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Abstract: In this paper, finite-time distance-based formation maneuvering control of a non-
holonomic wheeled mobile robot multi-agent system in a leader-follower configuration is
considered. The desired formation graph is assumed to be minimally and infinitesimally rigid,
and only a subset of agents has access to the relative position and velocity of the leader. A
distributed velocity estimator is employed by each agent to estimate the leader’s velocity and
therefore the swarm velocity in finite-time. A finite-time formation maneuvering algorithm is
presented and it is proved that drives the agents to the desired formation and tracks the leader’s
velocity in finite-time. Moreover, it is demonstrated that both the velocity estimator and the
controller can be implemented in the agents’ local coordinate frames. Simulations are provided
to illustrate the effectiveness of the proposed algorithms.

Keywords: Multi-agent systems, Coordination of multiple vehicle systems, Distance-based
control, Formation maneuvering, Non-holonomic mobile robots.

1. INTRODUCTION

Decentralized control of multi-agent systems (MAS) has
received significant attention due to their practical poten-
tial in many civilian and military tasks. An important
goal of these systems is formation maneuvering which
involves simultaneous shape acquisition and tracking of
a reference path or velocity, these objectives allow to
achieve practical tasks, see Mehdifar et al. (2018). In Oh
et al. (2015) distance-based formation control is presented,
where formation is achieved by each agent by sensing the
relative positions of its neighbors with respect to their
own local coordinate frame through on-board sensors and
controlling interagent distances. This strategy compared
with position-based and displacement-based control pro-
vides more flexibility in the agent implementation, as
global information is not required, useful in environments
where systems like Global Positioning System (GPS) are
not available. Hence by this approach is possible to relax
some requirements for multi-agent formation maneuvering
or to make full use of the more constrained environments
where distance-based control can be applied, making it
more suitable for real world tasks. An introduction to
multi-agent formation control is presented in Oh et al.
(2015). In Wang et al. (2017) a decentralized formation
control for underactuated vessels with a leader-follower

scheme is studied, desired relative positions to each agent
are given. Peng et al. (2015) and Chu et al. (2017) consider
the formation control problem for multiple non-holonomic
mobile robots, achieving convergence to a desired moving
formation, the positions of each agent in the formation
are given. Time-varying formation tracking for high-order
MAS with a directed topology is studied in Hua et al.
(2018), formation and tracking of the desired trajectory
in finite-time is achieved, desired relative positions of the
followers are provided. In Mehdifar et al. (2018) following
a leader-follower scheme, a single integrator MAS with a
minimally and infinitesimally rigid graph, achieves forma-
tion maneuvering through a finite-time velocity estimator
and rigidity-based distance-based formation maneuvering
control, different from the above works only interagent dis-
tances are given, i.e. the relative positions between agents
are not fixed, they adjust to fulfill the interagent restric-
tions, moreover the designed controllers are implementable
in the local coordinate frames of the agents. Inspired by the
aforementioned works, this paper considers a finite-time
distance-based formation maneuvering problem for non-
holonomic wheeled mobile robots with a minimally and in-
finitesimally rigid desired formation. It is assumed that at
least two agents have access to the relative position of the
leader, and at least one follower has access to the leader’s
velocity. To achieve the formation maneuvering objective,
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inspired by Mehdifar et al. (2018), both a decentralized
velocity estimator together with a rigidity-based forma-
tion controller are designed. The contributions of this
paper are summarized as: (1) Finite-time rigidity-based
formation acquisition applied to non-holonomic vehicles.
(2) A reduced rigidity matrix R̄ is proposed to allow for
leader-follower distance keeping. The designed estimator
and controller guarantee convergence in finite-time and
can be implemented in the local coordinate frames of the
agents.

2. PRELIMINARIES

An undirected graph is defined as G , (V,E) where
V = {1, 2, . . . , n} is the set of vertices and E ⊂ V × V
is the set of undirected edges in which if a vertex pair
(i, j) ∈ E then so is (j, i) ∈ E. The number of elements
in V and E is given by the cardinality of its sets denoted
by |V | = n, |E| = m. The adjacency matrix associated
to the graph G, denoted by A(G) is the symmetric n× n
matrix whose elements are defined as: aij = 1 if (i, j) ∈ E,
otherwise aij = 0. Note that aii = 0. The neighborhood
of a vertex i is the set Ni = {j ∈ V |(i, j) ∈ E}. The
degree matrix for the graph G is defined as D(G) =
diag {d1, . . . , dn} ∈ Rn×n where di =

