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Abstract: In this work, the H,, decentralized reduced order observer based control for a class
of large scale nonlinear stochastic systems is concerned. In this context we consider subsystems
which are interconnected by some nonlinear interconnections under quadratic boundedness and
Lipschitz property of the system. The proposed control law is based on the resolution of some

LMI.
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1. INTRODUCTION

Numerous works treat the problem of stability and sta-
bilization of large scale linear or nonlinear interconnected
systems in the literature, see [Callier et al. 1976, Siljak
1977, Michel and Miller 1977, Vidyasagar 1980, 1981,
Giindes and Desoer 1990, Siljak 1991, Davison et al. 2020].

This class of systems are generally composed by many
subsystems. They are characterized by a large number
of variables, some strong and/or complex interactions
between the subsystems variables. This implies a large
number of equations and unknowns and some problems
in practice to study them.

This type of modeling can be found in industrial processes
(power systems), transport networks, economic models,
chemical processes, space structure.

It also exists several works which treat the problem of
decentralized observer based control design of large scale
interconnected systems. Many approaches have been used
for the observers design. For example, in Dhbaibi et al.
[2009] the authors investigated the problem of H., de-
centralized tracking control using a decentralized observer
for interconnected nonlinear systems to ensure the asymp-
totic stability, whereas the H., criterion has been re-
placed by a quadratic cost in in Mao and Lin [1990] and
Tlili and Benhadj Braiek [2009]. In Gao et al. [2015],
the authors propose a dynamic observer based control
for large scale nonlinear interconnected systems based on
algebraic constraints obtained from estimation error. In
Kalsi et al. [2009] a design of decentralized control using
a sliding mode observers has been proposed whereas in
Zhao et al. [2017] a design of decentralized fault tolerant
control scheme based on decentralized control method
for a class of large-scale nonlinear systems is given. The
problem of decentralized control based on backstepping
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approach and exploiting the triangular canonical form of
the system to guarantee the input-to-state stability of the
closed-loop system are investigated in Liu et al. [2007]
in the deterministic case without measurement noise, in
Liu et al. [2011] in the deterministic case without mea-
surement noise and in Liu et al. [2008] in the stochastic
case. A decentralized reduced-order controller is proposed
in Bakule and de la Sen [2009] for a class of networked
continuous-time complex systems with symmetric nominal
interconnections.

So, we note that there are many works concerning the
decentralized control for large scale linear or nonlinear
interconnected systems in deterministic case; but, in our
knowledge, there are less works on the decentralized con-
trol for this class of systems in the stochastic case Liu et al.
[2008], Hua et al. [2015].

The stochastic description of systems is used when the
deterministic approach is not sufficient to model the con-
sidered systems. In fact, the stochastic representation can
capture all the dynamic behavior of a complex system
that is not well given by the deterministic approach. The
advantage of SDE (stochastic differential equations) is that
they contain a random term which represent the ran-
domness within the systems to model. Thus, the studied
systems are composed by two parts: the drift one which
represents the dominant action of the system and the
diffusion one representing randomness along the dominant
behavior. Stochastic modeling has then got a great role
during the last years in engineering and sciences. There
exist many works about SDE and their simulation like in
Has’minskii [1980], Mao [1994], Cyganowski [1996], Mao
[1997], Oksendal [2003] and references therein. Stochas-
tic systems are used in various areas of application like
system with human operators, economic systems which
model some of the uncertainties as stochastically varying
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lags, mechanical systems subject to random vibrations
(e.g. earthquakes), ... (see [Willems and Willems 1976] for
example).

This paper is dedicated to the observer-based control of
large scale interconnected stochastic systems.

In this paper we deal with reduced order observer based
control for large scale stochastic systems which are de-
scribed by stochastic differential equation (SDE) con-
trolled by noises. These noises are Brownian motions. The
considered differential equation corresponds to an It6 pro-
cess with multiplicative noises. The goal of the control law
to be designed is to ensure the mean square exponential
stability (MSES) of the obtained closed loop system with
an H.o criterion.

The paper is organized as follows. A preliminary of SDE
is given in Section 2. The problem to be solved is stated in
Section 3. In Section 4, a H reduced order decentralized
observer-based controller is designed into two steps. The
full order case is treated in in Section 5.

