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Abstract: Observers are essential in artificial pancreas systems, either for states or disturbance
estimation. Kalman filters based on the Hovorka model are largely applied for this purpose.
However, simpler approaches can be used too. We intend to analyze whether the observer
structure, the applied model and the individualization of the model parameters affect the
estimation accuracy. We perform an in-silico comparison between two Kalman filters and a
sliding mode observer, as observer structures previously proposed in the field. All observers
are implemented in population and individualized versions of the Hovorka and the simpler
Identifiable Virtual Patient models. To tune the Kalman filters, a genetic algorithm based
framework was developed. The results indicate that the choice of the model has a larger effect
on the outcome than the choice of the observer structure. Finally, the observer based on the
Hovorka model does not always perform the most accurate estimation given the higher difficulty
during the identification of its parameters.

Keywords: type 1 diabetes, artificial pancreas, state and disturbance observers, Kalman filters,
sliding mode observers.

1. INTRODUCTION

Type 1 diabetes mellitus is a condition in which the
insulin-producing β-cells of the pancreas are destroyed
during an autoimmune reaction not known completely yet.
Due to the subsequent deficiency in insulin, exogenous
insulin injections are required to keep the balance of the
metabolic homeostasis. The automatic glucose regulation
– the so-called artificial pancreas (AP)– has been investi-
gated as an alternative to traditional basal-bolus therapies,
to improve the glucose control, while reducing the burden
for the patients. Unlike the glucose concentration that
can be measured in real-time, the unavailability of the
remaining state variables makes the use of observers a
must in AP. The applications of observers range from state
feedback control (Kovacs et al. (2019)) to insulin limitation
for hypoglycemia avoidance (Hajizadeh et al. (2018)) or
meal detection (Ramkissoon et al. (2018)).
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The design of Kalman filters (KF) using Hovorka’s model
in Hovorka et al. (2004) is well-accepted for state esti-
mation in AP (Bondia et al. (2018)). This research in-
tends to analyze if the complexity of both the Kalman-
type observer and the Hovorka model justify their wide
application compared to other simpler approaches, such as
the sliding mode observer based on the Identifiable Virtual
Patient model (IVP, Kanderian et al. (2009)) presented in
(Sala-Mira et al. (2019)). In this regard, an in-silico com-
parison is carried out in Section 3 in the UVA/PADOVA
simulator (Dalla Man et al. (2014)) to evaluate the dif-
ferences in terms of estimation error between three ob-
servers presented in Section 2 – Dual KF (DKF), Joint KF
(JKF) and the nonlinear sliding mode observer (NSMO) –
when they are designed with either the IVP model or the
Hovorka model. As an additional goal, the effect on the
observer accuracy of model individualization compared to
the use of average models is explored in this analysis. In
order to analyze all these aspects, we developed a genetic
algorithm based framework for parametric identification
and tuning of the KFs, where our goal was to provide
uniform conditions for both the models and the observers.
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2. METHODS

2.1 Model identification

To investigate the effect of model complexity on the per-
formance of observers, the Hovorka model in Hovorka
et al. (2004) was compared with the simpler IVP model
in Kanderian et al. (2009). Before the identification of
the models, the GenSSi software (Ligon et al. (2018))
was employed to perform the identifiability analysis. Both
models were locally structurally identifiable, if the plasma
insulin (Ip) was considered as a known signal, besides the
glucose and the insulin infusion. Moreover, the correspond-
ing carbohydrate absorption models were not included
during the identification of the models, since the observers
do not employ such information. All the parameters not
appearing in the absorption model were considered during
the identification of the IVP model: the EGP (endogenous
glucose production), GEZI (glucose effectiveness at zero
insulin), p2 (related to the delay in insulin action), CI

