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Lars Neuhaus ∗∗ Martin Kühn ∗∗ Lucy Y. Pao ∗
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Abstract: With the development of lidar technology for measuring wind disturbances ahead
of a wind turbine, various feedforward control techniques have been proposed to utilize preview
disturbance information for rotor speed regulation. Among these is model predictive control
(MPC), which generates an optimal control trajectory subject to system constraints, but very
few physical tests have been conducted using MPC for wind turbines presumably due to the
challenges involved in solving an optimization problem online. In this paper, we test an optimal
feedback/feedforward control algorithm that maintains the clear disturbance inclusion of MPC
but results in a linear control law that can be implemented easily. On the other hand, the
proposed controller is not able to handle physical system constraints explicitly—full MPC is the
subject of future work. A scaled wind turbine model in a wind tunnel is used for testing.

Keywords: linear optimal control, feedforward control, control applications, wind turbines,
wind energy, integral action, time delay

1. INTRODUCTION

The inclusion of preview disturbance information in wind
turbine control systems has been a topic of significant
interest since it was suggested by Harris et al. (2005)
and field tested by a research group led by the National
Renewable Energy Laboratory (NREL) and the University
of Stuttgart in the early 2010s (Scholbrock et al., 2013;
Schlipf et al., 2014; Haizmann et al., 2015; Schlipf et al.,
2015). The majority of research focuses on the use of
lidar to produce an estimate of the incoming wind field
by measuring the Doppler shift produced as light from a
laser beam is backscattered by aerosols in the approaching
wind. This estimate can be used by feedforward controllers
to anticipate disturbance events and actuate accordingly,
reducing the disturbance’s impact at the turbine rotor.

The power production of a wind turbine is usually split
into two regions categorized by below-rated and above-
rated winds. In below-rated conditions, the control objec-
tive is to maximize the power produced. In this operation,
the pitch angle of the turbine blades is kept constant while
the rotor speed is varied to maximize power extraction
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Lower Saxony within the project “ventus efficiens”.

using generator torque control (Pao and Johnson, 2011).
On the other hand, in above-rated conditions the goal
is to minimize structural loading on the turbine compo-
nents while maintaining ‘rated’ power production. This
can be achieved by keeping a constant generator torque
and pitching the blades to vary the lift generated and
regulate the rotor speed to its rated value. For a tutorial
description of wind turbine control, we refer the reader
to Pao and Johnson (2011). Studies have found that the
use of feedforward information is more effective for reg-
ulating rotor speed in above-rated conditions than for
power maximization in below-rated winds (Spencer et al.,
2012; Scholbrock et al., 2016). We therefore consider only
rotor speed regulation (e.g. Schlipf and Kühn, 2008; Dunne
et al., 2011; Scholbrock et al., 2013) in this work.

Recently, optimal control techniques such as model predic-
tive control (MPC) have been considered for wind turbine
control (Schlipf et al., 2013; Jain et al., 2015; Mirzaei and
Hansen, 2016; Gros and Schild, 2017). MPC has gained
research attention for its straightforward inclusion of pre-
view disturbance measurements and ability to handle sys-
tem constraints; however, MPC generally involves solving
an optimization problem online, and physical tests of MPC
are scarce. In this work, we present a linear-quadratic
regulator-like optimal control problem that retains the
disturbance inclusion capabilities of MPC, while resulting
in a feedback/feedforward control law that is linear. We
demonstrate the controller with wind tunnel testing on a
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scaled turbine model. In future work, we plan to extend
this work to constrained MPC, which involves implement-
ing an online solver.

This paper is laid out as follows. Section 2 discusses several
wind turbine models used in this study. Section 3 provides
a derivation of the optimal feedback/feedforward control
law. Section 4 describes the physical test bed and preview
filter used. Section 5 presents the results of simulation and
experimental wind tunnel testing. Section 6 comments on
the results and motivates further work.