Notations. IR" denote the n-dimensional FEuclidean
space. ||A| = (ZA?}j)l/Q \/tr(ATA) is the Eu-
2,7

clidean norm of the matrix A, while ||z|| = vVaTz is the
Euclidean norm of the vector x. For matrices Ay, and
As, bdiag(A;, As) designates the block diagonal matrix

(o 122 |. We denote by Lo ([07 o) ;]Rk> the space of non-
anticipatory square-integrable stochastic process f(.) =
(f(1)ie(0,00) In R* with respect to (F1)1e(0,00) Satisfying

IF1%, = E{/O ||f(t)||2dt} < o0

where E{.} is the expectation operator.
2. PRELIMINARIES ON SDE

We consider the following class of stochastic differential
equation (SDE)

de = f(x)dt+ g(x)dw (1)
where € R™ is the state vector and w € R? is a multi-
dimensional independent Brownian motion.

To guarantee the existence and the uniqueness of the
solution z of the SDE (1), the functions f(z) and g(z)
satisfy the following relations Vo € R", Vy € IR" (see
[Mao 1997])
1F @I + llg@)1* < k(1 + ),
1 () = F W Vig(z) — gl < ka2 llz —yll,

where k1 and k, are given strictly positive reals.

(2a)
(2b)

The function f(z) is Lebesgue integrable and the function
g(x) is Lebesgue square-integrable as it is needed for Ito
calculus [Mao 1997].

To study the MSES stability we use the following defini-
tion.
Definition 1. The equilibrium of SDE (1) is said to be
MSES if
1
lim sup- In(E(]|(t,to, z0)|I*)) < 0. (3)

t—+o0

Relation (3) stands that there exist M > 0 and o > 0 such
that

E(le(t,to,xo)Hz) < M ||zol|? e t—t0)
for all zp € R™ and ¢t > ¢y > 0.

The Lyapunov function V(z) with the two following
Ito stochastic differential operators associated with the
SDE (1)

dV(z) =LV (z)dt+ BV (z)dw, (4a)

o) = @) + g o (@0 75 aw). ()
BV (z) = a‘gfj)g@). (40)

To ensure the MSES stability we use the following lemma
which gives sufficient conditions on a Lyapunov function
candidate.

The following lemma can be used to study the stability of
a SDE for ¢y = 0 [Mao 1997, Hu and Mao 2008].

Lemma 2. [Mao 1997] Assume that there exist a Lyapunov
function V'(x) which is twice continuously differentiable on
x, and ¢; > 0, co > 0 and c3 > 0 such that

aflz]® < V(z) e, (5)
LV (z)) < —csV(z) VzelR", (6)

then the equilibrium point of the SDE (1) is mean-square
exponentially stable, i.e.

c :
E{||:v(t)||2} < Zmol?et VE=0, Yage R™. (7)
C1
In this paper we focus our attention in the case where the

dimension n of the state x(t) is large, specially when the
stochastic system is an interconnected one.

The following lemma will be used in the sequel.

Lemma 3. [Petersen 1987] Let three matrices A € R™*,
B € RP*" et C € RY? with CTC < I,,, then for all real
>0, then

1
20T ACBy < pat AATz + —yT BT By (8)
i
for all z € R" and y € R".
3. PROBLEM STATEMENT

We consider the following SDE

N
dz; = (Atixi + By, v; + Biu; + hi(tv ,T)) dt+ Z Ay i dw;
i=1
(9a)
Z; = Czixi + Di’l)l‘ (9(3)
wherei =1,..., N, z; € R™ is the state vector, u; € R™

is the control input, v; € IR% is the perturbation vector
with bounded energy, w; € R% is a multi-dimensional
independent Brownian motion, z; € IR® is the controlled
output and y; € RP? is the measured output. A4;, C;, B;,
B,,, C1; and D; are constant matrices, h;(t, z) designs the
nonlinear interconnection function of i*" subsystem where
T =T, . 28] e R" Withnzzij\ilni.

x Ti,.
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As in many works like Zhu and Pagilla [2007], Stankovié
and Siljak [2009], Zecevié and Siljak [2010], the functions
h;(t,x) are piecewise continuous vector functions in both
arguments and satisfy in their domains of continuity the
following quadratic inequalities

hi(t,z) hi(t, ) < Za’ H Hix  d,...,N  (10)

where «; are interconnection bounds and H; € RY*"™ are
constant bounding matrices.