∑n
j=1 aij . The graph

Laplacian associated with an undirected graphG is defined
as Mesbahi and Egerstedt (2010): L(G) = D(G)−A(G). A

framework is the pair F , (G,P), where G is a graph and

P =
[
PT1 , . . . ,PTn

]T
is the set of positions that are assigned

to each node, a map from V to Rd, Mehdifar et al. (2018),
Jackson (2007). A distance set ∆ = [· · · , δij , · · ·] , δij >
0 ∈ R, is realizable if there exists a framework such that
‖pj − pi‖ = δij ∀(i, j) ∈ E. A framework is said to be
rigid if the corresponding realizable distance set constrains
are sufficient to maintain the formation shape, Hendrickx
et al. (2008), Izmestiev (2009). A minimally (min.) rigid
framework is a rigid framework such that no edge of it’s
graph can be removed without loosing rigidity, Hendrickx
et al. (2008). An infinitesimally (inf.) rigid framework
requires that given a velocity vector assigned to each
vertex of the framework, the initial rate of change of the
distance between each pair of vertices joined by an edge
is zero, that is, preservation of inter-agent distances to
the first-order during an infinitesimal motion, Izmestiev
(2009). 1n stands for the n × 1 vector of ones, In stands
for the n×n identity matrix and ⊗ denotes the Kronecker
product. The function sig(x)α of the real scalars x, α is
defined as: sig(x)α = |x|α sign(x). The functions sign(x)
and sig(x)α of a vector x ∈ Rp are defined as:

sign

[ x1

...
xp

]
=

[
sign(x1)

...
sign(xp)

]
, sig

([ x1

...
xp

])α
=

[
sig(x1)α

...
sig(xp)α

]
,∈ Rp (1)

For a vector x ∈ Rn, ‖x‖2 = [
∑n
k=1 |xk|

2
]
1/2 represents

the 2-norm. ‖x‖1 =
∑n
k=1 |xk| denotes the 1-norm, and

‖x‖p = [
∑n
k=1 |xk|

p
]
1/p

denotes the p-norm.

Lemma 1. Mesbahi and Egerstedt (2010)[Geršgorin circle
Theorem] Let A ∈ Cn×n and let Ci be the closed circle in
the complex plane centered at Aii with radius given by the
row sum ri =

∑
j 6=i |Aij |: Ci = {z ∈ C : |z −Aii| ≤ ri}.

Then all the eigenvalues of A lie in the union of the circles
Ci for i = 1, . . . , n.
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Fig. 1. 1a Position and orientation of two agents i and j
in Σ and 1b Leader-fixed frame.

Lemma 2. If xi ≥ 0, then: (
∑n
i=1 xi)

2 ≥
∑n
i=1 x

2
i

Lemma 3. For a positive definite matrix B ∈ Rn×n, and
a vector x ∈ Rn: λmin(B)‖x‖22 ≤ xTBx ≤ λmax(B)‖x‖22.
Where λmin and λmax are the minimum and maximum
eigenvalues of the matrix B.

Lemma 4. If xi ≤ 0 and 0 < α < 1, then:∑n
i=1 (xαi ) > (

∑n
i=1 xi)

α

Lemma 5. [Hölder’s inequality] For vectors x, y ∈ Rn,
positive real scalars p, q and the condition 1/p + 1/q = 1,
then:

∥∥xT y∥∥
1
≤ ‖x‖p‖y‖q.

Lemma 6. [Young’s inequality] For real scalars x, y and
positive real scalars 0 ≤ α, β ≤ 1 under the condition
α+ β = 1, then: xαyβ ≤ αx+ βy.

3. PROBLEM STATEMENT

Consider a MAS composed of n nonholonomic wheeled
mobile robots, which can be modeled as:

ζ̇i =
[
Ṅi Ėi θ̇i

]T
=
[

cos θi 0
sin θi 0

0 1

]
[ νiωi ] (2)

where ζi = [Ni Ei θi]
T

is the position and orientation of
the i-th robot in an inertial Cartesian frame, and νi, ωi,
θi are the linear velocity, the angular velocity and the
heading angle respectively, all of them related to the
Earth-Fixed North-East coordinate frame Σ, as shown

in Fig. 1a. Also, denote Pi = [Ni Ei]
T ∈ R2. Take the

non-linear transformation T: Γi = νi [Cθi Sθi ]
T

, where

Γi =∆ [Γi1 Γi2]
T

, Cθi and Sθi denote cos(θi) and sin(θi)
respectively, also −π ≤ θ ≤ π and assuming the vehicles
will be in continuous motion then νi 6= 0. The transfor-
mation can be verified to be a diffeomorphism by tak-

ing its Jacobian: J(T) =
[
Cθi −νiSθi
Sθi νiCθi

]
. With determinant

det(J(T)) = νiC
2
θi

+ νiS
2
θi

= νi. Since we assumed νi 6= 0
then det(J(T)) 6= 0 and J(T) is nonsingular. So Γi is a
local diffeomorphism in the defined set. Taking the time

derivative of Γi: Γ̇i =
[
Cθi −νiSθi
Sθi νiCθi

][
ν̇i
ωi

]
= AiU∗i . Where

Ai ∈ R2×2 is an invertible matrix if νi 6= 0. Then system
(2) can be rewritten as:

