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Abstract: This work proposes a novel control strategy to stabilize the dynamics of a homoge-
neous reactor, described by the extents of reaction and inlet streams with the inclusion of heat
balance. Specifically, we formulate this transformed model into a perturbed port-Hamiltonian
(PH) structure, where the vector of reaction rates is expressed as a matched/unmatched and
time-varying disturbance. Then, together with the tracking-error-based control method for the
stabilization, two different configurations to compensate such disturbance, including a feed-
forward law and a dynamic feedback one, are designed such that the error system asymptotically
converges to the set point and preserves the PH representation by assigning an appropriate
damping injection. A complex reaction system is used to illustrate the approach.
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1. INTRODUCTION

Chemical reactors play a key role in synthesizing com-
mercial products such as polymer and fine chemical from
raw materials. The operation of these reacting systems
is driven by reaction kinetics and transport phenomena.
Hence, a mathematical model, expressing the mass bal-
ance of each component and the heat balance of reac-
tor, is usually highly nonlinear, thereby giving rise to
abnormal behaviors such as multiple steady states and
non-minimum phase characteristic (Hoang et al., 2013).
Therefore, numerous model-based controllers have been
designed to handle nonlinear characteristics of reacting
systems for the stabilization at the desired set-point. How-
ever, applications of these control strategies are somehow
limited due to the intrinsic nonlinearity of mathematical
descriptions, caused by interactions of various processes
inside reactors. For example, the feedback linearization
method via a diffeomorphism is not capable of dealing
with non-minimum phase systems due to unstable zero
dynamics (Khalil, 2002). In fact, the control design and the
system analysis of reacting systems would become simpler
if effects of different physical/chemical processes on each
chemical state could be separated because it could allow
controlling and analyzing each rate process individually. In
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other words, we wish to model a reacting system in a new
state presentation where each state variable only depends
on a single rate process (Rodrigues et al., 2015).

The concept of vessel extents for reactions and inlet/outlet
streams were initially proposed by Amrhein et al. (2010) 1

to decompose the dynamics of a isothermal homogeneous
reactor via a multi-step procedure but still to maintain the
physical meaning of state variables, which is the amount of
material with respect to each rate process that is not left
the vessel. This interesting transformed model was then
extended for a non-isothermal reactor via a linear trans-
formation and studied for the model reduction, optimal
estimations of reaction kinetics and the data reconciliation
(Rodrigues et al., 2015). For the purpose of control design,
Marquez-Ruiz et al. (2018, 2019) considered the vessel-
extent-based decoupled dynamics as a linear parameter-
varying (LPV) system, where the vector of reaction kinet-
ics constitutes an internal disturbance. In this framework,
two control configurations, namely a model-predictive con-
trol scheme and a combination of a feedback law for the
stabilization and a feed-forward law for the disturbance
rejection, were proposed to calculate control algorithms.

This paper focusses on the use of the concept of vessel
extent transformation and the tracking-error-based con-
trol method, given by Nguyen et al. (2019), to derive a
novel control strategy. Specifically, the vessel-extent-based
decoupled dynamics of a general non-isothermal homoge-

1 This nice work has been considered as a generalisation of the
concept of reaction variants and invariants (Asbjørnsen and Fjeld,
1970). Control of chemical reactors in the subspace of reaction and
control variants can be found in Hammarström (1979).
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neous reactor is viewed as a perturbed PH representation
where the vector of reaction rates is expressed as an
matched/unmatched disturbance. Noting that such distur-
bance is time-varying; thus previous approaches to reject
the constant disturbance for control systems (Ortega and
Romero, 2012; Donaire and Junco, 2009; Ferguson et al.,
2017), can not be applied. Hence, two novel strategies,
including a feed-forward law and a dynamic feedback one,
to compensate such disturbance are contributed so that
the error system can approach asymptotically the set point
and preserve the PH representation by assigning a suitable
damping injection.

The paper is organized as follows. Section 2 briefly re-
view the tracking-error-based control via the usage of PH
representation. In Section 3, the Hamiltonian view on
the extents-based decoupled dynamics of a non-isothermal
homogeneous reactor is represented. Also, the controller
design method and its illustration for Van de Vusse re-
action system modeled with the continuous stirred tank
reactor (CSTR) are given in Section 4 and 5, respectively.

