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Abstract: A fault-tolerant system is able to reach its goal even when some of its components
are malfunctioning. This paper examines tolerance to a specific type of malfunction: the loss
of control authority over actuators. Namely, we investigate whether the desired target set for
a linear system remains reachable under any undesirable input. Contrary to robust control, we
assume that the undesirable inputs can be observed in real time, and subsequently allow the
control inputs to depend on these undesirable inputs. Building on previous work on reachability
with undesirable inputs, this paper develops a reachability condition for linear systems, and
obtains a formula that describes reachability of the goal set for driftless linear systems by
computing the minimum of a concave-convex objective function. From this formulation we
establish two novel sufficient conditions for resilient reachability.
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1. INTRODUCTION

Fault-tolerant systems are required to be resilient to mal-
functioning actuators. Among the possible malfunctions,
the most widely studied type is actuator failure, which con-
siders an actuator performing with a reduced amplitude
or with a fixed unknown magnitude (Tang et al., 2007;
Wang and Wen, 2010). Yet, the situation where an ac-
tuator becomes unmanageable and produces undesirable,
uncontrolled outputs has been less investigated. Such a
situation is referred to as loss of control authority over
an actuator (Bucić et al., 2018). For instance, a damaged
rudder flapping in the wind produces undesirable outputs,
but cannot be turned off like a defective engine.

We are interested in the case of a system losing control
authority over at least one of its actuators. The desire
of this paper is to develop simple verification conditions
determining whether the system is still able to reach
its initial goal. While computation of a reachable set
is a classical problem in control theory (Brockett, 1976;
Isidori, 1985) and significant computational work has been
performed in order to make finding a solution feasible (see,
e.g., Kurzhanski and Varaiya (2000); Girard and Guernic
(2008)), classical methods often rely on full knowledge of
system state and inputs and cannot be directly applied to
the case of loss of control authority.

To handle systems enduring undesirable inputs, the field
of robust control aims at guaranteeing strong reachability
i.e. finding a control working for any perturbation, and has
been widely studied by, e.g., Bertsekas and Rhodes (1971),
Bertsekas (1972) and Raković et al. (2006). However,
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our case of interest does not feature perturbations, but
undesirable inputs from one of the very own actuators of
the system. In that case, real-time input measurements
are usually available, rendering robustness unnecessarily
conservative, and calls for a different type of reachability.
Namely, we say that a goal is resiliently reachable from
an initial state if for any undesirable inputs, there exists a
control law — possibly dependent on current undesirable
inputs, but with no knowledge of future ones — able to
drive the system to the target set. While not referring
to it as resilient reachability, Marzollo and Pascoletti
(1973) and Mitchell and Tomlin (2003) considered this
setting but focused on algorithmic approaches instead of
looking for an analytical solution. Delfour and Mitter
(1969) transformed the problem of resilient reachability
into a minimax formula assessing whether a target set is
reachable. While our paper heavily draws from the latter
work, their resulting reachability conditions are highly
abstract, lack intuition, and are difficult to compute.

This paper aims at extending reachability analysis meth-
ods to linear systems with loss of control authority. The
contributions of this paper are fourfold. First, we consider
the reachability condition of Delfour and Mitter (1969)
and develop it into a usable equation describing resilient
reachability for linear systems. Second, we tackle the spe-
cific case of driftless systems, and derive a computable
condition for resilient reachability. Third, we analyze the
evolution with time of resilient reachability for driftless
systems, and show that the resilient reachability problem
can be formulated as a minimax optimization of a concave-
convex objective function. Fourth, we establish several
sufficient conditions that enable us to avoid solving the
developed optimization problem.

The remainder of the paper is organized as follows. Sec-
tion 2 defines the problem of interest and states the related
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necessary definitions. Section 3 introduces preliminary re-
sults obtained by Delfour and Mitter (1969), upon which
we build our theory. In Section 4 we develop a resilient
reachability condition for linear systems. Section 5 applies
this condition to driftless systems, while Section 6 explores
how resilient reachability of a target set evolves with time
and establishes a sufficient condition for resilient reacha-
bility. A scenario with an underwater robot illustrates our
theory in Section 7.