Ṗi = Γi, Γ̇i = AiU∗i (3)

(3) can be viewed as a cascade connection, where Ṗi has
Γi as control input, and Γi has U∗i as control input. Define
the desired rigid formation with a min. and inf. rigid
framework F∗ =∆ (G∗,P∗), where G∗ =∆ (V ∗, E∗) is the
leader and followers graph, where movement of the leader
vehicle is independent from the followers’ motion and can
send information to it’s neighbors, the leader has bounded
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velocity vector and angular velocity, vL = [vLN vLE ]
T

and ωL, respectively, and bounded linear and angular
accelerations, v̇L, ω̇L, respectively, where the magnitude of
v̇L is bounded by ‖v̇L‖2 ≤ γ. Also for the Leader-Followers
graph G∗, |V ∗| = n∗, |E∗| = m∗ = 2n∗−3, since it is min.
rigid. Considering only the followers, their graph is given
by G =∆ (V,E) which is assumed to be connected, and
|V | = n = n∗ − 1. For the formation control design it
is assumed that each follower can measure their relative
positions with their neighbors qij = pj − pi, ∀j ∈ Ni, and
through on-board sensors and odometry estimate ζi and
ζ̇i. The goal is to design finite-time distributed distance-
based formation maneuvering controllers for the followers
such that they, simultaneously, keep the desired distances
to their neighbors and move cohesively with the leader.
The control objectives are stated as:

eij = ‖Pi − Pj‖ − δij = 0, vi = vL (4)

where (i, j) ∈ E∗. These represent the objectives: to keep
a desired distance δij between neighbor agents and for all
agents to move at the leader’s velocity. Since the graph is
required to be inf. rigid, if the desired inter-agent distances
are kept then the agents will maintain formation and
move cohesively. The vector e is ordered such that i < j,

(i, j) ∈ V . Then: e = [. . . , eLk, . . . , eij , . . . ]
T ∈ Rm∗

where
k ∈ NL and (i, j) ∈ V . This ordering will prove to be
useful in the arrangement of η, R and R̄. Define:

ηij = ‖Pi − Pj‖2 − δ2
ij = eij (eij + 2δij) (5)

Note that ηij is zero if and only if eij = 0, i.e. when the
control objective is reached. Therefore control objectives
(4), are achieved by driving η to zero.

4. FINITE-TIME FORMATION MANEUVERING

4.1 Finite-Time leader velocity estimator

For each agent, the following estimator is proposed to

estimate the leader’s velocity vector vL = [vLN vLE ]
T

:

˙̂vi = −k1

( ∑
j∈Ni

[aij (v̂i − v̂j)] + bi (v̂i − vL)

)
− k2 sign

( ∑
j∈Ni

[aij (v̂i − v̂j)] + bi (v̂i − vL)

)
(6)

where v̂i = [v̂iN v̂iE ]
T

with v̂iN and v̂iE being the north
and east components of the ith agent’s estimate of vL, and
j ∈ Ni. Note that aij are elements of the matrix A(G), bi
represents connectivity between agent i and the leader,
if information is received by the follower then bi = 1,
otherwise bi = 0, it is assumed that at least one agent
has a connection with the leader, and k1, k2 are positive
scalars. The following matrices related to the graph G
are defined: D2 = D ⊗ I2, A2 = A ⊗ I2, L2 = L ⊗ I2,
B = diag(b1, . . . , bn) and B2 = B ⊗ I2. It is evident that:
L2 = D2 − A2. Taking H = L + B and H2 = H ⊗ I2, it
follows that H2 = L2 + B2. Also define V̂ = [v̂T1 . . . v̂

T
n ]T

as the column vector of the followers’ estimates and VL =
1n ⊗ vL = [vTL , · · · , vTL ]T ∈ R2n. All the equations are
understood in the Filippov sense in order to provide for
the possibility to use discontinuous sign function. Shtessel
et al. (2014).