2. AN OVERVIEW OF THE
TRACKING-ERROR-BASED CONTROL APPROACH

Consider here a dynamical system that is affine in terms
of the control input u and its (nonlinear) dynamics can be
represented as follows :

�
x = F(x) + G(x)u, x(t = 0) = x0 (1)

where x = x(t) is the state vector in the operating
region D ∈ Rn and u ∈ Rm expresses the control
input. Additionally, F(x) and G(x) are smooth (nonlinear)
functions with respect to the vector field x. We assume
that the dynamics (1) can be formulated in the PH
representation with dissipation as follows :

�
x =

[
J(x)−R(x)

]∂H(x)

∂x
+ G(x)u

y = G(x)>
∂H(x)

∂x

(2)

where y is the output vector. Also, J(x) and R(x) are
the n × n skew-symmetric interconnection matrix (i.e.,
J(x) = −J>(x)) and the n × n symmetric and positive
semi-definite damping matrix (i.e., R(x) = R>(x) ≥ 0),
respectively. The Hamiltonian H(x) : Rn −→ R+ is the
storage function of the system (Ortega and Romero, 2012).

Let xd be a reference trajectory passing through a set-
point and assume that the dynamics (1) can be written
into the PH formulation with respect to an a priori
quadratic storage function :

H(x) :=
1

2
x>Rdix (3)

where Rdi is an arbitrary positive definite and symmetric
(constant) matrix. Nguyen et al. (2019) proposed a certain
structure for xd by

�
xd =

[
J(x)−R(x)

]∂H(xd)

∂xd
+RI(x)

∂H(e)

∂e
+G(x)u (4)

where e = x−xd is the error state vector, H(e) = 1
2e
>Rdie

and RI(x) is a positive definite symmetric matrix (or the
damping injection). With this, it allows to implement the
tracking-error-based control approach by finding RI(x) in
conjunction with a matrix constraint.

The PH formulation with a quadratic storage function
of the nonlinear system (1) is needed prior to adopting
tracking-error-based control approach. However, this chal-
lenging issue is not theoretically obvious as discussed in
Nguyen et al. (2019). In this work, we shall show that
this issue can be handled easily for a large class of nonlin-
ear systems, namely homogeneous reaction systems, by a
structural way on the basis of a transformed model that is
based on the concept of extents as shown in next sections.

3. DECOUPLED DYNAMICS OF HOMOGENEOUS
REACTORS USING VESSEL EXTENTS

Given a homogeneous reactor where R chemical transfor-
mations are occurring irreversibly among S species. This
reactor is operated with p feed inlets and one outlet.

3.1 Mathematical model

The material balance for this reactor is expressed by a
following set of ordinary differential equations (ODEs) :

�
n = N>rv + Winuin −

uout
m

n (5)

where n is a S-dimensional vector of number of moles
with the initial condition n(t = 0) = n0; N is the R ×
S stoichiometric matrix; uin is a p-dimensional vector
of mass flow rate; Win = M−1

w $in is a S × p-inlet-
composition matrix with Mw being a diagonal matrix
of molecular weights and $in = [$in,1,$in,2, . . . ,$in,p]
with $in,j the weight fraction vector of the jth inlet; uout
is outlet flow; m is the mass of the mixture; and rv is a

R-dimensional vector of the reaction rates. Note that
uout
m

corresponds to the inverse of the reactor residence time.

Together with the material balance (5), the heat balance
can be written as follows (Rodrigues et al., 2015) :

�
Q = (−∆Href )

>
rv + qex + Ť>inuin −

uout
m

Q (6)

where Q = mCp(T − Tref ) expresses the heat of the
mixture with Cp and T being the mass specific heat
capacity and the reactor temperature, respectively; ∆Href

is a R-dimensional vector of the reaction enthalpies at
some reference temperature Tref ; qex is the rate of heat

exchanged between the jacket and the mixture; and Ťin =[
Ťin,1, . . . , Ťin,p

]
. Also, Ťin,j is the constant specific heat

of jth inlet stream and is equal to Cp,in,j(Tin,j−Tref ) with
Cp,in,j and Tin,j being the mass specific heat capacity and
the temperature of the corresponding inlet, respectively.

