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Abstract: Industrial processes must be well equipped with a variety of sensors to maintain a
desired quality. However, some variables cannot be easily measured due to different causes, such
as acquisition and/or maintenance costs and slow acquisition time. This situation leads to a lack
of real-time information in the process, which could lead to lower quality in the final product.
One of such processes is the debutanizer column, where butane content measurement is highly
delayed. To enable online prediction of such variables, available information from the process can
be used to estimate predictive models, known as soft sensors. To this end, data-driven techniques
can be used, such as statistical and machine learning. However, such techniques usually take into
account a single metric when estimating the models, and there are multiple factors that play an
important role when designing a soft sensor, such as stability and accuracy. To cope with such
a situation, this paper proposes a multi-objective optimization design procedure, where feature
selection and ensemble member combination are performed. Therefore, the multi-objective
differential evolution algorithm with spherical pruning (spMODE-II) is initially employed for
building a pool of non-dominated linear support vector regression (SVR) models. Subsequently,
the same evolutionary algorithm is applied for selecting the weights of the previously generated
models in a weighted combination ensemble. In a final multi-criteria decision making stage, a
preferred ensemble is selected using the preference ranking organization method for enrichment
of evaluations (PROMETHEE). Results indicate that the proposed approach is able to produce
a highly stable and accurate butane content soft sensor for the debutanizer column.

Keywords: Soft sensor, Machine learning, Ensemble learning, Evolutionary algorithms,
Multi-objective optimization, Chemical industry, Chemical sensors, Monitoring.

1. INTRODUCTION

Industrial processes must be well equipped with a variety
of sensors to maintain a desired quality. Although it is
not difficult to acquire sensors for temperature, pressure,
and humidity, there exist several situations where not
all variables can be easily measured. Such variables are
denominated hard-to-measure, and the cause to a difficult
measurement can be associated to a high sensor acquisition
(or maintenance) cost or slow acquisition time. This sce-
nario leads to a lack of real-time information in the process
(Souza et al., 2016). One of such processes is the debu-
tanizer column, where the butane content measurement is
highly delayed, demanding solutions for online prediction
(Fortuna et al., 2005, 2007).

To alleviate such a problem, industry and academy started
using available information from the process to create
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predictive models, known as soft sensors (Kadlec et al.,
2009). Such models can be estimated through statistical
and machine learning techniques (Souza et al., 2016),
which usually train a model by optimizing a single metric.
However, there are multiple factor that play important
role when building a predictive model, such as accuracy
and stability (Ribeiro et al., 2019).

To build a soft sensor that takes into account stability
and accuracy, this work employs a multi-objective opti-
mization design (MOOD) procedure for building ensemble
models. The proposed procedure is composed of two multi-
objective problems (MOPs), one designed for building a
pool of diverse support vector regressors (SVRs) (Boser
et al., 1992; Cortes and Vapnik, 1995) through feature
selection, and other for selecting the weights of each re-
sulting SVR in a weighted average ensemble model. The
multi-objective differential evolution with spherical prun-
ing (spMODE-II) algorithm (Reynoso-Meza et al., 2014)
is applied to optimize both problems, and the preference
ranking organization method for enrichment evaluation
(PROMETHEE) (Brans and De Smet, 2016) is used for
aiding the selection of a preferred non-dominated ensem-
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ble. To the best of the authors knowledge, this is the first
application of such tools to develop a soft sensor. Results
indicate the creation of a highly accurate and stable butane
content soft sensor for the debutanizer column.

The remainder of this paper is organized as follows:
Section 2 introduces the problem, related work and the
generation of features; Section 3 details the proposed
MOOD procedure for soft sensor development; Section 4
reveals the experimental procedure and achieved results,
which are discussed in Section 5; Finally, the paper is
concluded with some final remarks and future work.

2. DEBUTANIZER COLUMN

Fortuna et al. (2005, 2007) introduced the debutanizer
column as a soft sensor problem, composed of one hard-to-
measure and seven easy-to-measure variables. The system
is part of a refinery process, and online prediction is desired
for improving quality monitoring and control of the plant.
Figure 1 illustrates the block scheme of such system.

Fig. 1. Schematic of the debutanizer column (Fortuna
et al., 2007), adapted by Shao et al. (2014).

The hard-to-measure variable is the butane (C4) content
in the bottom flow of the column. According to Fortuna
et al. (2005), such variable is indirectly analyzed on the
overheads of a deisopentanizer column by a gas chromato-
graph. Therefore, there is a constant delay between 30 and
75 minutes in the acquisition of the C4 content. Since this
variable depends exclusively on the debutanizer operating
conditions, seven easy-to-measure variables can be used
for estimating the desired variable. Table 1 indicates the
inputs and output of this problem.