Theorem 1. Let H2 be a real symmetric matrix. Under
the assumptions that the followers’ graph is connected
and at least one follower has access to VL. The estimator
(6) drives V̂ to VL in finite-time T0 = 2VC1(Ṽ (0))

1/2/KC1

where: KC1 =
(
−
√

2(k2 − γ)λmin(H2)
)
/
√
λmax(H2), by select-

ing: k2 > γ. VC1 = 1
2 Ṽ

TH2Ṽ is a positive definite and
radially unbounded Lyapunov candidate function.

Proof. Adding and subtracting vL in (6) and considering∑
j∈Ni [aij ] = di, then (6) is rewritten for the whole system

in matrix form as:
˙̂
V = −k1[H2(V̂ −VL)]−k2 sign[H2(V̂ −

VL)]. Let Ṽ = V̂ − VL → ˙̃V =
˙̂
V − V̇L then:

˙̃V = −k1(H2Ṽ )− k2 sign(H2Ṽ )− V̇L (7)

By Lemma 1, for a connected graph, H is positive definite,
Hu and Hong (2007). H2 is also positive definite as by
Kronecker product properties the eigenvalues remain the

same. Taking the time derivative of VC1: V̇C1 = Ṽ TH2
˙̃V

V̇C1 = −k1Ṽ
TH2

2Ṽ − k2Ṽ
TH2 sign(H2Ṽ )− Ṽ TH2V̇L (8)

Where H2
2 = H2H2. Note that [H2Ṽ ] is a 2n × 1 vector,

the subscript ` will be used to indicate an element of
this vector. When ` is odd, the element corresponds to
the north component, and to the east component when
it is even. Therefore (8) can be rewritten as: V̇C1 =

−k1Ṽ
TH2

2Ṽ − k2

∑2n
`=1

∣∣∣[H2Ṽ ]`

∣∣∣ − v̇LN∑n
l=1[H2Ṽ ]2l−1 −

v̇LE
∑n

l=1[H2Ṽ ]2l. Since the magnitude of V̇L is bounded:

V̇C1 < −k1Ṽ
TH2

2Ṽ − (k2 − γ)

2n∑
`=1

∣∣∣[H2Ṽ
]
`

∣∣∣ (9)

If k2 > γ then V̇C1 is negative definite ∀ ṽ 6= 0, also since
VC1 is radially unbounded, the origin of Ṽ is globally
asymptotically stable. Therefore Ṽ → 0 as t → ∞.
From (9), the definition of the 2-norm and Lemma 2, the
following can be obtained:

V̇C1 ≤ −(k2 − γ)
∥∥∥[H2Ṽ ]

∥∥∥
1
≤ −(k2 − γ)

∥∥∥[H2Ṽ ]
∥∥∥

2
(10)

From (10) and Lemma 3, the origin of Ṽ is globally
exponentially stable, moreover (7) is input-to-state stable
(ISS), Khalil (2014). Consider Lemma 3 on (10), thus:

V̇C1 ≤
−(k2−γ)λmin(H2)(λmax(H2)‖Ṽ ‖2

2
)
1/2

(λmax(H2))
1/2 (11)

Considering that: (2VC1)
1/2 ≤

√
λmax (H2)

∥∥∥Ṽ ∥∥∥2

2
.

Then, (11) becomes: V̇C1 ≤ −(k2−γ)λmin(H2)√
λmax(H2)

√
2VC1. From

which the following can be obtained: 2VC1(Ṽ (t))
1
2 ≤

2VC1(Ṽ (0))
1
2 − −

√
2(k2−γ)λmin(H2)√

λmax(H2)
t. When Ṽ = 0 then

VC1(Ṽ ) = 0, thus t ≤ T0 = 2VC1(Ṽ (0))
1/2

KC1
where: KC1 =

−
√

2(k2−γ)λmin(H2)√
λmax(H2)

. This implies that (6) drives V̂ → VL in

finite-time T0. �

4.2 Finite-Time Controller Design

From (4), the error dynamics is given by: ėij = [Pi − Pj ]T

(Ṗi − Ṗj)/(eij + δij). And from (5) the dynamic of ηij
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is: η̇ij = 2 [Pi − Pj ]T (Ṗi − Ṗj); (i, j) ∈ E∗. The rigidity
matrix R(P ) of the Framework F∗ is a real matrix with m∗

rows and 2n∗ columns, both with the appropriate ordering.
Thus each row is associated with an edge, and each pair
of columns with a vertex. The row corresponding to edge
(i, j) ∈ E∗ where i < j, has the form, Jackson (2007):[
0T2 , · · · , (Pi − Pj)T , · · · , 0T2 , · · · , (Pj − Pi)

T , · · · , 0T2
]
. The vector

η has the same ordering as e, with dynamics:

η̇ = 2R
[
ṖL Ṗ

]T
(12)

Where Ṗ =
[
ṖT1 · · · ṖTn

]T ∈ R2n, and ṖL =
[
ṄL ĖL

]T ∈
R2. Notice that the row order of R is associated with the
ordering of η, and the column order with

[
ṖTL ṖT

]T
.