3.2 Hamiltonian view on the decoupled model

Rodrigues et al. (2015) proposed a linear transformation
to decompose the material balance (5) into four different
parts, including the R-dimensional vector of vessel extents
of reaction xr(t), the p-dimensional vector of vessel extents
of inlet flows xin(t), the vessel extent of initial conditions
xic(t) being a scalar and the orthogonal remaining part
xiv(t) with the dimension q = S − R − p − 1 ≥ 0, so-
called the invariants. This full-rank linear transformation
is expressed as follows :

[xr xin xic xiv]
>

= T n :=
[
N> Win n0 P

]−1
n (7)
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where P is the null space of matrix
[
N> Win n0

]>
with

the dimension of p, i.e.,
[
N> Win n0

]>
P = 0(R+p+1)×q.

An alternative mathematical model of (5) is then obtained
(Rodrigues et al., 2015; Hoang et al., 2020) :

�
xr = rv − θxr, xr(t = 0) = 0 (8)
�
xin = uin − θxin, xin(t = 0) = 0 (9)
�
xic = −θxic, xic(t = 0) = 1 (10)

xiv = 0q (11)

where θ is computed by uout

m . In this work, the above
decoupled dynamics is completed with the inclusion of
the heat balance, given by (6), to describe the reactor
dynamics.

It can be clearly seen from (11) and (10) that xiv is
always zero and the dynamics of xic will be exponen-
tially stable at origin if θ is bounded or a persistently
exciting signal; therefore, the considered dynamics can
be stabilized at the desired steady state if the conver-
gence of the vector field [x>r ,x

>
in, Q]> towards its desired

equilibrium point [x∗>r ,x∗>in , Q
∗]> is guaranteed. Indeed,

this extended model can be viewed as a perturbed PH
formulation without the interconnection matrix 2 , where
the vector of the reaction rates rv is a time-varying and
matched/unmatched disturbance, as follows :

�
xr
�
xin
�
Q

 = −

[
θIR 0 0
0 θIp 0
0 0 θ

][
xr

xin

Q

]
+

[
0 0
Ip 0

Ť>in 1

][
uin

qex

]
+

[
IR
0p

−∆H>ref

]
rv

(12)

where I and 0 are the identity and zero matrices, respec-
tively. Note that Eq. (12) holds for general non-isothermal
homogeneous reactors, described by (5) and (6).

Noting from Eq.(8) that the steady state of x∗r is given by

x∗r =
r∗v
θ∗

(13)

where r∗v and θ∗ are the steady-state reaction kinetics and
outlet stream, respectively.
Control Objective: We aim to derive a control strategy
to stabilize the system (12) at the desired equilibrium
point [x∗>r ,x∗>in , Q

∗]> with u = [u>in, qex]> as control
inputs by adopting the tracking-error-based approach to-
gether with handling the disturbance, caused by rv.

4. MAIN RESULTS

From Eq. (12), we re-express the perturbed PH system
with the output 3

[
�
x1
�
x2

]
= −

[
R1 0
0 R2

]
∂H(x)

∂x
+

[
d1(x)

d2(x) + g(x)u

]
y =

[
xin,1 + Ťin,1Q, . . . , xin,p + Ťin,pQ,Q

]> (14)

where x is partitioned with two different parts as

[x>1 ,x
>
2 ]> where x1 = xr and x2 =

[
x>in, Q

]>
with

2 From a physics-based viewpoint, this feature is obvious because
the various rate processes are decoupled.
3 The output y is strongly related to the temperature, therefore, it
can be easily measured as long as the extents of the p inlet streams
and the component mole heat capacities together with the molar
numbers of all species are available (Hoang et al., 2020).

n = R + p + 1 and m = p + 1; u , v + w, is the input
variable, where w is used for the reference tracking and v
is used for the disturbance compensation; R1 = θIR and
R2 = θIp+1 are symmetric and positive definite matrices.
d1(x) and d2(x) describe the time-varying unmatched and
matched disturbances, respectively and the storage energy
function H(x) is of a quadratic form, i.e.

H(x) :=
1

2
x>x (15)

It is important to note that g(x) in (14) is invertible.
To solve the control problem, the structures of d1(x) and
d2(x) will be specified by the following two assumptions :

Assumption 1. The unmatched disturbance d1(x) can be
factorized in the following form :

d1(x) = Fd(x)d̄1 (16)

where Fd(x) = diag[F1d(x), F2d(x), . . . , FRd(x)] is a R×R
positive definite diagonal matrix and d̄1 is the constant R-
dimensional column vector.