Table 1. Variables in the debutanizer column.

Variables Description

Inputs u1 Top tray temperature
u2 Top pressure
u3 Reflux flow
u4 Flow to next process
u5 6th tray temperature
u6 Bottom temperature
u7 Bottom temperature

Output y Butane content

Fortuna et al. (2007) made a data set available 1 , which
contains 2394 samples and the eight variables. The sample
time is considered as 15 minutes, and the delay for output
acquisition is 45 minutes (Shao et al., 2014). Different
solutions for this problem are presented below.

Ge and Song (2010) make use of just-in-time (JIT) learning
to develop the soft sensors. In total, three models are
analyzed: partial least squares (PLS), SVR, and least
squares (LS)-SVR. When testing different number of sam-
ples (delays) with the JIT approach, 1000 samples are used
for testing the models. LS-SVR, SVR, and PLS attained
correlation coefficients (R2) of 0.9132, 0.6897, and 0.4035,
respectively. Similar works have been performed with prin-
cipal component regression (PCR) (Ge, 2014) and gaussian
process regression (GPR) (Ge, 2016), achieving root mean
squared error (RMSE) values around 0.15 and 0.06, re-
spectively.

Selection of variables and lags is performed by Souza and
Araújo (2011), where mutual information (MI) and R2

criteria are compared. Subsequently, LS-SVR is employed
for online prediction. The experiment is made using 298
samples in the test set, and the available features are the
seven inputs (u1(k) to u7(k)) and their fourth and eight
delays (k − 4 and k − 8). Lower general and regularized
RMSE values of 0.0461 and 0.0750 are achieved when using
MI. Such feature selection criteria also attains a R2 value
of 0.9626. However, a lower mean absolute error (MAE) of
0.3129 is obtained by employing feature selection with R2.

Local PLS is employed by Shao et al. (2014) in a test
set composed of 744 samples. Different from other works,
Shao et al. (2014) use the delayed hard-to-measure butane
content (y(k − 4), y(k − 5), and y(k − 6)) in addition to
the easy-to-measure variables. Final results on the test
set achieve RMSE, relative RMSE, and MAE values of
0.01058, 0.156, and 0.0419, respectively.

By using 1197 testing samples on the problem, Pani et al.
(2016) test multiple linear regression (MLR), PCR, and
artificial neural networks (ANNs), while Siddharth et al.
(2019) tests regression trees and adaptive neuro fuzzy
inference system (ANFIS). On the one hand, Pani et al.
(2016) attain MAE, RMSE and R2 values of 0.055, 0.076,
and 0.856 using ANNs, respectively. On the other hand,
Siddharth et al. (2019) obtain a MAE of 0.048 with
regression tree, while obtaining RMSE and R2 scores of
0.0672 and 0.8829 with ANFIS, respectively.

Pan et al. (2019) make use of dynamic and static learning,
while employing a mixed integer genetic algorithm for
variable selection and weighting of the inputs and 6 delays.
For the dynamic scenario, 597 samples are used for testing,
achieving RMSE and R2 scores of 0.0121 and 0.9942,
respectively. For the static scenario, using 598 samples,
RMSE and R2 scores of 0.0452 and 0.9187 are attained,
respectively.

Finally, Marchioro et al. (2019) performed evolutionary
instance and feature selection on both SVRs and decision
trees for the debutanizer problem. The test data set is
composed of the last 20% samples, and genetic algorithm

1 Available in: http://www.springer.com/cda/content/document/
cda downloaddocument/9781846284793 material.zip?SGWID=0-0-
45-349600-p168288081
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has been used for optimizing the models. As a result, the
SVR with instance selection achieves the best RMSE score
of 0.0979.

2.1 Feature Engineering

In this work, feature engineering is performed for gener-
ating additional features from the ones already available.
Similar to previous works, the delayed signals are used.
However, new signal processing and statistical features
are also generated. The new features are described below,
given the seven inputs ui(k) and output y(k) at the current
sample k.

Signals and delays. In addition to the current input
values, a total of 8 lags are used for each input signal.
Also, 4 lags are used for the output signal, starting from
the fourth lag. Therefore, the initially created features are

Xu(k) = {ui(k − l),∀i, l ∈ Z : l ∈ [1, 7], l ∈ [0, 8]} (1)

Xy(k) = {y(k −m),∀m ∈ Z : m ∈ [4, 8]} (2)

where i is the signal number, l is the lag value for the
input, and m is the lag value for the output. This results
in a total of 68 available features.