By substituting (3) into (12) we have the new system

η̇ = 2R
[
ṖL Γ

]T
, Γ̇ = AU∗ (13)

Where Γ =
[
ΓT1 , · · · ,ΓTn

]T ∈ R2n, A is a nonsingular block

diagonal matrix A = diag {A1, · · · ,An} ∈ R2n×2n, and
U∗ =

[
U∗T1 , · · · , U∗Tn

]
∈ R2n. This system can be viewed

as a cascade connection, through backstepping a virtual
control Γ = ξ that drives η to 0 is designed.

Theorem 2. The system (13) is driven to its origin in
a finite settling-time Tf = T0 + T1, where T1 is upper

bounded by T1 ≤ (1−α)VC2(η(T0))
1−α
1+α

K3(1−α) with the control law:

U∗ = −A−1
(
R̄ [sig(η)α]− ξ̇ + k4 sig (Λ)(

3α−1
α+1 )

)
(14)

where ξ̇ is the time derivative of

ξ = −k3R̄
T sig(η)α + V̂ (15)

By selecting k3, k4 as positive real scalars and being R̄
the reduced rigidity matrix as shown in (18), Λ = Γ − ξ
and 1

3 < α < 1. VC2 =
∑

(i,j)∈E∗ [ 1
(2(α+1)) |ηij |

α+1
] is a

Lyapunov candidate function. K3 is as shown in (22).

Proof. Note that (15) uses the velocity estimate V̂ . Ex-
pressing the position of each agent relative to a leader-
fixed frame ΣL with the same orientation as the earth-
fixed frame, as shown in Fig. 1b, the relative position and

velocity of the leader is: P̄L = [0 0]
T → ˙̄PL = [0 0]

T

For the followers: P̄i = Pi − PL → ˙̄PL = Ṗi − ṖL.
Defining ēij =

∥∥P̄i − P̄j∥∥ − δij = ‖q̄ij‖ − δij . Where

q̄ij = P̄i − P̄j , and (i, j) ∈ E∗. Then the error dynamic
is ˙̄eij = (q̄

T
ij

˙̄qij)/(ēij + δij). Now define

η̄ij =
∥∥P̄i − P̄j∥∥2 − δ2

ij = ēij (ēij + 2δij) (16)

With dynamics ˙̄ηij = 2q̄Tij ˙̄qij = 2(P̄i− P̄j)T ( ˙̄Pi− ˙̄Pj). Note

that ēLk =
∥∥P̄L − P̄k∥∥ − δkL = ‖PL − Pk‖ − δLk = eLk,

where k ∈ NL. And ēij =
∥∥P̄i − P̄j∥∥ − δij = ‖Pi − Pj‖ −

δij = eij , where (i, j) ∈ E. Then the relative distance
error, its dynamic, and the relative position are the same
in both frames ΣL and Σ, written as:

ē = e, ˙̄e = ė, q̄ = q (17)

˙̄η has the same ordering as η̇, so ˙̄η = [· · · , ˙̄ηLk, · · · , ˙̄ηij , · · ·]
T

where ˙̄ηLk correspond to edges connecting the leader
with some (maybe all) followers, but at least 2, and ˙̄ηij
correspond to edges between followers. Therefore ˙̄η can be
rewritten in matrix form as:

˙̄η =2


.
.
.

0T2 · · · · · · · · · P̄T
k

· · · · · · · · · 0T2
.
.
.

0T2 · · ·
[
P̄i − P̄j

]T
· · · 0T2 · · ·

[
P̄j − P̄i

]T
· · · 0T2

.

.

.