Notation: We use ‖·‖X to denote the canonical norm on the

space X. For x = (x1, ..., xn) ∈ Rn, ‖x‖Rn =
√∑

x2i . The
ball of center x and radius ε in the space X is BX(x, ε). We
use 〈·, ·〉X to denote the inner product on X. The space
of continuous linear maps from X into Y is denoted by
L
(
X,Y

)
, while L2

(
[0, T ], Rm

)
or simply L2 denotes the

space of the square integrable functions. For a Banach
space X, its topological dual space is X∗ = L

(
X,R

)
.

The dual vector of x ∈ X is x∗ ∈ X∗, and denotes the
associated linear form from X to R. For S ∈ L

(
X,Y

)
,

S∗ ∈ L
(
Y ∗, X∗

)
is the adjoint linear map.

2. PROBLEM STATEMENT

Consider a system’s dynamics ẋ = Ax + Dū, where
A ∈ Rn×n and D ∈ Rn×(m+p) are constant. Let G ⊂ Rn
be the target set (“goal”) to be reached by the system.
Assume that, during its mission, the system loses authority
over p of its m + p actuators. We can then separate the
controlled inputs u ∈ Rm from the undesirable inputs
w ∈ Rp by writing ū = [u> w>]> and D = [B C], with
B ∈ Rn×m and C ∈ Rn×p. The system’s dynamics can
thus be rewritten as follows:

ẋ(t) = Ax(t) +Bu(t) + Cw(t), x(0) = x0 ∈ Rn. (1)

The goal of this paper is to find a simple condition that
characterizes whether a target set is reachable in a given
time for a system undergoing a loss of control authority,
regardless of the inputs imposed by the malfunctioning
actuators, but with possible real-time knowledge of those
inputs. We thus formulate the problems of resilient reach-
ability of G within a time T ≥ 0.

Problem 1. Determine if, for any undesirable inputs w,
there exists a control law uw driving the system from x0
to G at time T .

Problem 2. Determine if, for any undesirable inputs w,
there exists a control law uw driving the system from x0
to G before the time T .

We note the possible dependence of uw on the undesir-
able input w. Unlike the concept of strong reachability in
classical robust control (Bertsekas, 1972; Raković et al.,
2006), the objective in Problems 1 and 2 is not to a priori
design a control law driving the state to the target set
for any undesirable inputs, but instead to guarantee that
whatever the undesirable inputs are, one can determine a
control law dependent on the undesirable inputs to drive
the system to its goal. The intuition behind posing such
problems is that the system inputs, even if not desirable,
can often be measured. In turn, one can counteract unde-
sirable inputs more efficiently when these inputs are known
and a subsequent controller can thus handle perturbations
of a larger magnitude than a standard robust controller.

The technical work of this paper follows the assumptions of
Delfour and Mitter (1969) and considers square integrable
inputs over their time domain [0, T ]. Namely, if U is the set
of admissible control laws and W is the set of undesirable
signals, we consider

U =
{
u ∈ L2

(
[0, T ], Rm

)
: ‖u‖L2

≤ 1
}

= BL2
(0, 1),

W =
{
w ∈ L2

(
[0, T ], Rp

)
: ‖w‖L2 ≤ 1

}
= BL2(0, 1),

G =
{
x ∈ Rn : ‖x− xgoal‖Rn ≤ ε

}
= BRn(xgoal, ε),

where xgoal ∈ Rn and 0 ≤ ε <∞.

Let us formally define the sets of the initial states from
which the system can be driven to G at or before time T :

XT
0 =

{
x0 ∈ Rn : ∀ w ∈W, ∃ u ∈ U : x(T ) ∈ G

}
,

X≤T0 =
{
x0 ∈ Rn : ∃ t ∈ [0, T ] : x0 ∈ XT

0

}
.

(2)

We can now define the notion of resilient reachability
associated with our problems:

Definition 1. The target set G is resiliently reachable from
x0 in time t if x0 ∈ XT

0 .

Definition 2. The target set G is resiliently reachable from
x0 by time T if x0 ∈ X≤T0 .

We emphasize that this paper is focused on solving Prob-
lems 1 and 2 as they are stated, i.e., on determining
the existence of a control law and not on its calculation.
The subsequent problem of determining the appropriate
control law is naturally of future interest.

We now describe prior results enabling our work.

3. PRELIMINARIES

The main result of this section is a resilient reachability
condition derived from Delfour and Mitter (1969), which
will serve as foundation to build our theory.