(insulin clearance), SI (insulin sensitivity) and the insulin
pharmacokinetics time constants τ1 and τ2. Given the large
number of parameters in the Hovorka model, a subset
of them was selected according to the global parameter
sensitivity analysis performed with the Elementary Effect
Test (Pianosi et al. (2015)). The selected parameters were:
VI (insulin distribution volume), VG (glucose distribu-
tion volume), k12 (transfer rate between glucose compart-
ments), tmaxI (time-to-maximum insulin absorption), ke
(fractional elimination rate of insulin) the constants kb1,
kb2, ka1 and ka2 defining the insulin sensitivity. The re-
maining parameters were set to the values in Hovorka et al.
(2004). The identification utilized the default settings of
the genetic algorithm in Matlab 2018b. The cost function
consisted of two terms: the sum of the normalized root-
mean-squared error (NRMSE) of the glucose measurement
(CGMS) and the Ip. The reference signals that were used
to compute these metrics, as well as the insulin infusion
and the rate of glucose appearance (Ra), were collected
from a 3-meal simulation of the average patient in the
UVA/Padova simulator (Dalla Man et al. (2014)).

To account for the inter-patient variability, in the next
stage, the most sensitive parameters of the previous mod-
els were individualized. Based on sensitivity analysis, the
SI and CI were selected for the IVP case, and ka1 and
ke for the Hovorka model. The selected parameters were
identified for the 10 adult patients in the academic version
of the UVA/PADOVA simulator using the same procedure
applied above.

2.2 Investigated observers

We have compared three observers, the first one was the
NSMO applied in (Sala-Mira et al. (2019)). This observer
allows a robust state estimation despite the presence of
matching disturbances if the discontinuous gain is larger
than the bound of the disturbance. Since the number
of outputs in this study coincides with the number of
disturbances, unmeasurable states are left in open loop
(Wu et al. (2012)). Moreover, the observer provides a
simple estimation of the disturbance based on a low pass
filter. To reduce the chattering phenomena, an implicit

Euler discretization was implemented (Sala-Mira et al.
(2019)).

Additionally, the JKF and DKF were both realized
(Haykin (2001)). Both of the KFs employed the discretized
quasi-Linear Parameter Varying state-space representa-
tion of the corresponding models (Gáspár et al. (2017)).
However, their discretization techniques are different, the
DKF uses exact discretization while the JKF uses Euler
method as described in Toth et al. (2010). The system ma-
trix augmented with the disturbance – which is considered
to be static – is non-invertible, hence exact discretization
cannot be applied in the JKF. Notable difference from
tuning point of view is in the Q covariance matrix. Adding
one parameter as a variable to be estimated increases the
dimension of the Q matrix by one in the JKF, which means
one more parameter to tune even if we take into account
only the main diagonal. For the parameter estimation, the
DKF has a separate Q covariance matrix and a λ forgetting
factor, resulting in two more variables to tune (for further
details see Haykin (2001)).

2.3 Kalman filter tuning

Two types of KFs, two models and three tuning scenarios
were considered in this study. This resulted in a total of
12 different tunings. Henceforth, we refer to the tuning
scenarios as “30Diag”, “30Ra” and “UVADiag” followed
by the corresponding abbreviation of the filter (DKF or
JKF) and model (IVP or Hovorka). The three tuning
scenarios are different in terms of parameter uncertainty,
structural difference and Q covariance matrix complexity.
Two configurations (“30Diag” and “30Ra”) had no struc-
tural mismatch between the model propagated by the ob-
server and the virtual patient. Dissimilarity in these cases
was achieved by applying fixed +30% variability in all
the model parameters. Based on the literature reviews of
Hovorka et al. (2002) and Kanderian et al. (2009) the 30%
variability in the model parameters are in physiologically
relevant ranges. The “30Diag” took into account every
element in the main diagonal of the Q matrix, the “30Ra”
only the elements corresponding to the blood glucose level
and to the Ra. The investigation was complemented by the
latter one in order to see the effect when the estimation of
the inner state variables converge to open-loop operation
estimating only the Ra. This KF setup resembles the oper-
ation of the applied NSMO in the sense that the unmeasur-
able state variables are estimated in open-loop in the slid-
ing mode observer. The third configuration (“UVADiag”)
includes structural mismatch between the model of the
observer and the virtual patient. The observers propagated
the average model (IVP or Hovorka) – their identification
process is described in Subsection 2.1 –, while the reference
was one specific patient of the UVA/PADOVA simulator.
The “UVADiag” setups utilized the full main diagonal of
the Q covariance matrix.