We can write the interconnected system in the compact
form as follows

de = (A + Byw+ Bu+ h(t,z))dt+ Apzdw (1la)
y=Cx (11b)
z=Cyz+ Dv (11¢)
where u?' = [uf| ... WL, 0T =l .. 0],
y' =i, un] w! = wg,
At:bdiag(Atm"-;AtN)ﬂC:b iag(cla"'ch),
B = bdiag(Bi,...,Bn), B, = bdiag(By,,,...,Buy),

Ay = bdiag(Aw,, ..., Ay ), C. = bdiag(C,,,...
D = bdiag(Ds, ..
is the global nonlinear interconnection function. Without
loss of generality, we have m; < n;.

, Oy

Using (10), the global interconnection is written as follows
h(t,z)Th(t,z) < 2THT® 1 Hx (12)

where ® = bdiag(®,,...,®y), ®; = «; 2I;, and HT =
(HT ... HE).

We define n = vazl n;, m = Zf\il ms, q = Zfil ¢,
p= Zfil pi, d= Zz]\il di, k= Zfil ki and £ = Zivzl ¢;.

We consider the following decentralized functional reduced
order observer described by, fori =1,..., N

dn; = M;n; dt + Jyy; dt + Giu; dt (13&)

u; = n; + By (13b)

where F;, M;, J; and G; are gain matrices to determine.

n; € R™ is the state of the observer (13) The nonlinear

function h(t,z) is not considered in the synthesis of the

gain observer, so the functional observer structure is
totally decentralized.

According to the notations used in (11), we define

nt = mf,....n%], M = bdiag(M,...,My), J =
bdiag(J1,...,Jn), G = bdiag(Gy,...,Gy) and E =
bdiag(El,...,EN).

Notice that, unlike the literature on decentralized observer
based control, the control law w; is directly estimated
by the decentralized functional observer (13) which is of
minimal order since dim(7;) = dim(w;).

Using Definition 4, the problem to be treated is stated in
Problem 5.

Definition 4. [Zasadzinski et al. 2007] The system (11) is
said to be stabilizable based on a decentralized functional
reduced order observer (13) if there exist a gain matrix L =
bdiag(Ly,...,Ly), N functional reduced order observers
given by (13) and a control law u = Lx such that

(i) limy_oo E|ju— La||* = 0 if v =0,
(ii) the closed-loop system given by (11) and (13) is
MSES.

., D) and K7 (¢, 2) = [h{(t,x),...,hNgt’,x)

Problem 5. The objective is to establish N functional
observers (13) such that

(1) limy oo Efjlu— Lz|| =0 if v =0,

(ii) the resulting closed-loop system given by (11) and
(13) is MSES and satisfies the H, performance J,, <
0 for a given v > 0

where L is defined in definition 4 and J,, is given by

+oo
Jw =E {/ (sz — ’)/2UT1]) dt} <0, (14)
0
Vv € Ly, v# 0, 2(0) = 0 and n(0) = 0.

4. DESIGN OF THE FUNCTIONAL REDUCED
ORDER H., DECENTRALIZED OBSERVER BASED
CONTROL LAW

The synthesis of the functional reduced order H., decen-
tralized observer based control law (13) is splited down
into two steps: first we determine the “state-feedback

ains” L; and second the functional observer matrices M;,
J;, G; and E; are computed.

4.1 Synthesis of the “state-feedback gains” L;

In this subsection, we assume that the state x is measured
in (11), i.e. that C = I,, in (11b). So the closed loop system
composed by (11a), (11c) and u = Lz is given by
dz = ((Ar + BL)x + Byv + h(t,x))dt + Ayxzdw (15a)
z=C,x+ Dv (15b)

The design of the gain L is given by the following theorem.
Theorem 6. The closed-loop SDE (15) is MSES and sat-
isfies the Hoo criterion (14) if there exist two reals v > 0,
p1 > 0 and, for i = 1,..., N, matrices P; = PZ—T > 0,
P, € R™*™ and Yy, € R™*™ such that the following
LMI

(a) PHT PCT PAT (b)
HP —ui'® 0 0 0
C.P 0 —I, 0 0 <0 (16)
A,P 0 0 -P 0
®»r 0 0 0 —’I,+D'D
is satisfied where
(a) = PAT + Y/ BT + AP + BYy, + p ',
(b) = B, + PCTD,
and P, = bdiag(P1, ..., Pxn), Yz = bdiag(Yz,,..., Yy )-

The gain matrices are given by L; = Y7, P, ' with i =
1,...,N.