˙̄P1

...
˙̄Pn


˙̄η =2R̄ ˙̄P (18)

Denoting the matrix as R̄ ∈ Rm∗×2n and ˙̄P = [ ˙̄PT1 · · · ˙̄PTn ]T

∈ R2n. The rows of R̄ have the same order as η̄. In-
finitesimal rigidity is checked, for followers connected to
the leader, the inf. rigidity condition is: V̄k · P̄k = 0. The
set of V̄k that satisfies the equation is V̄k = 0 or V̄k ⊥ P̄k.
For the followers: (P̄i − P̄j) · (V̄i − V̄j) = 0. Writing these
in matrix form: R̄V̄ = 0. Where V̄ = [V̄1 · · · V̄n]T . The
set of V̄ that fulfills this condition is Null(R̄), and the
degrees of freedom (DOF) in V̄ , is nullity(R̄). For a fixed
position leader, the DOF of the framework is 1, a rotation
around the leader, then nullity(R̄) = 1. By the rank-nullity
theorem: Rank(R̄) = (2n∗ − 2) − 1 = 2n∗ − 3 = m∗.
Therefore R̄ is full row rank and full rank. Considering
q̄ = q, ˙̄η can be rewritten as:

˙̄η = 2R̄Ū (19)

Where Ū = [ (Ṗ1−ṖL)T ... (Ṗn−ṖL)T ]
T

. Consider the poten-
tial function, Mehdifar et al. (2018) Vij = [1/(2 (α+ 1))]

|η̄ij |α+1
For 1

3 < α < 1, (i, j) ∈ E∗. Vij is positive
definite and since ēij is defined on [−δij ,∞] and η̄ is a
function of ēij then Vij is also radially unbounded. Define
VC2 =

∑
(i,j)∈E∗ Vij and take its time derivative along the

system trajectories:

V̇C2 = [sig(η̄)α]
T
R̄Ū (20)

Choosing the virtual control Ū = −k3R̄
T sig(η̄)α, where

1
3 < α < 1 and k3 > 0. Then (20) with control Ū is:

V̇C2 = −k3 [sig(η̄)α]
T
R̄R̄T sig(η̄)α. Since the framework

is inf. rigid, and R̄ is full rank, then R̄R̄T ≥ 0; also
Rank(R̄R̄T ) = Rank(R̄), hence R̄R̄T is full rank, which
means it is nonsingular, so we conclude R̄R̄T > 0. Then

V̇C2 = −k3 [sig(η̄)α]
T
R̄R̄T sig(η̄)α < 0. And since VC2 is

radially unbounded, then the origin is globally asymptot-
ically stable. From Lemma 3, V̇C2 can be written as :

V̇C2 ≤ −k3λmin(R̄R̄T ) [sig(η̄)α]
T

[sig(η̄)α] (21)

Note that 0 < (2α/[1 + α]) < 1. Using Lemma 4:

[sig(η̄)α]T [sig(η̄)α] ≥ (
∑

(i,j)∈E∗ |η̄ij |1+α
)
2α/1 + α. Also from

VC2 and the previous result: [sig(η̄)α]T [sig(η̄)α] ≤ [2(α +

1)](
2α

1+α )V( 2α
1+α )

C2 . Then (21) can be rewritten as:

V̇C2 ≤ −k3 [2(α+ 1)](
2α

1+α ) λmin(R̄R̄T )V( 2α
1+α )

C2 = −K3V
( 2α

1+α )
C2 (22)

Where K3 = k3[2(α + 1)](
2α

1+α )λmin(R̄R̄T ) > 0. From
Lemma 5 in Mehdifar et al. (2018) and (22) we con-
clude that η̄ → 0 in finite-time T1, where T1 ≤
(1−α)VC2(η̄(T0))

1−α
1+α

K3(1−α) . Considering (16) we conclude η̄ = η,

as η̄ → 0, thus η → 0 in finite-time and η has a globally
asymptotically stable origin. Considering Ū as a virtual
input and since by t > T0, V̂ = VL, then Ū = ξ −
ṖL ⇒ ξ = Ū + VL = Ū + V̂ . Which for each follower:

ξi = −k3

∑
j∈Ni

[(Pi − Pj) sig(ηij)
α] + v̂ (23)
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Now that a control ξ =
[
ξT1 , · · · , ξTn

]T ∈ R2n stabilizes

η, and V̇C2 ≤ −W2, is known, where W2 is a positive
definite function, the control U∗ that drives Γ to ξ is
designed. ∀t ≥ T0, V̂ = VL, rewriting η̇ using (15), and

the fact that Ra = 0 if a = [a, · · · , a]
T ∈ R2n∗

, we
obtain: η̇ = 2R[0T2 ŪT ]T . Note that for a vector x ∈ R2n

and the rigidity matrix R, the following result holds:
R[0T2 xT ]T = R̄x. Therefore we can rewrite η̇ as η̇ = 2R̄Ū .
Similar to (19). Taking (13), adding and subtracting ξ from
Γ: η̇ = 2R̄Ū + 2R̄(Γ − ξ). Taking the change of variables
Λ = Γ− ξ results in the system:

η̇ = 2R̄Ū + 2R̄Λ, Λ̇ = AU∗ − ξ̇ (24)

Choosing the radially unbounded Lyapunov candidate
function: VC3 = VC2 + 1

2ΛTΛ, and taking its time deriva-

tive: V̇C3 ≤ −W2 + ΛT (R̄T [sig(η)α] + AU∗ − ξ̇). Choos-

ing U∗ = −A−1(R̄[sig(η)α] − ξ̇ + k4 sig(Λ)( 3α−1
α+1 ) with

1
3 < α < 1 then: V̇C3 ≤ −W2 − k4 ΛT sig (Λ)(

3α−1
α+1 ).

Denoting the `-th scalar element of Λ as Λ` to pre-
vent confusion with the 2 × 1 vector Λi, then: V̇C3 ≤
−W2 − k4

∑2n
`=1([|Λ`|2](

2α
α+1 )). From Lemma 4 we have:∑2n

`=1[(|Λ`|2)(
2α
α+1 )] > [

∑2n
`=1(|Λ`|2)](

2α/α + 1). Taking W2 =

K3V(2α/α + 1)
C2 and VC = 1

2ΛTΛ = 1
2

∑2n
`=1

(
Λ2
`

)
, V̇C3 can

be rewritten as: V̇C3 ≤ −K3V
( 2α
α+1 )

C2 − K4V
( 2α
α+1 )

C Where

K4 = 2( 2α
α+1 )k4. Defining the positive real scalar K5 ≤

min(K3,K4), then V̇C3 ≤ −K5(V( 2α
α+1 )

C2 + V( 2α
α+1 )

C ) Since

VC3 = VC2 + VC then CVβC3 = C (VC2 + VC)
β

where C
is a real positive scalar and 0 < β < 1. From Lemma

4: (VC2 + VC)β < (VβC2 + VβC) thus CVβC3 < C(VβC2 +

VβC), then: V̇C3 ≤ −K5V
( 2α
α+1 )

C3 . V̇C3 is negative definite,
therefore η → 0 and Λ → 0, so the origin of (24) is
globally asymptotically stable, moreover from Lemma 5
in Mehdifar et al. (2018) the origin is reached in finite-

time T2. Λ → 0 implies Γ → ξ. ξ̇ is computed by means
of the First-Order Sliding Mode differentiator proposed in
Levant (2003). Consider the time interval 0 ≤ t ≤ T0.

Rewriting η̇ using the input (15) yields η̇ = 2R̄(Ū + Ṽ ).
Which can be written as:

η̇ = 2R̄Ū + 2R̄Λ + 2R̄Ṽ , Λ̇ = AU∗ − ξ̇ (25)

This creates a cascade system, given the Lyapunov candi-
date function VC3, taking its time derivative:

V̇C3 = 1
2 [sig(η)α]

T
(2R̄Ū + 2R̄Λ + 2R̄Ṽ ) + ΛT (AU∗ − ξ̇) (26)

Define the vector ZT = [sig(η)α]T R̄ ∈ R2n, then

k3[sig(η)α]T R̄Ṽ = k3Z
T Ṽ , applying Lemma 5 with p =

q = 2, and Lemma 6 results in: k3 [sig(η)α]
T
R̄Ṽ ≤

k23
2 ([sig(η)α]

T
R̄R̄T sig(η)α) + 1

2 (Ṽ T Ṽ ). Multiply (26) by
k3 on both sides and substitute the above results, di-
viding by k3, using Lemma 3, writing in norm nota-
tion and noting that [sig(η)α]T [sig(η)α] = ‖η‖2α2α, yields

V̇C3 ≤ −k32 λmin

[
R̄R̄T

]
‖η‖2α2α−k4‖Λ‖

4α
α+1
4α
α+1

+ 1
2k3

∥∥∥Ṽ ∥∥∥2

2
. From

Corollary 5.10 in Ding (2013), (25) is ISS with respect to

the input Ṽ . Since (25) and (7) are ISS, then the cascade
connection between (25) and (7) is ISS, Khalil (2014). So,

the system (13) is stable while V̂ → VL on t ≤ T0, then for

t > T0, V̂ follows VL and η → 0 in finite-time, achieving
the control objective. �

4.3 Results in local frames

These results are given in Earth-Fixed coordinates, in a
similar fashion to Mehdifar et al. (2018) we show that they
can be expressed in local frames and that both the velocity
estimator and the formation control are distributed.