Assumption 2. The matched disturbance d2(x) can be
factorized in the following form :

d2(x) = Gd(x)d̄2 (17)

where Gd(x) is an arbitrary m ×m matrix and d̄2 is the
constant m-dimensional column vector.

For the sake of clarity, we let x∗ , [x∗>1 ,x∗>2 ]> denote the
desired equilibrium point of the perturbed PH system (14).
Propositions 1–3 below show that the system trajectory
x2 will track the desired dynamic reference trajectory x2d

where the dynamics of x2d is assigned to pass through x∗2
while x1 follows up x∗1 as time goes to infinity.

4.1 Tracking error controller plus a feed-forward law

The following proposition proposes the use of a feed-
forward law for the matched disturbance rejection d2(x)
while the effect of d1(x) is compensated by assigning a
certain damping injection of reference trajectory.

Proposition 1. Let us assume that the reference trajectory
xd = [x1d,x2d]

> is governed by[ �
x1d
�
x2d

]
= −
[
R1 0
0 R2

]
∂H(xd)

∂xd
+

[
RI1 0
0 RI2

]
∂H(e)

∂e
+

[
0

g(x)w

]
(18)

where e = [e1, e2]> = x−xd is the error state vector, H(e)
is defined by H(e) = 1

2e
>e, RI1 = diag(RI1,1, . . . , RI1,R)

and RI2 = diag(RI2,1, . . . , RI2,p+1) are symmetric matri-
ces. If the feed-forward law v for the matched disturbance
rejection is computed as follows

v = −g(x)−1d2(x) (19)

then the system trajectory x2 will converge asymptotically
towards the reference trajectory x2d while the difference
between x1 and x1d will approach d̄1 as the equilibrium
point asymptotically if the damping injections RI1 and
RI2 are appropriately assigned such that :

R1 +RI1 =Fd(x) � 0 (20)(
R2 +RI2

)
=
(
R2 +RI2

)>
� 0 (21)

Proof. From (15), it is straightforward to show that :[
∂H(x)

∂x
− ∂H(xd)

∂xd

]
=
∂H(e)

∂e
:= e (22)
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By subtracting (18) from (14) and applying (22), the
dynamics of the error state vector e is achieved as follows :

�
e = −

[
R1 +RI1 0

0 R2 +RI2

]
∂H(e)

∂e
+

[
d1(x)
d2(x)

]
+

[
0

g(x)v

]
(23)

Then, by substituting the feed-forward law v (19) for (23),
the disturbance d2(x) is canceled and the dynamics of (23)
becomes :

�
e = −

[
R1 +RI1 0

0 R2 +RI2

]
∂H(e)

∂e
+

[
Fd(x)

0

]
d̄1 (24)

Let us define e1d = e1 − d̄1.
As the matrix Fd(x) is a positive definite and diagonal
matrix, thereby existing a matrix RI1 such that the
condition (20) is met, then (24) becomes :[

�
e1d
�
e2

]
= −

[
R1 +RI1 0

0 R2 +RI2

] [
e1d

e2

]
(25)

By applying the conditions (20) and (21), the dynamics
of (25) preserves the PH representation with the following
storage function :

Ψ(e1d, e2) =
1

2
e>1de1d +

1

2
e>2 e2 > 0 (26)

Moreover, the time derivative of Ψ is obtained as follows :

�
Ψ = −

[
∂Ψ

∂e1d

]>
[R1 +RI1]

[
∂Ψ

∂e1d

]
−
[
∂Ψ

∂e2

]>
[R2 +RI2]

∂Ψ

∂e2
< 0

(27)

The last inequality is satisfied due to (20) and (21). More-
over, because Ψ(e1d, e2) is bounded below by the origin, it
can be used as a Lyapunov function candidate according
to LaSalle’s theorem (Khalil, 2002). Consequently, the
trajectories of dynamics (25) converge asymptotically to
the equilibrium point (e∗1d, e

∗
2) = (0,0), implying that

lim
t→∞

x2 = lim
t→∞

x2d (28)

lim
t→∞

x1 = lim
t→∞

x1d + d̄1 (29)

The latter concludes the proof. 2

4.2 Tracking error controller plus a dynamic feedback law

Together with the feed-forward law (19), the impact of
d2(x) is also compensated by a dynamic feedback law,
given by the following proposition.