2. MODELING

2.1 Scaled Wind Turbine Model

Wind turbines are flexible structures that combine prin-
ciples from elastic structures with aerodynamics and ex-
hibit inherently nonlinear behavior. The ForWind Model
Wind Turbine Oldenburg (MoWiTO) is a fully-actuated
(individual blade pitch and generator torque) 1.8 m rotor-
diameter turbine designed as a scaled model of the NREL
5MW reference turbine (Jonkman et al., 2009). For details
on MoWiTO, see Berger et al. (2018).

2.2 FAST Model

We use an aero-elastic model of MoWiTO implemented in
FAST v8 (full description of earlier version: Jonkman and
Buhl Jr., 2005; change guide for version 8: Jonkman and
Jonkman, 2016) for simulation and controller validation
purposes. FAST allows turbine designers to model the
complex nonlinear response of the turbine over a range of
conditions from simple uniform, constant winds to highly
turbulent, spatially- and temporally-varying wind fields.
The FAST model is embedded in a Simulink environment
for simple controller implementation and tuning.

2.3 Linear Time-invariant Model

For the purpose of linear-quadratic regulation with dis-
turbance preview, we require a discrete-time state-space
model of the plant

xk+1 = Axk +Buk +Bddk (1a)

yk = Cxk (1b)

that has been extended to make disturbances dk ∈ Rmd

and their input matrix Bd ∈ Rn×md explicit. For this
study, dk is the deviation in horizontal wind speed from the
nominal operating condition. xk ∈ Rn, uk ∈ Rm, yk ∈ Rp,
A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n have their usual
meanings in the discrete-time model.

The modeling methodology is described briefly here. We
consider a first-order continuous time input-output model
(Pao and Johnson, 2011) from the blade pitch and wind
speed to rotor speed, constructed using a step-input sys-
tem identification procedure on the nonlinear, higher-
dimensional FAST model. The model is linearized about a
wind speed of 7 m/s using a constant generator torque for
above-rated operation and given a state-space realization.
The trim condition for linearization is found by altering
the blade pitch angle in FAST simulations until the steady-
state rotor speed reaches its rated value (see Table 1, where
the nom subscript denotes nominal operation).

Table 1. Above-rated trim condition

Wind speed vnom [m/s] 7

Rotor speed Ωrpm,nom [rpm] 480 (rated)

Generator torque τgen,nom [Nm] 2.8 (rated)

Blade pitch βnom [◦] 6.2

The model is then expanded to add a state that integrates
the rotor speed error, so that integral control action may
be performed (Franklin et al., 2019), and then discretized
using a zero-order hold at the sampling rate fs = 100 Hz.
Finally, the resulting discrete-time state-space model is
further augmented to include the blade pitch position as a
state, with the difference in blade pitch replacing the blade
pitch position as an input. This allows us to penalize the
pitch rate, rather than the pitch position, in the quadratic
cost function (see Section 3.1).

Using the notation conventions δwk := wk−wnom (i.e., the
deviation away from nominal operation) and ∆wk,k−1 :=
wk−wk−1 (i.e., the difference in w between two successive
discrete-time steps) for any signal w, the final model

has the form of (1), with xk =
[
δΩk

∫
δΩrpm,k δβk−1

]T
,

uk = ∆βk,k−1, dk = δvk, and yk =
[
δΩrpm,k

∫
δΩrpm,k

]T
.

Ω is the rotor speed in radians per second and Ωrpm is the
rotor speed in revolutions per minute (Ωrpm = 60/2π × Ω).

By
∫
δΩrpm,k we mean

∫ tk
0
δΩrpmdt, the integral of the

rotor speed deviation from the beginning of controller time
until the current time tk = k/fs.

The model matrices for MoWiTO are then (A,B,Bd, C) =([
0.97 0 −5.12
0.09 1.00 −0.25

0 0 1.00

]
,

[−5.12
−0.25
1.00

]
,

[
0.36
0.02

0

]
,

[
9.55 0 0

0 1.00 0

])
.