Delfour and Mitter (1969) worked with the abstract system

x = s+ S(u) +R(w), (3)

where x ∈ X3 is the state, u ∈ X1 is the control and
w ∈ X2 is the disturbance. The system’s initial state is
s ∈ X3, while maps S ∈ L

(
X1, X3

)
and R ∈ L

(
X2, X3

)
represent respectively the effects of controlled and
undesirable inputs. We consider X1 = L2

(
[0, T ], Rm

)
,

X2 = L2

(
[0, T ], Rp

)
, and X3 = Rn.

We first transform (1) into (3) by applying the process
described in Section 7 of Delfour and Mitter (1969). We
define the following continuous linear operators:

S(u) =

∫ T

0

eA(T−t)Bu(t)dt, R(w) =

∫ T

0

eA(T−t)Cw(t)dt.

By taking s = eATx0 ∈ Rn, the solution of (1) is then

x(T ) = s+ S(u) +R(w).

For a Banach space X and its adjoint X∗, the norm of
x∗ ∈ X∗ is defined (Conway, 1990) by

‖x∗‖X∗ = sup
‖x‖X=1

{
|x∗(x)|

}
= sup
‖x‖X≤1

{
|x∗(x)|

}
. (4)

Proposition 1. G is resiliently reachable from x0 in time T
if and only if

sup
‖x∗‖X∗

3
=1

{
x∗(s−xgoal)−‖S∗x∗‖X∗1 + ‖R∗x∗‖X∗2 − ε

}
≤ 0.
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Proof. Let us start from Corollary 5.8 of Delfour and Mit-
ter (1969), which, while not using the same terminology,
states that the goal G is resiliently reachable if and only if

sup
‖x∗‖X∗

3
=1

{
x∗(s) + inf

u∈U

(
S∗x∗(u)

)
+ sup
w∈W

(
R∗x∗(w)

)
− sup
y∈G

(
x∗(y)

)}
≤ 0.

(5)

By the definition of U , for u ∈ U , −u ∈ U . Since S∗x∗ is
linear, inf

u∈U

(
S∗x∗(u)

)
= −sup

u∈U

(
|S∗x∗(u)|

)
= −‖S∗x∗‖X∗1 .

And similarly, sup
w∈W

(
R∗x∗(w)

)
= ‖R∗x∗‖X∗2 .

For y ∈ G = BRn(xgoal, ε), we write y = xgoal + δy, since
and x∗ is linear, x∗(y) = x∗(xgoal) + x∗(δy). Then,

sup
y∈G

(
x∗(y)

)
= x∗(xgoal) + sup

‖δy‖≤ε

(
x∗(δy)

)
= x∗(xgoal) + ε,

because sup
‖δy‖≤ε

(
x∗(δy)

)
= ε sup

‖z‖≤1

(
x∗(z)

)
= ε ‖x∗‖X∗3︸ ︷︷ ︸

= 1

= ε.

We can then simplify the terms in (5) to obtain the desired
formula. �

The reachability condition derived in Proposition 1 is
highly abstract due to the dual terms and is impractical
to use. The following two sections aim to develop more
workable conditions.

4. INTEGRAL RESILIENT REACHABILITY
CONDITION

We will now work on the simplification of Proposition 1
into a more explicit condition. First, note that x∗ is
bounded as ‖x∗‖X∗3 = 1. We can thus use the Riesz
representation theorem (Conway, 1990): there exists a
unique h ∈ Rn such that

x∗(·) = 〈h, ·〉 and ‖h‖Rn = ‖x∗‖X∗3 = 1.

Then, the supremum in Proposition 1 is over the unit
sphere in Rn, i.e. for h ∈ U =

{
x ∈ Rn : ‖x‖ = 1

}
.

With s = eATx0, the first term in Proposition 1 becomes

x∗(s− xgoal) = 〈h, eATx0 − xgoal〉Rn . (6)

We can now simplify the adjoint maps with the definition
from Conway (1990). For any u ∈ L2 we have

S∗x∗(u) =
(
x∗ ◦ S

)
(u) = x∗

(
S(u)

)
= 〈h, S(u)〉

= 〈h,
∫ T

0

eA(T−τ)Bu(τ)dτ〉.
(7)

Putting (4) and (7) together, we obtain

‖S∗x∗‖L∗2 = sup
‖u‖L2=1

{∣∣∣〈h,∫ T

0

eA(T−τ)Bu(τ)dτ
〉∣∣∣} . (8)

We proceed similarly for ‖R∗x∗‖L∗2 . We can then simplify
Proposition 1.