Differences. For each of the previously generated features
(Xu(k) and Xy(k)), the difference to the previous sample
is also considered a feature, computed as follows.

Xdu(k) = Xu(k)−Xu(k − 1) (3)

Xdy(k) = Xy(k)−Xy(k − 1) (4)

Statistical. Mean, standard deviation, minimum and
maximum values are also computed for the original signals.
All of these features are created considering a window of
w = 30 samples. Such features are computed as follows.

Xu(k) =

{
W−1∑
n=0

ui(k − n)/W, ∀i ∈ Z : i ∈ [1, 7]

}
(5)

Xδ(k) =


√√√√W−1∑

n=0

(ui(k − n)−Xui(k))2/(W − 1),

∀i ∈ Z : i ∈ [1, 7]

 (6)

Xmax(k) =
{
W−1
max
n=0

ui(k − n),∀i ∈ Z : i ∈ [1, 7]
}

(7)

Xmin(k) =

{
W−1
min
n=0

ui(k − n),∀i ∈ Z : i ∈ [1, 7]

}
(8)

Detrending. Finally, the detrended input signals are also
generated. This is computed by subtracting the moving
average from the current sample, detailed as follows.

Xu−u(k) = {ui(k)−Xui(k),∀i ∈ Z : i ∈ [1, 7]} (9)

The final feature vector is composed of all the S = 171
previously generated features, as follows.

X(k) = Xu(k)‖Xy(k)‖Xdu(k)‖Xdy(k)‖Xu(k)

‖Xu(k)‖Xδ(k)‖Xmax(k)‖Xmin(k)‖Xu−u(k) (10)

Next, it is necessary to find a predictor f(·) that approx-
imates y(k) by operating over the features X(k), in the
form of ŷ(k) = f(X(k)). The following section details the
proposed approach for this task.

3. EVOLUTIONARY MULTI-OBJECTIVE FEATURE
SELECTION AND ENSEMBLE COMBINATION

This section details the proposed MOOD procedure for
soft sensor development. First, a evolutionary algorithm
generates a pool of regressors by minimizing error’s bias
and variance through feature selection of linear SVRs.
Next, the same evolutionary algorithm selects the weights
of each of the non-dominated SVR in an weighted ensemble
approach. Finally, a multi-criteria decision making tool
is employed for aiding the selection of a preferred final
ensemble.

This section is organized as follows: First, the SVR feature
selection MOP is detailed, followed by the ensemble mem-
ber combination MOP. Then, the evolutionary algorithm
is presented. Finally, the multi-criteria decision making
step is described.

3.1 Multi-objective Feature Selection

The first MOP focus on building a diverse pool of SVR
regressors, as illustrated in Figure 2. To this end, feature
selection is performed for minimizing three objectives. The
problem can be mathematically formulated as follows.

min
θ
F (θf) =

[
FMAE(θf ), Fσ2(θf ), Ff (θf )

]
(11)

subject to

θfs ∈ {0, 1} ,∀s ∈ Z : s ∈ [1, . . . , S] (12)

where

FMAE(θf ) =

K∑
k=1

|e(k)|/K (13)

Fσ2(θf ) =
K∑
k=1

(e(k)− e)2/(K − 1) (14)

Ff (θf ) =

S∑
s=1

θfs (15)

e=

K∑
k=1

e(k)/K (16)

e(k) = y(k)− ŷ(k) (17)

being the objectives MAE (FMAE(θf )), error’ variance
(Fσ2(θf )), and number of used features (Ff (θf )). In the
decision vector θf , θfs is the selection of feature s in a data
set with S features. Additionally, e(k) is the error between
the real (y(k)) and predicted (ŷ(k)) values at sample k, in
a set with K samples.
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Fig. 2. The multi-objective feature selection method, adapted from Ribeiro and Reynoso-Meza (2019).

3.2 Multi-objective Ensemble Member Combination

The second MOP focus on combining the diverse pool
of SVR regressors, as illustrated in Figure 3. Therefore,
ensemble member weighting is performed for minimizing
two objectives. Thus, the problem can be mathematically
formulated as follows.

min
θe
C(θe) = [CMAE(θe), Cσ2(θe)] (18)

subject to

0 ≤ θec ≤ 1,∀c ∈ Z : c ∈ [1, C] (19)

where

CMAE(θe) =

K∑
k=1

|eens(k)|/K (20)

Cσ2(θe) =

K∑
k=1

(eens(k)− eens)2/(K − 1) (21)

(22)

eens =

K∑
k=1

eens(k)/K (23)

eens(k) = y(k)−
C∑
c=1

ŷc(k) · θec (24)

being the objectives once again MAE (CMAE(θe)) and
error’s variance (Cσ2(θe)). In the decision vector θe, θec
is the weight of model c in from a pool with C models.
Additionally, eens(k) is the error between the real (y(k))
and ensemble’s output (ŷens(k)) values at sample k, in a
set with K samples.