The basic idea behind the tuning of the KFs was to provide
uniform conditions and to minimize the effect of the human
factor. To this end, a tuning framework was developed.
The framework is fundamentally an optimization done
by the genetic algorithm of Matlab 2018b. During the
tuning process, the optimization horizon was a 24-hour-
long simulation with one meal, but we only considered the
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transients and neglected steady-states. The parameters to
tune – genes of an individual – were the elements in the
main diagonal of the Q covariance matrix. The number
of parameters in the optimization ranged between 2 and
10. The lower bounds of the parameters were set to zero.
The upper bounds were chosen by fixing each diagonal
element of Q to be the only nonzero element separately,
and setting them large enough so that the KF converges
to the measurements.

The cost functions of the genetic algorithm were defined
as the weighted sum of the NRMSE between the steady-
state-offset-compensated estimations and the actual vir-
tual patient. There was a need to compensate for the
steady state offset, because the filter cannot alter the
steady state, hence it will modify the transient in order
to reduce the cost. Meanwhile, the dynamic behavior and
the steady state offset together affect the NRMSE. This
could result in unfavorable, distorted transient, so only the
dynamic behavior was taken into account while calculating
the cost function. To give a tangible example, the x2 state
variable of the Hovorka model is shown in Fig. 1, where the
case “A” refers to the tuning without considering steady-
state, while case “B” refers to the tuning considering
steady-state. The estimation denoted by “B” provides
lower NRMSE compared to the estimation denoted by
“A”, however, the insulin decreases significantly after the
meal intake for case “B”, thus case “A” shows a more
realistic waveform.
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Fig. 1. Effect of not compensating the steady state offset.

Of note, this tuning method is applicable in-silico, since
there could be virtual or non-measurable state variables.
Our goal was not to provide a tuning algorithm, but to
provide uniform tuning method during the investigation of
the observers and models. There is a significant difference
in the number of state variables between the models, the
Dalla Man model has 20 state variables, the Hovorka has
8 state variables and the IVP has 4 state variables. There
are three equivalent variables amongst the models (with
different units of measurement), namely the CGMS, Ip and
Ra. The weights are introduced in the cost function (3)-
(5) discussed later to reduce the distortion effect caused by
the increased number of terms in the Hovorka model. By
applying the coefficients 9

5 and 3
5 in (4), the blood glucose

level, plasma insulin and Ra contribute the same amount
of cost in the Hovorka and in the IVP model.

Furthermore, a measure of oscillation is formulated. It
has been observed that the genetic algorithm tended to
overfit the estimation, hence small-amplitude oscillation
could occur. In a practical sense direction changes were
calculated during the simulations in the following way:

xosc =

n∑
i=3

| sgn(xi − xi−1)− sgn(xi−1 − xi−2) |, (1)

k =

{
10, if xosc > threshold

1, otherwise
(2)

where n is the number of samples and the thresholds
were dependent on the number of meals. The k penalizing
coefficient increases the cost by an order of magnitude,
pushing the genetic algorithm to find a solution under the
oscillation threshold. We found that the CGMS noise does
not affect significantly the final result, thus the generated
measurement data was the true blood glucose values of
one of the models. Taking into account the aforementioned
factors, the following cost functions have been developed
for each virtual patient model:

JIV P = k(G+ Ieff + Ip + Isc +Ra), (3)

JHovorka = k
(9

5
(G+ Ip +Ra)

+
3

5
(Q2 + x1 + x2 + x3 + S1 + S2)

)
,

(4)

JUV A = k(G+ Ip +Ra), (5)

where the notations of the model state variables (see the
corresponding notations in Hovorka et al. (2004) and Kan-
derian et al. (2009)) represent their corresponding steady-
state-offset-compensated NRMSE, k is the oscillation pe-
nalizing coefficient.

2.4 In-silico comparison

The purpose of the comparison is threefold: 1) to analyze
the differences between observers and their tunings, 2) to
determine if a simpler model could be used in the observer
design, and 3) to study the feasibility of population models
in the observer design. From a statistical point of view,
this is equivalent to finding the significance of the fac-
tors “Observer”, “Model” and “Personalization”. To that
end, the UVA/PADOVA simulator, extended by different
sources of variability, was employed to simulate a 3-meal
scenario for the 10 virtual adults in the simulator, for every
combination of the factor levels. The scenario included
measurement noise – according to the default built-in
CGMS model – and variability in insulin sensitivity and
insulin absorption. Moreover, the initial condition of the
observers was set to -20% of the basal conditions.

