in this work. Asymptotically autonomous
systems theory ensures that almost all trajectories of the
original system S1 converge to one of the asymptotically
stable rest points of the limiting system. As there is always
one stable equilibrium, it is straightforward to formalize
the latter.

Theorem 3.10. Every solution of system S1 with initial
conditions (1) will converge to

• The interior equilibrium Ei if it exists, and the
metabolite concentration to x = xi

.
= c̄Vi.

• The washout equilibrium Ew if Ei does not exist, and
the metabolite concentration to x = 0.

4. STATIC OPTIMIZATION PROBLEM

4.1 Biomass or product maximization

The static biomass maximization problem (BMP) can be
written as

(BMP ) :


maximize JV(ū, D)

.
= DV

subject to (2), (4), (5),

and 0 ≤ ū ≤ 1.
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Analogously, the product maximization problem can be
defined as

(PMP ) :


maximize Jx(ū, D)

.
= Dx

subject to (2), (4), (5),

and 0 ≤ ū ≤ 1.

4.2 Interior solution

As we are looking for the steady-states that maximize
each objective, we can immediately rule out the washout
equilibrium Ew as a potential solution since, as shown in
Lemmas 3.8 and 3.10, the point corresponds to V = 0
and x = 0. Therefore, the problem reduces to find the
equilibrium Ei in terms of the pair (D, ū) that maximizes
each objective. As a first step, we can state that the
optimal solution cannot belong to the boundary of the
equilibrium Ei.

Proposition 4.3. A solution of the static optimization
problems cannot belong to the boundary set

Θ
.
=
{

(ū, D) ∈ R2 : µ(pw, ū) = D
}
,

which corresponds to the set of equilibria Ei with maximal
growth rate.

Proof. Using (2), (4) and (5), it can be seen that on the
boundary µ(pw, ū) = D there is no bacterial population, as
si = sin, which means that Vi = xi = 0. Then, both costs
JV and Jx would vanish, which is readily not optimal.

We recall that in the case of constant environmental con-
ditions studied in Yegorov et al. (2018), describing fed-
batch cultivation, the solution for the static maximization
problem, both for biomass and metabolite production, cor-
responded to the steady-state with maximal growth rate.
As shown in Lemma 4.3, this is not the case in continuous
bioreactors, as the maximal growth rate lies within the
boundary set of existence of the interior equilibrium.

5. RESULTS

In order to further explore the solution of the static
optimization problems, we define the rates according to
Michaelis-Menten kinetics, and use the parameter values
of Giordano et al. (2016). Let us first recall that, at the
interior equilibrium, the growth rate µ(pi, ū) is equal to
D, as stated in (2). We illustrate the results in a similar
fashion both in Figures 2 and 3: the region of existence
of the interior equilibrium Ei is delimited by the set Θ
of maximum growth rate, and the different values of the
cost functions are depicted using a qualitative colormap to
highlight the regions closer to the optimal points. More-
over, the curves ūopt(D) show the optimal strategy for each
objective for every fixed value of D. We first solve the
biomass maximization objective, shown in Figure 2. The
solution is characterized by an allocation strategy that,
for all values of the growth rate, remains mainly geared
towards the synthesis of components of the gene expression
machinery R, as ū > 0.5 for all values of D. Moreover, the
optimal point turns out to have a fairly high growth rate
(≈ 85% of the maximal growth rate). For the product max-
imization case, shown in Figure 3, we see that, in contrast
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Boundary Θ
Di max
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0.46

Fig. 2. Results associated to (BMP) with JV = DV.

to the first case, the optimal strategy involves allocating as
much resources as possible into the metabolic machinery
M , independently of the growth rate, which is consistent
with the fact that the metabolic machinery catalyzes the
production of the metabolite X. It is interesting to note
that, in opposition to the previous case, the optimal point
involves a quite lower dilution rate D, thus resulting in
a continuous production at a growth rate of about 35%
of the maximal growth rate. This result might be found
counter-intuitive, as it is well established that increasing
the dilution rate in continuous reactors leads to an increase
in the production. We can attribute this particularity to
the trade-off between allocating resources to the metabolic
machinery and increasing the dilution rate, which is linked
to the maximum value of the function c(r). This same
effect can be further observed in Figure 4a, where we show
numerical results for the synthesis rates for each solution
of (BMP) and (PMP). Indeed, both precursor and biomass
synthesis rates are considerably diminished in order to
increase the production of the metabolite, which is to a
great extent due to this reduction of the dilution rate D in
the solution of (PMP). We see how this difference in the
internal resource distribution has an impact on the mass
quantities inside the bioreactor at steady-state—depicted
in Figure 4b—for each of the problems: while there is no
substantial difference in biomass M+R between solutions,
we can see that for the product maximization problem, the
amount of metabolite in the bioreactor corresponds to 5
times that of the biomass maximization problem.

6. DISCUSSION

Our scope in this work was to synthesize a compound of in-
terest by re-engineering the internal allocation mechanisms
of certain growing population of cells. We particularly
addressed this problem in the CSTR framework, where
it is possible to continuously produce such metabolite in
a steady-state regime. We tackled the problem through
a dynamical systems approach, by using a coarse-grained
whole-cell model contained inside a continuous bioreactor,
for which we gave conditions for the persistence of the
microbial population. Then, we compared the cases of
optimally producing biomass V, as well as a compound
of interest X, through a multi-variable optimization ap-
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Fig. 3. Results associated to (PMP) with Jx = Dx.
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(a) Synthesis rates magnitudes
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Fig. 4. Numerical results for both static problems.

proach in terms of the dilution rate of the bioreactor D,
and the internal allocation of the cell population. While
the details on how to alter the natural allocation process
through the external control are out of the scope of this
paper, we showed that the solutions for each problem differ
widely, both in the allocation strategy as well as in the
optimal microbial growth rate. These results are of great
interest to biotechnological applications, as they could help
enhancing productivity measures of certain bioprocesses
by channeling resources to specific cellular functions. Nu-
merous details were omitted in this first approach, such
as specifics of the local stability analysis, as well as the
details on the convergence of the limiting systems to the
original system. The work will be eventually extended with
an analysis regarding the impact of Assumption 2.2 on the
results, as well as the sensitivity of the strategies to the bi-
ological parameters, both analytically and experimentally.
According to our analysis, the results were robust to such
issues, but at this point a thorough study is required.
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