To clarify, the third element of the state accumulates the
blade pitch angle differences ∆β up until the previous time
step. The full effect of the blade pitch deviation (away from
nominal) is a result of the third column of A (A3 = B) and
B, since

A3δβk−1 +B∆βk,k−1 = B (βk−1 − βnom + βk − βk−1)

= Bδβk .

3. CONTROL

As mentioned previously, this work focuses on above-
rated wind turbine control. As such, the control goal
is to regulate the rotor speed to its rated value. The
control algorithm we propose is an extension of the linear-
quadratic regulator (LQR) to include preview disturbance
information (Section 3.1). Contrary to the majority of
feedforward control laws that have already been tested for
wind turbines (Scholbrock et al., 2013; Schlipf et al., 2014;
Haizmann et al., 2015; Schlipf et al., 2015), our method
uses an optimal formulation (Verwaal et al., 2015) and
can be seen as a step towards physical testing of a blade
pitch-actuated MPC for wind turbines. We consider LQR
as our baseline controller for comparison (Section 3.2).

3.1 Linear-quadratic Regulator with Disturbance Preview

We define our control problem in a similar fash-
ion to LQR, but include the impact of future dis-
turbances in the problem. Ostensibly, we would like
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to find a feedback/feedforward (FB/FF) control law
uk = f(x̂k; dk, dk+1, dk+2, ...) that solves the problem

minimize
yi,xi,ui

∞∑
i=0

yTi Lyi + uTi Rui (2a)

subject to xi+1 = Axi +Bui +Bddk+i (2b)

yi = Cxi (2c)

x0 = x̂k (2d)

where L ≥ 0; R > 0; (A,B) is controllable; x̂k is an
estimate of the state at the current time; and dk+i is the
disturbance, assumed to be known, affecting the system at
the ith future time step. k denotes the current time step
in real time and i refers to future ‘predicted’ time steps. If
dk+i = 0 ∀ i = 0, 1, 2, ...,∞, the problem (2) reduces to the
discrete-time LQR problem with the celebrated solution

uk = −KFBx̂k (3)

with KFB = (BTPB + R)−1BTPA and P the solution to
the discrete-time algebraic Riccati equation

P = ATPA+CTLC −ATPB(BTPB +R)−1BTPA. (4)

In reality, the disturbance cannot be known for all future
time; instead, we assume that it is only known over some
finite N -step prediction horizon and set dk+i = 0 ∀ i ≥ N .
From MPC theory, we rewrite (2) as the finite-horizon
problem (substituting (2c) into (2a))

minimize
xi,ui

N−1∑
i=0

{
xTi Qxi + uTi Rui

}
+ xTNPxN (5a)

subject to xi+1 = Axi +Bui +Bddk+i (5b)

x0 = x̂k (5c)

where Q = CTLC. The terminal cost xTNPxN is the
cost associated with minimizing

∑∞
i=N x

T
i Qxi + uTi Rui

subject to the model (5b) with zero disturbances (di ≡ 0)
(Rawlings, 2000).

Problem (5) is expressed in matrix-vector form as

minimize
x,u

xTQx + uTRu (6a)

subject to x = Ax̂k + Bu + Bdd (6b)

where x :=
[
xT0 xT1 · · ·xTN

]T
, u :=

[
uT0 uT1 · · ·uTN−1

]T
, and

d :=
[
dTk dTk+1 · · · dTk+N−1

]T
;

A :=


I
A
A2

...
AN

 , B :=



0 · · · 0

B 0
...

AB B
. . .

...
. . . 0

AN−1B AN−2B · · · B


,

and Bd is built in the same way as B with Bd replac-
ing B. Finally, Q := blockdiag (Q, . . . , Q, P ) and R :=
blockdiag (R, . . . , R) where blockdiag(·) is a block diagonal
matrix with the arguments on the lead diagonal.

We condense the problem by substituting (6b) into (6a),
thus eliminating the states x from the decision variable
and arriving at the unconstrained problem

minimize
u

uTHu + 2hTu , (7)

where H = BTQB + R and h = BTQ [A Bd]

[
x̂k
d

]
. The

closed-form solution to (7) is

u = −H−1h

= −
(
BTQB + R

)−1
BTQ [A Bd]

[
x̂k
d

]
.