Velocity Estimator. v̂i can be computed from integration
of (6), as each agent can estimate it’s inertial orientation,
the velocity estimations can be communicated in inertial
coordinates which can then be expressed in the local frame
of the agent i through the rotation matrix from the inertial
frame to the local frame Ri. Let the superscript i indicate
a quantity expressed in the local frame of the i-th agent,
then the local velocity estimate of the agent i is: v̂ii = Riv̂i

Formation Control. With a local velocity estimate v̂ii ,
virtual control law (23) can be expressed in local co-
ordinates: ξii = Riξi = −k3

∑
j∈Ni Ri [qij sig(ηij)

α] +

v̂ii = −k3

∑
j∈Ni

[
qiij sig(ηiij)

α
]

+ v̂ii . Since ηij depends
only on relative distances, it is independent of the frame,
thus ηij = ηiij . q

i
ij is the locally measured relative po-

sition, then the virtual control law can be implemented
locally. (14) can be written for each agent as: U∗i =

−A−1
i

(∑
j∈Ni [qij sig(ηij)

α]− ξ̇i + k4 sig(Λi)
( 3α−1
α+1 )

)
. In lo-

cal coordinates it takes the form: U i∗i = −RiA−1
i

(
∑
j∈Ni [q

i
ij sig(ηiij)

α]− ξ̇ii + k4 sig(Λii)
( 3α−1
α+1 )). Where Λii =

RiΓi−ξii = [ νi0 ]−ξii . As θi can be estimated on-board, A−1
i

can be computed, ξ̇ii can be calculated in the same way as

ξ̇i. Hence the control law can be implemented locally.

5. SIMULATION RESULTS

Consider a MAS system with 4 agents and one leader, the
communication and formation graph is shown in Fig. 2.
Each robot can obtain information only from its neighbors,
and agents 1 and 2 have access to vL. The desired distances
between agents are dij = 1. The agents’ initial velocities
are set to zero. Initial positions are: PL = (0, 0), P1 =
(3,−3), P2 = (−4,−3), P3 = (3,−6), P4 = (−4,−7). From
the graph, the sets V , E and E∗ are given by:

V = {1, 2, 3, 4} E = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)}
E∗ = {(L, 1), (L, 2), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4)}

Also the following matrices can be obtained:

A(G) =

[
0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

]
, D(G) =

[
2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 2

]
B =

[
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]
, L(G) =

[ 2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2

]

R̄ =


N1−NL E1−EL 0 0 0 0 0 0

0 0 N2−NL E2−EL 0 0 0 0
N1−N2 E1−E2 N2−N1 E2−E1 0 0 0 0
N1−N3 E1−E3 0 0 N3−N1 E3−E1 0 0

0 0 N2−N3 E2−E3 N3−N2 E3−E2 0 0
0 0 N2−N4 E2−E4 0 0 N4−N2 E4−E2
0 0 0 0 N3−N4 E3−E4 N4−N3 E4−E3


The gains for the estimator, control laws and differentiator
are k1 = 30, k2 = 4, k3 = 0.3, k4 = 70, k5 = 1 and k6 = 2,
respectively. The trajectories followed by the agents are
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Fig. 2. Formation and communications graph.
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Fig. 3. Wheeled mobile robots trajectories.
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Fig. 4. (a) Inter-agent distance errors and (b) Leader
velocity estimation v̂i.
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Fig. 5. (a) Control inputs νi and (b) ωi.
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Fig. 6. (a) Virtual control tracking error Λ and (b) Agents
velocity components Γ.

shown in Fig. 3, the dashed line shows the connections
between agents at t = 2.5s, t = 7.5s, t = 15s and
t = 25s, when the formation maneuver is achieved. In Fig.
4a convergence of the inter-agent distance error to zero is
shown. Fig. 4b shows convergence of the estimated Leader
velocity (dashed line). Fig. 5a and Fig. 5b show the control
inputs νi and ω. Fig. 6b illustrates velocity matching.

6. CONCLUSIONS

In this paper, the finite-time rigidity-based formation ma-
neuvering problem for non-holonomic agents with differen-
tial wheeled robot dynamic model was considered for the
agents. A finite-time distributed leader velocity estimator
was employed and finite-time distributed distance-based
control laws were developed following the backstepping
methodology, for these a reduced rigidity matrix R̄ was
proposed to allow the leader’s neighbors to keep their
relative distance, since the leader is a non-controlled agent
and the conventional rigidity matrix involves all the agents
in the system. Simulations are provided to show the ef-

fectiveness of the algorithms and prove they are able to
achieve the desired objectives.
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