Proof. The application of It6 formula (4) on the Lya-
punov function V(z) = TPz, with P = PT =
bdiag(Py,...,Px) > 0 and P, € R™*™ for SDE (15)
gives

dV(z) = LV(z)dt + 22" PA,X dw (17)
with

£V (z) = 227 P ((A + BL)x + B,v) + 227 Ph(t, z)

b () T2P () (18)
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Using the theorem of Fubini for a mesurable stochastic
process & Chen [1985], we have

E{/()Txdt} :/()TE{xdt}

and the performance index J,, in (14) can be written as
follows

Jow = /+OC E{(z"z —y*Tv)dt +dV(2)}
0
—E{V(z} =100 + E{V(2}:=0,

Taking the expectancy on the both sides of the equation
(17) and using E{dw} = 0, we obtain
E{dV(x)} = E{£V(x)}.

Since E{V (z)}:=¢ = 0 because 2(0) = 0 and E{V (2) }t=100 =

0, we have

“+ o0
Jow < / E{(zTz —y*Tv)dt + £V (x)dt}. (19)
0

Using inequality (12) and Lemma 3, the term 227 (t) Ph(t, z)
can be bounded as follows

2¢T Ph(t,z) < prh (t, x)h(t,z) + py 'aT PPz

< paTHTO Ha + ul_lzTPPx
where p; > 0 is a given real. Then using (18) yields
£V(z) < 2T(P(A; + BL) 4+ (Ay + BL)'P + yyHT @ 'H
+u;'PP+ ALPA)z +2XT PB,v. (21)

(20)

There exists a real ¢3 > 0 such that the condition £V (z) <
csV(z) in Lemma 2 is satisfied if £V (z) < 0, i.e. if there
exist a matrix P = PT = bdiag(P,...,Py) > 0 and a
gain L such that

2 z—y*vTv+a” (A + BL)" P+ P(A, + BL) + AL PA,

+u H"®"H + p7 ' PP) z + 22" PB,v < 0.

Using (15b), the previous inequality can be rewritten as
(C.x + Dv)T(C.2 + Dv) — y*vTv
+ 27 ((Ay + BL)" P + P(A; + BL) + AL PA,,
+u H"®'H + py ' PP) z + 22" PB,v < 0
and is equivalent to
a” (A + BL)"P+ P(A,+ BL) + ALPA, + jnH"®'H
+ur'PP+CTC) z — %"

+ 227 PByv + 22TCT Dv + T DT Dv < 0. (22)

So inequality (19) holds if condition (22) is satisfied.
Applying the Schur lemma Boyd et al. [1994] on inequality
(22) gives the following inequality

Y, H' or ATp P Ty
H —p'® 0 0 0 0
r_|C 0 I 0 0 0
PA, 0 0 -P 0 0
P 0 0 0 —ul, 0
YT 0 0 0 0 —+*I,+D"'D
<0
(23)

where T1 = (A; + BL)TP + P(A; + BL) and
Y, = PB, + CTD.

Pre- and post-multiplying the above inequality by

PO0OO0O0OO
0I, 00 0 0
001 0 0 0 . . .
00 0P o0 o | &ives the inequality
00001I,O0
00000 I
©. PH" PCl PAL I, O
HP —pi'®@ 0 0 0 0
o— c.P 0 -l 0 0 0
Ay,P 0 0 -P 0 0
I, 0 0 0 —wl, 0
ey 0 0 0 0 —+°I,+D'D
<0
(24)
where P = P~! and
0, = PAT + Y'BT + A,P + BY,
0, = B, + PCI'D,
Y, = LP
Inequality (24) is equivalent to LMI (16). O

4.2 Synthesis of the functional reduced order matrices

Using item (i) of Definition 4, the filtering error can be
defined as
er=Lr—u=¥zx—n
(25)
where
U =L — EC =bdiag(L; — F1C1,...,L1 — ExnCy). (26)

The expression of the dynamics of the filtering error is
given as follows
de, = (Me, + (VA — MV — JC)x + (VB — G)u+)dt
UB,vdt+ (VByv+ Vh(t,z))dt+ VA,zdw
(27)

In order to ensure that the dynamics error is exponentially
stable in mean square and to remove the maximum of
dependent terms of the state x in SDE (27), we will
determine the value of matrices M, J, G and E imposing
that the following Sylvester constraints

0=VA, - M¥ - JC,
0=VB-G.

(28)

(29)

are verified.