Taking the first (block) entry of u provides the control at
the current time step, which we express as

uk = [−KFB KFF]

[
x̂k
d

]
. (8)

This controller is referred to as the feedback/feedforward
(FB/FF) law.

We emphasize that KFB from (8) is identical to that from
(3), i.e. KFB is the LQR gain. To see this, consider defining

g1 = BTQA and g2 = BTQBd. Then h = [g1 g2]

[
x̂k
d

]
and we can express (7) as

minimize
u

uTHu + 2x̂TkgT
1 u + 2dTgT

2 u . (9)

Now, consider the case when d ≡ 0. Problem (9) reduces to
the LQR problem and the unique solution u = −H−1g1x̂k
is a vector of the LQR optimal u over N steps. Call this
solution u(1). In particular, the first block element of u(1)

is u
(1)
k = −KFBx̂k.

Next, consider (9) when x̂k ≡ 0. This is the situation where
state regulation has already been achieved but there are
future disturbances. The unique optimal solution is now
the (feedforward only) control sequence u = −H−1g2d :=

u(2) and the first block element can be written as u
(2)
k =

KFFd.

Finally, we have claimed that the optimal solution of (7)
and (9) when d 6≡ 0 and x̂k 6≡ 0 is u = u(1) + u(2). Since
u(1) + u(2) is the unique stationary point of the (positive
definite) cost function (9), we see that the claim holds.

3.2 Feedback-only Controller

We use a feedback-only (FB only) control law as the
baseline controller. The feedback controller is simply the
LQR controller (3) found by solving problem (2) with
disturbances set equal to zero. This ensures similarity
between controllers, in that both are designed to minimize
the cost function (2a).

3.3 State Estimation

Throughout the derivation of the FB/FF and FB only
control laws, we have used x̂k to denote the estimate of
the state at the current time step. In general, an observer
needs to be designed to estimate x based on y and u. In
our case, x̂ can be calculated directly because it depends
only on the rotor speed Ωrpm, which is measured, and the
commanded blade pitch angle β. The calculated value x̂ is
still noisy, and we have still chosen to use the hat notation
to differentiate it from the true state x of the system.

4. TEST SETUP

Experimental tests were carried out on MoWiTO operat-
ing in the wind tunnel facility at ForWind – Center for
Wind Energy Research at the University of Oldenburg.
The key elements of the test setup are described here and
are shown schematically in Fig. 1.
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Fig. 1. Wind tunnel test setup. The active grid controls
the airflow, the hot-wire anemometer measures wind
speed, and the turbine control system responds to
wind disturbances. The hot-wire measurements are fil-
tered prior to use in the controller, and then advanced
to account for the delay introduced by filtering.

4.1 Physical Layout

The ForWind Center’s wind tunnel is a closed-circuit
tunnel with a 3 × 3 m2 cross-sectional open test section.
At the entry to the test section, ForWind operates an
‘active grid’, which is capable of recreating complex tur-
bulent wind structures by means of vanes that control the
airflow (Kröger et al., 2018). MoWiTO is placed about
5 m downstream from the active grid. In most research
for utility-scale turbines, lidars are used to generate the
preview measurements for feedforward control. For this
scaled study in a wind tunnel test bed, we replace the lidar
with a hot-wire anemometer placed 1.5 rotor diameters
(1.5D) upstream of the turbine.

4.2 Controller Implementation

Both the FB only and FB/FF controllers are implemented
in a LabVIEW virtual instrument (VI) running on a
CompactRIO. The VI allows toggling between the two
controllers online and is embedded in a larger VI that
includes spin-up and shut-down procedures for the turbine.

4.3 Preview Measurement Filter

For both lidars and hot-wire anemometers preview mea-
surements require filtering, before they can be used by a
feedforward controller, to remove noise at the sensor and
high-frequency turbulence in the signal that evolves before
reaching the turbine (Simley and Pao, 2015).