Proposition 2. Consider the perturbed PH system (14)
and the reference trajectory xd (18) under the dynamic
feedback law v, written in the following form :

�
η = G>d (x)

∂Hcl
∂e2

−KD(η − d̄2)

v = −g(x)−1Gd(x)η
(30)

where η ∈ Rm, m = p+1, is the state vector, KD ∈ Rm×m
is a positive definite (constant) matrix for tuning control
parameters, d2(x) meets Assumption 2 and the function
Hcl(e1d, e2,η) : RR × Rm × Rm → R+ is defined by :

Hcl(e1d, e2,η) = Ψ(e1d, e2) +
1

2
η>η (31)

with e1d = x1 − x1d − d̄1, e2 = x2 − x2d and Ψ(e1d, e2),
given in (26). Then the extended dynamics of closed-loop
system, described by e1d, e2 and η, will have an equilib-
rium point at (e∗1d, e

∗
2,η
∗) = (0,0, d̄2). In other words, the

system trajectory x2 will converge asymptotically towards

the reference profile x2d while the discrepancies between
x1 and x1d will approach d̄1 as the equilibrium point
asymptotically if the conditions (20) and (21) are met.

Proof. Because the structure of xd (18) is unchanged,
the dynamics of error state vector e will be similar to (23).
Consequently, this dynamics under the regulation of (30)
and the condition (20) is rendered as : �

e1d
�
e2
�
η

 =

[
0

d2(x)
KDd̄2

]
+

{[0 0 0
0 0 −Gd(x)
0 G>D(x) 0

]

−

[
R1 +RI1 0 0

0 R2 +RI2 0
0 0 KD

]}
∂Hcl

∂e1d
∂Hcl

∂e2
∂Hcl

∂η

 (32)

Let the right-hand side of (32) equalize to zero, we obtain :
− (R1 +RI1)

∂Hcl
∂e1d

− (R2 +RI2)
∂Hcl
∂e2

−Gd(x)
∂Hcl
∂η

+ d2(x)

Gd(x)>
∂Hcl
∂e2

−KD
∂Hcl
∂η

+KDd̄2

 = 0 (33)

It can be clearly seen that the first identity is met because

of
∂Hcl
∂e1d

∣∣∣∣
e1d=0

= 0R while the second and third identities

are satisfied provided that η = d̄2 and
∂Hcl
∂e2

∣∣∣∣
e2d=0

= 0p+1

thanks to Assumption 2. As a result, (e∗1d, e
∗
2,η
∗) =

(0,0, d̄2) is an equilibrium point of (32).

Next, we define a Lyapunov function Ω(e1d, e2,η) for the
stability analysis of closed-loop system (32) as follows :

Ω(e1d, e2,η) =Hcl(e1d, e2,η)−
(
∂Hcl
∂η

)>∣∣∣∣∣
η∗

(η − η∗)

−Hcl(e∗1d, e∗2,η∗) > 0 (34)

where Hcl(e1d, e2,η) is given in (31).

Admittedly, the quadratic function Hcl has an isolated
minimum at (e1d, e2,η) = (0,0,0); hence, it is indeed
a strictly convex function. As a result, Ω(e1d, e2,η) (34)
is also bounded from below by origin (Jayawardhana
et al., 2007). On the other hand, the time derivative of
Ω(e1d, e2,η) is obtained as follows :

�
Ω =−

(
∂Hcl

∂e1d

)>
(R1 +RI1)

∂Hcl

∂e1d
−
(
∂Hcl

∂e2

)>
(R2 +RI2)

∂Hcl

∂e2

+

(
∂Hcl

∂e2

)>
[d2(x) + g(x)v] +

(
η> − d̄>2

)
G>d (x)

∂Hcl

∂e2

−
(
η> − d̄>2

)
KD(η − d̄2) (35)

By applying the condition (21) and the feedback law v
(30) for (35), we obtain

�
Ω < −

(
η − d̄2

)>
KD

(
η − d̄2

)
< 0 (36)

The last inequality is satisfied due to the positive defi-
nite condition of KD. Consequently, La Salle’s invariance
principle is invoked to guarantee the globally asymptotic
stabilization of the error system (23) at the desired equi-
librium point under the control of the dynamic feedback
(30) (Khalil, 2002). The latter concludes the proof. 2
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The asymptotic stabilization of the system trajectory x1

to x∗1 is not explicitly shown in Propositions 1 and 2, thus
this issue will be addressed by the following proposition.