Using approach developed in Souley Ali et al. [2006], we

define a matrix S = bdiag(S1,...,S,) given by
S=J-MFE (30)

where S; has the same dimension as J; for i = 1,..., N.

Since V¥ is a block diagonal matrix, the Sylvester equation
(28) can be rewritten as

LiA, = MG, i=1,...,N (31)
where
M; =[M; S; Ei],
L;
Ci=| G
Ci Ay,
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From Rao and Mitra [1971], equation (31) has a solution
M, if and only if

L; A,

L; Ls
rang C:; = rang( C; ) , (32)
CiA,, Cidy,

and all the solutions to this equation are given by

M, = LiAy,Cl + Zi(Im, y2p, — CiCl) (33)

where Cg is any generalized inverse of matrix C;' and

Z; € R % (mit2pi) g ap arbitrary matrix. There exists
a permutation matrix W such that

[M S E|=FW + ZTW (34)
where

Z = bdiag(Zy,...,2N),

F =bdiag(L1A,,Cl,... Ly A, CL),

T = bdiag((Im, +2p, — C1C1), ..., Imnt2pn — CNCY)).

Using (34), the matrices M, S and E are given by
M=FWUy + ZTWUy

= M, + ZM,, (35a)
S=FWUs+ ZTWUsg
=85, + ZSp, (35b)
E=FWUg+ZTWUEg
= E, + ZEp, (35¢)
with
I, O xcp Omxp
U]\/[ = Op><m s US = Ip and UE = Opxp .
OPXm OPXP IP

By inserting (34) and (35) in equation (26) and SDE (27),
we obtain the following SDE
de, = (Me, + Uh(t,z) + UB,v)dt + VA,xzdw
= (Mg + ZMp)e, + (No + ZNp)h(t, x)) dt

+ Na + ZNp)vdt + (N, + ZNp)zdw  (36)
where
M, = FWUyy,
My =TWUyp,
N, =L - FWUgC,
Nb = TWUEC

Using the above developments, the closed-loop SDE com-
posed by (11) and (13) can be written in the following
compact form

dX, =(As X, +Hh (¢, X))+ By v)dt+ A, X, dw
(37a)

z=C,. X, + Dv (37b)

where

1 A generalized inverse CI is any matrix satisfying C; = CiCJCi.

A — [A; + BL BL
tr = | 0 Mg+ ZMy|”
A — [ Ay 0
Wr _(/\/’a + ZNp) Ay 0]
B _ By
or _(/\/'a+ZNb)Bv ’
CT - [CZ 0]7
L
H, = _Na + ZNb] ’
hy(t, X,) = h(t,x),
X, = ””}
_67‘

We can state the main theorem.
Theorem 7. Assume that
(i) the rank condition (32) holds for i =1,..., N,
(ii) LMI (16) has been satisfied and the gain L =

bdiag(Ly,...,Ly), given in Theorem 6, has been
calculated.

Problem 5 is solved if there exist two reals v > 0,
pz > 0 and, for i = 1,..., N, matrices Q, = QL > 0,
Qe, = QI >0, Qz, € R ™, Q., € R™™™ and
Yy, € RMiT2P)Xmi quch that the following LMI

(@)+(@" H I ®’ ( (d)
H —uw'® 0 0 0 0
C, 0 —-I; O 0 0
(b) 0 0 —-Q 0 0
(e)” 0 0 0 —pol, 0
(d)T 0 0o 0 0 —~*,+D'D
<0
(38)
is satisfied where
(a) = [@=(Ac + BL)  Q.BL }
L 0 QeMa + YZMb ’
6 = o T e 4 o]
_(QeNa + YZNb)Aw 0
| Qu
(©) = | QN + YZNJ :
_(QeNa + YZNb)B’U ’
H=[H O],
and Q:E = bdlag(Q$17 ey Qa?n)a Qe = bdiag(Qela B Qen)a

YZ = bdiag(YZl, . 7YZN)~

The matrices M;, J;, Jo and E; of the N decentralized
functional reduced order observer (13) are given in equa-
tions (29), (30) and (35) by using Z; = Q. 'Yz, with
i=1,...,N.

Proof.

First, we assume that LMI (16) has been satisfied and that
the gain L = bdiag(Lq,...,Ly) has been calculated (see
Theorem 6).

Let V(X,) = XIQX, be a Lyapunov function candi-
date where Q@ = Q7 = bdiag(Q.,Q.) > 0, Q. =
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bdiag(Qu,, ..., Qz,), Qe = bdiag(Q.,, ...
]Rni,xni and Qe,i c R’mq Xmi.