We use a moving average filter to process the preview
measurements. To ensure that there is good alignment
between the filtered preview data and the wind field, we
advance the filter output by the (frequency independent)
group delay of the filter (Sinner and Pao, 2019). The
resulting noncausal filter has the transfer function

H(z) =
1

nfilt

znfilt−1 + znfilt−2 + · · ·+ z + 1

z(nfilt−1)/2
(10)

where nfilt is the number of samples in the moving average,
and must be an odd positive integer. In order to implement
the filter (with the advance), we leave some time between
when the measurements are taken and when they are
required by the FB/FF controller (8). The associated
propagation range is sketched in Fig. 1.

There is a trade-off between the controller prediction
horizon length N and the amount of filtering possible,
represented by nfilt. The filter order is upper bounded as
nfilt ≤ 2 b`fs/vnom −Nc + 1 (Sinner and Pao, 2019) where
` = 2.7 m is the upstream distance of the hot-wire relative
to the turbine and vnom = 7 m/s (Table 1). b·c represents
the floor function, which rounds its argument down to the
nearest integer. Due to hardware limitations, the controller
update rate is set as fs = 100 Hz. We then choose N = 20
and nfilt = 35, close to the maximum allowable (nfilt = 37).
The filter is also implemented in LabVIEW.

5. RESULTS

5.1 Simulation Results

To verify and tune the operation of the controllers, both
the FB only case and the FB/FF controller were tested in
closed-loop simulations using the FAST Simulink interface
(Jonkman and Buhl Jr., 2005). A simplified gust wind
profile of mean wind speed 7 m/s with noise added was
provided to both control systems (Fig. 2, top, black line).
Further noise was added to the profile before passing it
through the preview filter (10), resulting in the green line
Fig. 2 (top). After some manual tuning to achieve ‘reason-
able’ speed regulation without excessive blade pitching,
the weighting matrices for the cost function (2a) were
chosen as L = I2 and R = 1× 105.

Fig. 2. Simulated controller behavior for a gust event. In
the top plot, the black line represents the true wind
seen by the turbine, while the green line represents the
filtered hot-wire anemometer measurement of wind
speed that the FB/FF controller uses as disturbance
preview. The black dashed line in the bottom plot is
the rated rotor speed Ωrpm,nom.

The lower two plots in Fig. 2 show the blade pitch and
rotor speed responses with these weights, respectively. It
is clear from the peak rotor speed response and slight phase
lead in the pitch signal that the feedforward component is
working as intended. The extra noise in the rotor speed
signal under FB/FF control comes from the noisy pitch
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signal, which in turn is a result of responding to a noisy
disturbance preview signal (even after filtering). This is
a shortcoming of the control system, but not something
that we consider to be a major concern for full-scale wind
turbines using lidars (rather than hot-wire anemometers)
for preview (see end of Section 5.2 for discussion).

5.2 Experimental Results

During testing, the active grid provided ten gust events
approximately 7 seconds apart in the otherwise uniform
(nominally) 7 m/s airflow. The FB only controller was
tested first, followed immediately by the FB/FF controller.
A subset of the gusts and responses has been overlaid in
Fig. 3 to emphasize differences.

Fig. 3. Controller behavior for three gust events. In the
top plot, the orange and blue lines represent hot-
wire (HW) anemometer readings for the tests for
each controller. The green preview measurement is a
filtered version of the blue HW measurement used by
the FB/FF controller. The orange HW measurement
is not used by the controller, but is reproduced here
to demonstrate similarity between the test conditions.
The black dashed line in the bottom plot is the rated
rotor speed Ωrpm,nom.

We see clearly the impact of feedforward control. The
FB/FF controller is able to preempt the gust and starts
pitching the blades earlier to maintain the rotor speed
at rated. Although the FB only controller goes through
almost the exact same pitch cycle, it is delayed because
the effect of the gust on the rotor speed must be measured
before counteraction is taken. This delay causes signifi-
cantly more deviation from the rated rotor speed.