Theorem 2. G is resiliently reachable from x0 in time T if
and only if

max
h∈U

{
〈h, eATx0 − xgoal〉

− sup
‖u‖L2=1

{∣∣∣〈h,∫ T

0

eA(T−τ)Bu(τ)dτ
〉∣∣∣} (9)

+ sup
‖w‖L2=1

{∣∣∣〈h,∫ T

0

eA(T−τ)Cw(τ)dτ
〉∣∣∣} −ε

}
≤ 0.

Proof. After using (6) and (8) for S∗ and R∗ in Proposi-
tion 1, the only work left is to prove that the supremum
from Proposition 1 turns into maxh∈U, which follows from
the discussion preceding (6), U being closed, and the
function to maximize being continuous in h. �

Because Theorem 2 directly uses matrices A, B and C
instead of adjoint maps, it is more direct than the equation
(5) we started from. Yet, computing the two supremums
on L2 is a difficult task because of its infinite dimension.
We now focus on driftless systems where the integrals in
(9) can be simplified.

5. DRIFTLESS SYSTEMS

Driftless systems are widely studied in robotics; examples
are described in Siciliano and Khatlib (2016). For these
systems matrix A equals 0, so that (1) becomes

ẋ(t) = Bu(t) + Cw(t). (10)

We can then distill Theorem 2 into a simpler form.

Theorem 3. G = BRn(xgoal, ε) is resiliently reachable at T
from x0 iff

max
h∈U

{
〈h, x0−xgoal〉−

√
T
∥∥B>h∥∥Rm +

√
T
∥∥C>h∥∥Rp

}
≤ ε.

Proof. When A = 0, the leftmost term in (9) clearly
equals 〈h, x0 − xgoal〉. We simplify the next term with the
Cauchy-Schwarz inequality:∣∣∣∣∣〈h,B

∫ T

0

u(τ)dτ〉Rn

∣∣∣∣∣ ≤ ∥∥B>h∥∥Rm

∥∥∥∥∥
∫ T

0

u(τ)dτ

∥∥∥∥∥
Rm

(11)

The equality in (11) occurs when B>h and
∫ T
0
u(τ)dτ are

positively collinear (Conway, 1990).

By decomposing u on the canonical basis of Rm, we can
bound the norm of the integral of u:∥∥∥∥∥
∫ T

0

u(τ)dτ

∥∥∥∥∥
Rm

=

√√√√ m∑
i=1

(∫ T

0

1× ui(τ) dτ

)2

(12)

≤

√√√√ m∑
i=1

(
T×
∫ T

0

u2i (τ)dτ

)
=
√
T‖u‖L2 .

In (12), we use again the Cauchy-Schwarz inequality. The
equality occurs when each ui is almost everywhere (in
the measure-theoretical sense) collinear with the function
τ 7→ 1, i.e., when u is almost everywhere constant. By
combining (11) and (12), we proved that

sup
‖u‖L2=1

{∣∣∣〈h,∫ T

0

Bu(τ)dτ
〉∣∣∣} ≤ ‖B>h‖Rm

√
T . (13)

If we can find a function uh of unit norm in L2 for which
the inequality in (13) is an equality, then the supremum in
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(13) would be a maximum. The function uh must realize
both equality cases of the Cauchy-Schwarz inequality used
previously. Hence, for h ∈ U we define the following
constant function: uh(t) := B>h/(

√
T‖B>h‖Rm). We note

that ‖uh(t)‖Rm = 1/
√
T for all t. Thus,

‖uh‖L2
=

√∫ T

0

‖uh(t)‖2Rmdt =

√∫ T

0

1

T
dt = 1. (14)

Moreover, as uh is positively collinear with B>h and is
constant over time, it satisfies both of the Cauchy-Schwarz
equality cases in (11) and (12), which leads to∣∣∣〈h,∫ T

0

Buh(τ)dτ
〉∣∣∣ =

∥∥B>h∥∥Rm

√
T‖uh‖L2

. (15)

From (13), (14) and (15), we clearly obtain

max
‖u‖L2=1

{∣∣∣〈h,∫ T

0

Bu(τ)dτ
〉∣∣∣} =

√
T
∥∥B>h∥∥Rm .