Proposition 3. The convergence of x1 towards x∗1 is guar-
anteed and independent of the factorization of d1(x) of
Assumption 1 if and only if

x∗1 ≡ x∗1d + d̄1 (37)

where x∗1d is the equilibrium point of x1d given by (18).

Proof. First of all, it can be verified that the equilibrium
point x∗1 of the perturbed PH system (14) fulfills

x∗1 = R∗−1
1 d∗1 (38)

On the other hand, it can be shown from (18) that x∗1d is
given by

x∗1d = R∗−1
1 R∗I1d̄1 (39)

where R∗1 and R∗I1 are the matrices corresponding to R1

and RI1 calculated at the desried equilibrium point x∗.
From this, one derives:

x∗1d + d̄1 = R∗−1
1 (R∗1 +R∗I1) d̄1 (40)

Because the matrix RI1 is chosen to fulfill the condition
(20) at all the time, Eq. (40) therefore becomes:

x∗1d + d̄1 = R∗−1
1 F ∗d d̄1 = R∗−1

1 d∗1 (41)

Eq. (37) immediately follows thanks to Eqs. (38) and (41).
Furthermore, note that it is possible to do so only if Eq.
(37) is valid, that is, the only-if condition holds. 2

Remark 1. Two proposed control configurations in Propo-
sition 1 and 2 share the same method to compensate the
effect of unmatched disturbance d1(x), i.e. by assigning a
certain structure for RI1 to meet the condition (20), but
while the effect of d2(x) is cancelled directly by the feed
forward law v (19) in the first configuration, the second
one rejects gradually its effect via the dynamics of η (30).

5. ILLUSTRATIVE EXAMPLE

5.1 The decoupled dynamics via the extent transformation

We consider the synthesis of cyclopentenol from cy-
clopendaiene by sulfuric acid-catalyzed addition of water
in a CSTR. The following stoichiometry is expressed for
R = 3 reactions and S = 6 components, including 5 active
species and sulfuric acid as a catalyst (Hoang et al., 2013) :

C5H6(A)
k1−−−−−−→

+H2O(E)
C5H7O(B)

k2−−−−−−→
+H2O(E)

C5H8(OH)2(C)

2C5H6(A)
k3−→ C10H12(D)

where the catalyst (H2SO4) is denoted by F . Also, the
stoichiometric matrix N is given as follows :

N =

[−1 1 0 0 −1 0
0 −1 1 0 −1 0
−2 0 0 1 0 0

]
(42)

The CSTR is initially operated with two inlets, i.e. uin =
[uin,1,uin,2]>, where uin,1 and uin,2 are 12000 and 24000
(g/h), respectively, and one outlet with the assumption
that uin,1 + uin,2 = uout = const. Additionally, Win is
chosen as

W>
in =

[
0.3
66

0 0 0 0.7
18

0

0 0 0 0 0.925
18

0.075
98

]
(mol/g) (43)

Other physical parameters and operating conditions can
be found in (Hoang et al., 2013). Then, we can calculate
Ťin = [364.34, 419.60]> (J/g).

5.2 Controller design

To apply Propositions 1 and 2 for control design, the
reference trajectory xd is derived as follows :

�
xd = −

[
θI3 0
0 θI3

]
xd +

[
RI1 0
0 RI2

] [
e1

e2

]
+

[
0

g(x)

]
w (44)

where RI2 = diag(RI2,1, RI2,2, RI2,3), g(x) =

[
I2 0

Ť>in 1

]
and w = [wuin,1

, wuin,2
, wqex ]>.

Then, the unmatched disturbance d1(x) = rv can be
factorized in the following form to meet Assumption 1 :

d1(x) = rv =

[
α1rv1 0 0

0 α2rv2 0
0 0 α3rv3

]
︸ ︷︷ ︸

Fd(x)�0

 1
α1
1
α2
1
α3


︸ ︷︷ ︸
d̄1

(45)

where αi, i = 1, 2, 3 are positive tuning parameters. Then,
the matrix RI1 is computed by :

RI1 =

[
α1rv1 − θ 0 0

0 α2rv2 − θ 0
0 0 α3rv3 − θ

]
(46)

that satisfies the condition (20). Moreover, the matched
disturbance d2(x) can be expressed in the following form
to meet Assumption 2 :

d2(x) =

[
0(

−∆Href

)>
rv

]
=

[
0 0

0 (−∆Href )>
rv

k01

]
︸ ︷︷ ︸

Gd(x)

[
0
k01

]
︸ ︷︷ ︸

d̄2

(47)

where k01 is the kinetic constant of the first reaction. Note
also that the derivations of Fd(x) in (45) and Gd(x) in
(47) are not unique.