In fact, it appears that the feedforward controller is taking
action too early, presumably due to an unaccounted-for
slow-down effect as the wind approaches the turbine rotor
(Dunne et al., 2014). This causes the rotor speed to
drop further (and earlier) than expected, and leads to
oscillations in the response following the initial drop. We
have since recreated this effect in simulation (by advancing

the preview measurement too far), but omit graphical
results for brevity.

The effect of noisy preview measurements is also clear,
especially in the time between gusts (e.g., 14–17 seconds).
This signal noise is translated into noisier pitch actuation
and finally poorer rotor speed regulation.

Statistics of the responses confirm the improvement of the
FB/FF controller over the FB only controller for regulat-
ing rotor speed. In Table 2, the last column represents the
percentage difference between the FB only and FB/FF
controllers. Green (with a down arrow) represents a re-
duction (improvement), while red represents an increase
(degradation), in the quantity of interest. We present stan-
dard deviation results for rotor speed and blade pitch both
during gust events and between gust events to emphasize
the noise injected by the preview measurements. We differ-
entiate between peaks in rotor speed error as being positive
(overspeeds) and negative (underspeeds), since there is a
significant difference between these quantities (see Fig. 3).

Table 2. Controller test results

FB only FB/FF Difference

Peak rotor speed deviation
from rated (positive) [rpm]

21.2 10.1 H52.6%

Peak rotor speed deviation
from rated (negative) [rpm]

17.7 13.2 H25.5%

Rotor speed standard devia-
tion during gusts [rpm]

9.01 4.15 H54.0%

Rotor speed standard devia-
tion between gusts [rpm]

1.14 2.34 N105%

Blade pitch standard devia-
tion during gusts [◦]

3.05 3.17 N3.92%

Blade pitch standard devia-
tion between gusts [◦]

0.309 0.550 N77.7%

It is apparent from the results presented here that the
inclusion of the feedforward term in the control law can
significantly improve rotor speed regulation. However, a
more complete set of turbulent wind cases would be
required to give conclusive results. We also note that there
is some increase in pitch activity during the gust event,
but we consider this a reasonable price to pay for the
improvement in rotor speed regulation.

The data from in-between gusts is, at first glance, concern-
ing. There is a considerable increase in pitch activity and,
correspondingly, a severe increase in rotor speed variation.
This is due to the noise injected by the hot-wire preview
measurement, and as such, is more of an artifact of the
present test setup and filtering than an inherent problem
with the feedforward control law. On a utility-scale turbine
using lidar there is more time available for filtering, as
well as spatial filtering inherent to lidar operation, and we
anticipate that the noise present in the feedforward signal
would be lower than in this test. Overall, we consider the
test results obtained to be in-line with simulated and field-
tested feedforward controller results, further highlighting
the benefits of feedforward action in wind turbine controls.

6. CONCLUSIONS AND FUTURE WORK

The experimental results presented in this work confirm
the findings of others that wind preview measurements can
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be useful for rotor speed regulation in above-rated winds.
To the authors’ knowledge, it is the first implementation
of an optimal control technique using the feedforward
extension for turbine blade pitch control.

The next step for this work is to also consider inequality
constraints in the optimization problem (5). The inclusion
of inequalities on the states and inputs would extend
the present work to a model predictive control (MPC)
problem whose solution cannot be expressed as a linear
feedback/feedforward law. While several simulation stud-
ies have been published applying MPC to wind turbines
(Schlipf et al., 2013; Lio et al., 2017; Sinner and Pao, 2019)
with some emphasizing real-time capabilities (Bottasso
et al., 2014; Gros and Schild, 2017), to our knowledge
only one physical experiment has been conducted and was
limited to generator torque control (Verwaal et al., 2015).
Although solving the MPC problem at the controller sam-
ple rate is challenging, we believe that it is possible, and
aim to extend our work to this problem in our continued
investigation of preview-enabled MPC for wind turbines.
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