The same process can be applied to the final term in (9),
yielding the theorem claim. �

To simplify the notation of Theorem 3, let us first write
d = x0 − xgoal and define the functions:

J(h, t) := 〈h, d〉+
√
t
( ∥∥C>h∥∥− ∥∥B>h∥∥ ) (16)

and f(t) := max
h∈U

{
J(h, t)

}
. Thus, the condition of Theo-

rem 3 is equivalent to f(T ) ≤ ε.
The scalar product 〈h, d〉 gives the intuition that h repre-
sents a travel direction. Call h∗ the argument of the maxi-
mum. Then, h∗ is positively collinear with d, so it is driving
the system away from xgoal. On the other hand, the terms
B>h and C>h represent how the inputs drive the system
when they are along the direction h. Hence, on an intuitive
level, h∗ is the direction giving the most strength to the
undesirable inputs over the controlled inputs. Since U is
the unit sphere in Rn, maxh∈U explores every direction.
Therefore, h∗ represents the “worst direction” for resilient
reachability.

We can strengthen our faith in Theorem 3 by looking
at a few special cases. Assuming x0 = xgoal, G becomes
reachable at time T = 0 since, for all h ∈ U, 〈h, d〉 = 0.
Another simple case is when B = C = 0, so ẋ = 0, i.e.
x(t) = x0 for all t, and the reachability condition becomes
as expected ‖d‖ ≤ ε, which is equivalent to x0 ∈ G.

Theorem 3 gives a condition on resilient reachability at
time T . We now have all the tools to study how the resilient
reachability of G evolves with time.

6. EVOLUTION OF REACHABILITY WITH TIME

Note first that for t > 0, J(·, t) is not a concave function,
and thus its maximization over U may not be an easy
task. Indeed, both functions h 7→ ‖C>h‖ and h 7→ ‖B>h‖
are convex, so J(·, t) is the difference between two convex
functions. This type of maximization is referred to as a dif-
ference of convex (DC) problem, and analytical solutions
are only available for a few special cases. Numerous algo-
rithms have been developed by, e.g. Tuy (1987) and Tao
and An (1997). In particular, the simple algorithm devised

by Yuille and Rangarajan (2003) to minimize a function
composed of a concave and a convex part has been of great
interest and is called the concave-convex procedure. While
these numerical results, combined with Theorem 3, enable
us to determine whether set G is resiliently reachable at
every given time, they do not enable us to directly gain
insight regarding reachability by a certain time like an
analytical solution would.

In order to discuss reachability by a certain time, we apply
Theorem 3 to note that G is resiliently reachable from x0
by time T if and only if

min
t∈[0,T ]

{
max
h∈U

{
J(h, t)

}}
≤ ε.

Hence the reachability by time T can be described as a
minimax problem with a DC cost function. We will omit
the discussion of possible numerical solutions to such a
problem and instead focus on analytical results.

Let us define the function g(h) := ‖C>h‖ − ‖B>h‖, so
that J(h, t) = h>d + g(h)

√
t. For a given goal and initial

state, ‖h>d‖ is bounded. So, as time grows,
√
t becomes

the leading term in J , with its sign determined by g(h).
We therefore study the sign of max

{
g(h)

}
. We will show

the following:
• if max

h∈U

{
g(h)

}
> 0, G is only resiliently reachable up

to a certain time,
• if max

h∈U

{
g(h)

}
= 0, the resilient reachability of G

depends on the distance d,
• if max

h∈U

{
g(h)

}
< 0, G is resiliently reachable from

some time onwards.
We prove these claims in the following three subsections.

6.1 Maximum of g is positive

If max
{
g(h)

}
> 0, then ‖C>h‖ > ‖B>h‖ for some h.

In other words, in line with our intuition, there is an
input direction where the matrix C produces a stronger
undesirable input than what the control matrix B is
capable of counteracting. Since we want to guarantee
reaching the goal for any undesirable input, the target
is not resiliently reachable. We formalize this intuition as
follows.

Theorem 4. Let x0 ∈ Rn. If max
h∈U

{
g(h)

}
> 0, then there

exists tlim > 0 such that for all t ≥ tlim, x0 /∈ XT
0 .

Proof. We use the notation as given above. Because
max
h∈U

{
g(h)

}
> 0, there is a h+ ∈ U such that g(h+) > 0.

f(t) ≥ 〈h+, d〉+ g(h+)
√
t −−−→
t→∞

+∞. So, lim
t→∞

f(t) = +∞.