Since the rank condition (32) holds for ¢ = 1,..., N, the
SDE (37) corresponds to the closed-loop composed by (11)
and (13).

Notice that item (i) of Problem 5 is satisfied if the SDE is
MSES due to the definition of e, in (25).

Using the similarity of the structure of SDE (15) and (37),
we can go back to the proof of Theorem 6 up to equation
(23). So, the Problem 5 is solved by the functional reduced
order observer (13) if the following inequality

T

7Q6n)) QZl €

O H  Cl AL Q QH, Q,
H —p'® 00 0 0
a-| C: 0 —Iy O 0 0
QA,, O 0 -Q 0 0
H 0 0 0 —ml, 0
of 0 0 0 0 —*I,+D'D
<0
(39)

holds, where Q; = Az:‘Q +QA;, and Q; = QB,, +CID.
Inequality (39) corresponds to (23) where the following
replacements were made

P—Q,
A+ BL — A4,
Ay — Ay,
B, — B,,,
C. — C,,
H— H=[H (],
M1 — M2,
and inequality (20) has been replaced by
2XTQH, h,(t, X)) < pohl (t, X )he (8, X,)
+uy  XTQH,HT QX,
<wXTH o 'IX,
+py ' XTQH,HT QX (40)
where po > 0 is a given real. The theorem is proved since
inequality (39) is equivalent to LMI (38). O

Remark 8. If we put matrix E; = 0 in the decentralized
functional reduced order observer (13), matrix ¥ in (26)
becomes ¥ = L and equation (30) is not useful since S =
J. In this case, we have M; = [M; J;] and ] = [LT CT].
In this case, the rank condition (32) becomes

e[ ]) =rone([4]).

L;
It is easy to see that (41) = (32), but (32) # (41).
The matrix E; therefore plays an important role in the
existence of observer (13). t

(41)

5. APPLICATION OF THEOREM 7 TO THE CASE
OF DECENTRALIZED FULL ORDER OBSERVERS

The decentralized functional reduced order observer (13) is
replaced by the following decentralized full order observer

d/{fi = M@Zdt-i- Jiyidt-l-Giuidu (42)

where 7; € IR™ is the estimate of the state x;, and the
control law is given by

With observer (42), matrix ¥ in (26) becomes ¥ = I,, since
there does not exist a functional v = Lz to be estimated
due to the fact that z; is given by the observer (42) and
the control law by (43). This has several consequences:

e The Sylvester equation (28) becomes
M=A4,—JC, i=1,...,N (44)
The rank condition (32) is always satisfied since
matrix C; is of full column rank. This rank condition
can be removed from Theorem 7.
S = J in (30) and equation (31) becomes
Ay, = MG,  i=1,...,N (45)

with M; = [M; J;] and C' = [I,, C]]. So the rank
condition (32) is always satisfied since matrix C; is of
full column rank and can be removed from Theorem 7.
By choosing C;L = [I, 0], equation (33) becomes

0 0
M,; = [Mz Ji] = Ati [Im‘ 0} +2Zi [—Ci Ipl}

= [(As, — JiCy) Ji]

and Zi = [Zia Jz]
The LMI (38) in Theorem 7 is simplified as follows

(46)

(@+@" H I o (o (d)
H —w'® 0 0 0 0
C. 0 —I; O 0 0
(b) 0 0 —Q 0 0
(e)” 0 0 0 —pol, 0
(d)” 0 0 0 0 —*I,+D'D
<0
(47)
where
_ [Qu(A +BL) Q.BL
@=1""0 "7 @A +v,c|
CRE
@= %]
_ [QuB,+CTD
@ =""q.5, }
H=[H0,

and Y; = bdiag(Yy,,...,Y,). The observer gain is
Ji =Qz'Y,, withi=1,...,N.

6. CONCLUSION

In this contribution, we propose a reduced order decentral-
ized Hoo observer based control for a large scale nonlinear
interconnected stochastic system. The considered system
is affected by multiplicative noises and is composed by N
subsystems which are interconnected by nonlinear func-
tions. The design is decoupled into two steps: in a first
time, we calculate a state feedback gain and, in a second
time, we determine the matrices of the decentralized ob-
server based controller. This decoupling is justified by the
fact that the above mentioned state feedback gain is used
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to solve constraints between observer matrices (see (33)),
so it must be calculated firstly.
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