The comparison was based on the RMSE of the CGMS, Ip
and the Ra. The references for RMSE computation were
collected from the Dalla-Man model which is implemented
in the simulator (Dalla Man et al. (2014)), while the
estimated signal units were modified accordingly to match
the Dalla-Man ones.

To determine whether the factors are significant, the linear
mixed-effect model (LMM) approach was applied. This
technique is able to deal with the lack of independence in
the data, i.e., the same cohort was used in each simulation.
The LMM is a generalization of the linear model in which
the regression coefficients could depend on a specific factor
(Winter (2013)). In this analysis, only the intercept was
made dependent on the subjects, i.e., random intercept.
The fixed effects are the “Observer”, the “Model” and the
“Personalization”, as well as, their pairwise interactions.
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Fig. 2. Grouped boxplot for the plasma insulin RMSE.
The length of the box corresponds to the interquartile
range, the black solid line is the median and the yellow
cross is the mean.

Higher order interactions were not considered here, be-
cause they were not found to be statistically significant.
Three LMM’s were fitted for the RMSE of the three
considered signals. The general LMM reads as,

RMSEsub = αsub + β1 ·Model

+ β2 · Personalization+ β3 ·Observer
+ β4 · Personalization ·Model

+ β5 ·Model ·Observer
+ β6 · Personalization ·Observer + ε

(6)

where αsub is the random intercept dependent on the
subject sub, the β’s terms are the coefficients for the fixed
effects, and ε, the normally distributed residuals.

Given the non-normality of the residuals, the coefficients
of the LMM’s in (6) were fitted by the rlmer function
provided in the robustlmm package in R (Koller (2016)).
Equation (6) determines the statistical significance of the
factors: A factor (or interaction) was considered significant
if the corresponding β coefficient included the 0 value in
the 95% Wald confidence interval (Akdur et al. (2016)).
Finally, a pairwise comparison between the significant
factors was completed by using the Wilcoxon signed rank
test for paired data with the Benjamini-Hochberg p-value
correction (Lee and Lee (2018)). The significance level was
set to 0.05.

3. RESULTS

3.1 Plasma insulin estimation

Fig. 2 overviews the plasma insulin RMSE for each combi-
nation of the factor levels. The observers based on the aver-
age Hovorka model lead to the largest RMSE. As shown in
Table 1, either the use of the IVP model or the application
of personalization, significantly improve the RMSE by a
margin of 0.9 pmol/kg. The personalization of the IVP
model also decreases the RMSE regarding the average
case, but this reduction is less remarkable compared to the
improvement of the personalization in the Hovorka model.
Thus, the interaction of “Model” and “Personalization”
is also significant. According to the pairwise comparison
of this interaction, the personalization of the Hovorka
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Fig. 3. Effect of the model type and model personalization
in the plasma insulin estimation

model underperforms the IVP personalized model, since
the former has lower mean than the latter and both groups
have been found to be statistically different at 0.05 level.
However, no difference in terms of RMSE has been shown
between the personalized Hovorka and the average IVP
model. The lower error in the IVP model and in the
personalized Hovorka models are related to a reduction of
the offset in the steady state (see Fig. 3). The personalized
Hovorka model, despite reducing this offset, yields a slower
estimation compared to the IVP model. That indicates
the high dependency of the estimation accuracy on the
model, but not on the observer structure. Indeed, the
“Observer” factor has not been found to be significant
(Table 1). The reason is that the observer gains are near 0 –
exactly 0 in the NSMO case –, therefore, the unmeasurable
states behave like the open-loop model. The only exception
are the DKF 30Diag observers using the Hovorka model.
These observers have larger gains, but they also tend
to underperform the other observers (see DKF 30Diag
boxplot in the left pannel of Fig. 2), although without
statistical significance. As stated, for example, in Wu et al.
(2012), given a system with disturbances affecting only the
measurable states, the addition of an output correction
gain would feed those disturbances into the unmeasurable
states. Therefore, increasing those gains could amplify the
effect of the disturbance on the unmeasurable states.