Then, there exists tlim > 0 such that for t ≥ T , f(t) > ε.
In that case, Theorem 3 states that G is not reachable at
time t from x0, i.e. x0 /∈ XT

0 . �

Theorem 4 states that, for a fixed initial state x0 and
a goal G, there exists a time T after which the target
set is not resiliently reachable anymore. Thus, all resilient
reachability can only happen in finite time.

6.2 Maximum of g equals zero

When max
{
g(h)

}
= 0, there is at least one h ∈ U

such that g(h) = 0. Intuitively, in this direction h the
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strength of the undesirable inputs matches the strength
of the controlled ones. In directions where g is negative,
the controlled inputs have a greater magnitude than the
undesirable inputs. Thus, the resilient reachability of G
depends on its location.

Let us define H0 = {h ∈ U : g(h) = 0}. The set H0

is closed, bounded, and nonempty by the assumption of
max{g(h)} = 0. So with d = x0 − xgoal, we can define
h0 = arg max

h∈H0

{
h>d

}
. We note that vector h0 need not be

uniquely defined. The theorem below holds for every h0.

Theorem 5. Assume max
h∈U

{
g(h)

}
= 0. If ε ≥ ‖d‖, then

x0 ∈ XT
0 for all t ≥ 0, and if ε < h>0 d, then x0 /∈ XT

0
for all t ≥ 0.

Proof. We note that max
h∈U

{
h>d

}
= f(0) = ‖d‖. Thus,

f(t) ≤ max
h∈U

{
h>d

}
+ max

h∈U

{
g(h)
√
t
}

= ‖d‖+ 0 = ‖d‖,

so max
t≥0

{
f(t)

}
= ‖d‖.

Additionally, h0 ∈ U, so f(t) ≥ h>0 d + g(h0)
√
t = h>0 d.

Thus, h>0 d ≤ f(t) ≤ ‖d‖ for all t ≥ 0.

If ε ≥ ‖d‖, then for t ≥ 0, f(t) ≤ ε, i.e., by Theorem 3,
x0 ∈ XT

0 . On the other hand, if ε < h>0 d, then for t ≥ 0,
f(t) > ε, so by Theorem 3, x0 /∈ XT

0 . �

So, if ε ≥ ‖d‖, G is resiliently reachable from the start
and remains always resiliently reachable, while if ε < h>0 d,
G is never resiliently reachable. There is obviously an
intermediate case for ε ∈

[
h>0 d, ‖d‖

]
where the resilient

reachability of G depends on time.

6.3 Maximum of g is negative

We can now tackle the third case, where max
{
g(h)

}
< 0.

In this situation, our intuition indicates that controlled
inputs are stronger than the undesirable inputs in every
direction, so the reachable set grows unbounded with time.
The theorem below confirms this intuition.

Theorem 6. If max
h∈U

{
g(h)

}
< 0, then there exists tlim ≥ 0

such that x0 ∈ XT
0 for all t ≥ tlim.

Proof. Let max
h∈U

{
g(h)

}
= −γ < 0. Then f can be

bounded by above:

f(t) = max
h∈U

{
h>d+ g(h)

√
t
}

≤ max
h∈U

{
h>d

}
+ max

h∈U

{
g(h)

}√
t = ‖d‖ − γ

√
t.

We compare this upper bound with ε to obtain a reacha-
bility condition

‖d‖ − γ
√
t ≤ ε⇐⇒ tlim :=

(‖d‖ − ε
γ

)2
≤ t.

such that, for all t ≥ tlim, f(t) ≤ ε, which is equivalent to
x0 ∈ XT

0 according to Theorem 3. �

The tlim defined in the proof of Theorem 6 might not be
the minimal time for resilient reachability. Nonetheless,
Theorem 6 proves that, after some time, any target set
becomes resiliently reachable.

Theorems 4, 5 and 6 show that the sign of the maximum
of g leads to interesting conclusions. It is thus natural to
attempt to analytically determine an upper bound for g.

6.4 Bounding g

Let σC
>

max be the maximal singular value of C>, and σB
>

min

be the minimal singular value of B>. We claim that the
relationship between these two values impacts the maximal
value of g.

Theorem 7. If σC
>

max < σB
>

min, then max
h∈U

{
g(h)

}
< 0.