Next, the inverse of g(x) is derived as follows :

g(x)−1 =

[
I2 0
−Ť>in 1

]
(48)

Thus, the feed-forward law v = [vuin,1 , vuin,2 , vqex ]> (19)
is calculated by using (47) and (48) :

v = −

[
1 0 0
0 1 0

−Ťin,1 −Ťin,2 1

] 0
0(

−∆Href

)>
rv

 =

 0
0(

∆Href

)>
rv


(49)

On the other hand, the dynamic feedback law v (30) is
obtained by using (47) and (48) :

�
η =


�
ηuin,1
�
ηuin,2
�
ηqex

 =

 −KD1ηuin,1

−KD2ηuin,2

(−∆Href )>
rv

k01
eQ −KD3(ηqex − k01)


v =

[
vuin,1 , vuin,2 , vqex

]>
=

[
0, 0, (∆Href )>

rv

k01
ηqex

]>
(50)

where eQ = Q − Qd and KDi, i = 1, 2, 3 are components
of the matrix KD.

In what follows, for sake of simplicity, we will keep uin,2
as a constant and we will use uin,1 and qex as manipulated
variables. Then, the dynamics of xind,1 andQd are assigned

as
�
xind,1 = K1(x∗in,1 − xind,1) and

�
Qd = K2(Q∗ − Qd),

respectively, for reference tracking. Then, the tracking-
error-based controller is achieved from (44) as follows :
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wuin,1 =
K1(x∗in,1 − xind,1) +

uin,2

m
xind,1 −RI2,1(xin,1 − xind,1)

1−
xind,1

m
(51)

wqex = K2(Q∗−Qd)−RI2,3 (Q−Qd)+θQd−Ť>inuin (52)

The actual controllers: uin,1 and qex are then calculated
by uin,1 = wuin,1

+ vuin,1
and qex = wqex + vqex . Noting

that vuin,1
and vqex are extracted from either (49) or (50).

5.3 Simulation results for the control system

The applicability of proposed control strategy to stabi-
lize the vessel-extent-based decoupled dynamics is illus-
trated by simulations with two initial conditions: (IC1)
[n0 T0] = [1.4 1.6 11 0.4242 447 5.102 410] and (IC2)
[n0 T0] = [0.8 0.4 9 0.2697 470 5.102 300]. From consid-
ered operating conditions, given by Hoang et al. (2013),
the optimal steady state is computed by [n∗ T ∗] =
[6.60 3.35 3.48 0.87 461.91 5.102 367.34]. In practice, this
state is chosen as a set point of control system, leading
to x∗r1 = 6.83 mol, x∗r2 = 3.48 mol, x∗r3 = 0.87 mol,
x∗in,1 = 3333 (g) and Q∗ = 2838.9 (kJ/h). We select
α1 = α2 = 1 and α3 = 10 in (46) while K1,K2, RI2,1
and RI2,3 in (51) and (52) are chosen as K1 = K2 = 4.45
and RI2,1 = RI2,3 = 8. Additionally, KD3 in (50) is
chosen as 5. Fig. 1 shows that trajectories of decoupled

Fig. 1. Closed-loop trajectories of output (−: (IC1) with
the feed-forward law; −−: (IC1) with the dynamic
feedback law; −: (IC2) with the feed-forward law and
−−: (IC2) with the dynamic feedback law).

Fig. 2. Control input.

dynamics: xr1, xr2, xr3 and T , converge to the desired
equilibrium point for both initial conditions by using either

feed-forward law or dynamic feedback one for disturbance
rejection. Furthermore, the representation of the control
inputs, namely uin,1 and qex in Fig. 2, are physically
admissible in terms of their dynamics and amplitudes.
Finally, Fig. 3 presents the closed loop responses of the
molar number of species A and B of the reaction system
as expected.

Fig. 3. The controlled variables of the reaction system.
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