3.2 Rate of glucose appearance

The individualization of the model reduces the variability
in the Ra compared to the average case (Fig. 4), but
there is not enough statistical evidence to state that it
improves significantly the RMSE, independently of the
model or the observer. Conversely, the observer, the model
and their interaction results to be significant. The ob-
servers using the IVP model tend to have larger RMSE
than the ones using the Hovorka model, with the ex-
ception of the JKF UVADiag and the DKF 30Diag. For
example, changing the observer to DKF 30Ra, the im-
provement over the intercept is about 0.35 mg/dL/min
(see coefficient Observer.DKF 30Ra in Table 1). However,
using the IVP model and the DKF 30Ra the improve-
ment is only 0.08 mg/dL/min (see coefficient Model +
Model:Observer.DKF 30Diag in Table 1). This result is
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Table 1. Summary of the fixed effects coefficients of the plasma insulin(Ip), rate of glucose

appearance (Ra) and glucose measurement (CGMS) root mean-squared error. β̂ denotes the
estimated coefficient value of LMM (6), CI the 95%-Wald confidence interval and t the t-statistic
of the test. The intercept corresponds to the DKF observer tuned with the 30Diag and for the

average Hovorka model

Ip Ra CGMS

Coefficients name β̂ t CI β̂ t CI β̂ t CI

Intercept 2.46 11.74 [2.05, 2.87] 2.12 16.67 [1.87, 2.37] 0.57 133.31 [0.56, 0.58]
Model -0.99 -6.13 [-1.30, -0.67] -0.45 -3.59 [-0.70, -0.21] -0.44 -110.65 [-0.45, -0.43]
Personal. -0.90 -5.60 [-1.22, -0.59] -0.05 -0.39 [-0.30, 0.20] -0.00 -0.46 [-0.01, 0.01]
Observer.DKF 30Ra -0.24 -1.29 [-0.60, 0.12] -0.35 -2.38 [-0.63, -0.06] -0.57 -124.96 [-0.58, -0.56]
Observer.DKF UVADiag -0.24 -1.29 [-0.60, 0.12] -0.34 -2.38 [-0.63, -0.06] -0.57 -124.88 [-0.58, -0.56]
Observer.JKF 30Diag -0.23 -1.22 [-0.59, 0.14] -0.30 -2.04 [-0.58, -0.01] -0.57 -124.95 [-0.58, -0.56]
Observer.JKF 30Ra -0.22 -1.21 [-0.58, 0.14] -0.31 -2.12 [-0.59, -0.02] -0.57 -124.97 [-0.58, -0.56]
Observer.JKF UVADiag -0.22 -1.21 [-0.58, 0.14] 0.96 6.59 [0.67, 1.24] -0.57 -124.97 [-0.58, -0.56]
Observer.NSMO -0.22 -1.22 [-0.59, 0.14] -0.40 -2.76 [-0.68, -0.12] -0.13 -28.82 [-0.14, -0.12]
Model:Personal. 0.58 5.13 [0.36, 0.81] 0.03 0.29 [-0.15, 0.20] -0.00 -0.07 [-0.01, 0.01]
Model:Observer.DKF 30Ra 0.26 1.24 [-0.15, 0.68] 0.37 2.18 [0.04, 0.69] 0.50 94.11 [0.49, 0.51]
Model:Observer.DKF UVADiag 0.25 1.16 [-0.17, 0.66] 0.36 2.15 [0.03, 0.69] 0.52 97.41 [0.51, 0.53]
Model:Observer.JKF 30Diag 0.28 1.30 [-0.14, 0.69] 0.44 2.60 [0.11, 0.76] 0.61 115.54 [0.60, 0.62]
Model:Observer.JKF 30Ra 0.26 1.23 [-0.15, 0.68] 1.08 6.43 [0.75, 1.41] 0.44 83.99 [0.43, 0.45]
Model:Observer.JKF UVADiag 0.26 1.23 [-0.15, 0.68] -0.29 -1.74 [-0.62, 0.04] 0.44 83.99 [0.43, 0.45]
Model:Observer.NSMO 0.29 1.38 [-0.12, 0.71] 0.54 3.24 [0.21, 0.87] 0.20 37.56 [0.19, 0.21]
Personal.:Observer.DKF 30Ra 0.04 0.20 [-0.37, 0.46] -0.09 -0.55 [-0.42, 0.24] 0.00 0.36 [-0.01, 0.01]
Personal.:Observer.DKF UVADiag 0.04 0.21 [-0.37, 0.46] -0.09 -0.54 [-0.42, 0.24] 0.00 0.36 [-0.01, 0.01]
Personal.:Observer.JKF 30Diag 0.05 0.25 [-0.36, 0.47] 0.04 0.22 [-0.29, 0.37] 0.00 0.36 [-0.01, 0.01]
Personal.:Observer.JKF 30Ra 0.05 0.23 [-0.37, 0.47] 0.05 0.30 [-0.28, 0.38] 0.00 0.36 [-0.01, 0.01]
Personal.:Observer.JKF UVADiag 0.05 0.23 [-0.37, 0.47] -0.00 -0.02 [-0.33, 0.33] 0.00 0.36 [-0.01, 0.01]
Personal.:Observer.NSMO 0.05 0.24 [-0.37, 0.47] -0.09 -0.56 [-0.42, 0.24] 0.00 0.71 [-0.01, 0.01]