Proof. Let us define M = CC>. The matrix M is
symmetric, so we can use the following classical inequality
(Horn and Johnson, 2012):

λMmin‖x‖2 ≤ x>Mx ≤ λMmax‖x‖2, ∀x ∈ Rn,
with λMmin and λMmax respectively, the minimum and maxi-
mum eigenvalues of M . Since M is trivially positive semi-

definite, λMmin ≥ 0. Note that ‖C>h‖ =
√
h>CC>h =√

h>Mh. Thus we obtain√
λMmin ≤ ‖C

>h‖ ≤
√
λMmax = σC

>

max, ∀h ∈ U.

By doing the same for B>, g can be bounded as follows:√
λC
>

min −
√
λB>max ≤ g(h) ≤ σC

>

max − σB
>

min, ∀h ∈ U.

So if σC
>

max < σB
>

min, then max
h∈U

{
g(h)

}
< 0. �

Theorems 6 and 7 trivially imply the following corollary.

Corollary 8. If all singular values of C> are strictly smaller
than those of B>, then the target set is resiliently reach-
able in finite time.

The intuition behind Corollary 8 is that the singular values
of B> and C> respectively quantify the strength of the
controlled and undesirable inputs. We now proceed to
computationally confirm the above theoretical results.

7. NUMERICAL EXAMPLE

We consider an underwater robot propelled by three en-
gines, as shown in Fig. 7. The main engine u1 has a small
bias in the y direction.

[
ẋ
ẏ

]
=

[
10 1 1
0.2 −1 1

][u1
u2
u3

]
u1

u2u3

x

y

Fig. 1. A model of an underwater robot with three engines.

Our example is motivated by the work of Vela et al. (2002)
and Yu et al. (2016), which have also considered driftless
dynamics. The assumption of driftlessness can intuitively
be justified by the viscosity of the water combined with a
small speed of the robot.

During its mission the controller loses authority over the
third actuator. The terms in (10) can thus be written as
follows:

u =

[
u1
u2

]
, w = u3, B =

[
10 1
0.2 −1

]
, C =

[
1
1

]
.
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Intuitively, the robot should still be able to reach any
goal set, since the second actuator u2 can counteract the
undesirable inputs of u3, and the small bias of u1 on y
provides a net motion on y, while the desired displacement
along x is also realized by the main engine. Theorem 7
provides only a sufficient condition for reachability, so even

if its conditions are not met (σC
>

max ≈ 1, 4 > σB
>

min ≈ 1, 0) it
does not mean that the target is not resiliently reachable.
Actually, we can compute max

h∈U

{
g(h)

}
= −0.02, and use

Theorem 6 to show that any target ball is eventually
resiliently reachable, as suggested by our intuition.

In the situation where the controller loses authority over
both the second and third actuators, our intuition suggests
that a controlled motion along x is still possible, but the
displacements along y cannot be controlled. Therefore,
we cannot guarantee to reach any target position. We
numerically compute g and obtain max

h∈U

{
g(h)

}
= 1.4 > 0.

The conclusion of Theorem 4 validates our intuition.

If the controller only loses authority over the first actuator,
then max

h∈U

{
g(h)

}
= 8.6 > 0. Of course none of the side

engines can make up for the loss of the main one, as
predicted by Theorem 4.

Another interesting case to note is when u1 thrusts only
along x without bias on y, i.e.,

Ẋ =

[
ẋ
ẏ

]
=

[
10 1 1
0 −1 1

] [u1
u2
u3

]
.

Then, a loss of control authority over one of the side
engines results in max

h∈U

{
g(h)

}
= 0.02 > 0. Indeed, we

cannot guarantee to reach a goal that is not on the x axis,
because no net motion on y is guaranteed, since both side
engines can cancel each other out.

8. CONCLUSION

This paper described the problem of resilient reachability:
deciding whether a system can always be driven to a
desired goal, given that some of its actuators act in an
undesirable manner and without prior knowledge of these
undesirable inputs. To solve this problem, we derived a re-
silient reachability condition for linear systems and a more
specific condition for driftless systems. We investigated the
evolution of resilient reachability with time and rewrote
the problem as a minimax optimization with a concave-
convex objective function. We then derived results that
do not require directly solving the optimization problem,
at the price of providing sufficient or necessary conditions.

This manuscript, however, presents only the first step
in our long-term goal of resilient system synthesis, i.e.,
design of actuator functionality (in the context of this
paper represented by system matrices) for which the
system retains resilient reachability to loss of one or more
actuators. Furthermore, since resilient reachability relates
to the existence of a control law, our future work will
naturally tackles the construction of such a control law.
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