consistent with Fig. 5 which shows how the IVP model-
based observers underestimate the Ra, while the Hovorka
model-based observers present a quicker response with a
more accurate postprandial peak estimation. A possible
reason for this improvement could be the use of a 2-
compartment model in the Hovorka model to explain the
glucose metabolism more accurately.

Regarding the comparison between observers, the pairwise
analysis reveals that within a model, there is not any
statistical difference in terms of RMSE between the DKFs
(with the exception of the DKF 30Diag in the Hovorka
model) and the NSMO. However, the JKFs exhibit signif-
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Fig. 5. Effect of the model type and model personalization
in the plasma insulin estimation

icantly larger error. Moreover, while there are no remark-
able differences between the DKF tunings, there is more
variability within the JKF tunings. That might be related
to the extra degree of freedom – the forgetting factor –
used by the DKF to estimate the disturbance.

3.3 Glucose measurement

The model, the observer and their interaction are signifi-
cant as observed from the confidence intervals in Table 1.
The pairwise comparison determines that all the combina-
tions in the interaction Model-Observer are significantly
different. However, the difference in mean between the
largest RMSE (Hovorka-based DKF 30Diag) and the low-
est one (Hovorka-based DKF 30Ra) is under 0.6 mg/dL,
which is negligible from the clinical point of view.
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4. CONCLUSIONS

A comparison between three observers (NSMO, DEKF,
and JEFK) and the effect in the estimation accuracy
of model complexity (IVP vs. Hovorka) and parameter
individualization has been addressed. The applied model
proved to be a determinant factor in the estimation of
plasma insulin, rate of glucose appearance and glucose.
The results cannot prove that a more complex model leads
always to a more accurate estimation. On the one hand, a
simpler model like the IVP could be preferable in the esti-
mation of the plasma insulin since all the parameters can
be included in the identification and more accurate identi-
fication of the average model can be achieved. On the other
hand, increasing the complexity in glucose metabolism
could be beneficial in a quicker and more accurate es-
timation of the rate of glucose appearance. In addition,
the parameter individualization improves the accuracy in
the plasma insulin estimation. That result could justify
further work on real-time parameter estimation. Finally,
the differences between observers and their tunings are less
significant because of the effect of the model. An example
of that is that the “Observer” factor was not significant
in the estimation of plasma insulin. That means that the
use of the genetic algorithm to tune the covariance matrix
did not manage to take advantage of the larger degrees
of freedom that the Kalman filters have, compared to the
sliding mode with a simpler tuning. We have found differ-
ences between observers in the rate of glucose estimation:
the JEKF tends to overestimation, while the DEKF and
sliding mode perform similarly in terms of RMSE. The
major differences between observers were found in the
glucose estimation. However, these deviations were not
remarkable from the clinical point of view.
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