3.3 Multi-objective Optimization Algorithm

The spMODE-II (Reynoso-Meza et al., 2014) is employed
for optimizing both MOPs. To this end, the algorithm
is configured with a population of 50 individuals, 100
generations, a crossover ratio of 20%, and a scaling factor
of 50%. This evolutionary algorithm presents desirable

convergence, diversity, and pertinence characteristics, and
has been used with success for optimizing anomaly de-
tection (Ribeiro and Reynoso-Meza, 2019) and time-series
forecasting (Ribeiro et al., 2019) models.

3.4 Multi-criteria Decision Making

After the multi-objective ensemble member combination, a
final preferred model is found by selecting the best ranked
ensemble according to a multi-criteria decision making
tool. The PROMETHEE (Brans and De Smet, 2016) is
employed for such task, where significant and insignifi-
cant differences are defined for computing the criteria’s
outranking flows for each solution. Table 2 presents the
(in)significance values, based on the objectives (MAE and
error’s variance) calculated for an ensemble with C equal
weights. The decision variable θref for this scenario is
demonstrated below:

θrefc = 1/C,∀c ∈ Z : c ∈ [1, C] (25)

Table 2. Matrix with (in)significant differences
for aiding the selection of a preferred ensemble.

I/S differences matrix

Objective I S

CMAE(θe) 0.01 · CMAE(θref ) 0.5 · CMAE(θref )
Cσ2 (θe) 0.01 · Cσ2 (θref ) 0.5 · Cσ2 (θref )

4. EXPERIMENT AND RESULTS

This section details the experiments and the achieved
results. The first subsection explains the experimental pro-
cedure, where the proposed MOOD procedure is employed
to develop a soft sensor for the debutanizer column. The
next subsection brings the qualitative results with tables
and figures.

4.1 Experimental Procedure

First, it is necessary to process the data set. Initially,
the available data set is engineered with the new features
from Section 2.1. Subsequentially, it is split in half into
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Fig. 3. The multi-objective ensemble member combination method, adapted from Ribeiro and Reynoso-Meza (2019).

development and test sets (1197 sequential samples each).
Later, the development set is randomly split into training
(60%), validation1 (20%), and validation2 (20%).

The training set is used for generating the pool of SVR
models (with linear kernel), while the validation1 set is
employed for evaluating the models under the feature
selection optimization problem. Next, the validation2 set
is applied for assessing the performance of the ensembles
in the member combination optimization problem.

After the two MOPs, a set of non-dominated ensembles is
returned, and a final preferred ensemble is selected with
the aid of PROMETHEE (first ranked ensemble). Finally,
the test set is employed for assessing the performance of
the selected ensemble, and the results are shown in the
next subsection.

4.2 Results

This subsection brings the results for the debutanizer
column problem. First, Figure 4 illustrates the results on
the test data set. Next, Table 3 displays the qualitative
results. Finally, Table 4 details the selected ensemble with
the base models’ corresponding weights.

Figure 4 plots the butane content signal (black bold
line) and the estimated soft sensor (grey dashed line).
Additionally, the error for each sample is shown in a lower
subplot. It is important to notice how the soft sensor signal
follows the real variable correctly, presenting maximum
errors of approximately 10 around sample number 400.

Despite showing interesting results in the plot, it is also
important to qualitatively analyze the performance of the
soft sensor. Table 3 shows the RMSE, MAE, error’s vari-
ance (σ2) and standard deviation (σ), and the correlation
coefficient (R2) for the estimated model computed on the
test set.

Table 3. Qualitative results of the butane con-
tent soft sensor.

Metric Value

RMSE 0.0187
MAE 0.0136
σ2(error) 0.0003
σ(error) 0.0186
R2 0.9944

Finally, Table 4 details the generated models, their fea-
tures, and respective weight in the final ensemble. In total,
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Fig. 4. Results on the test data set, composed of 1197
samples.

14 non-dominated SVRs are returned from the multi-
objective feature selection problem. After the optimization
of the multi-objective ensemble member combination and
the multi-criteria decision making stage, the preferred en-
semble disconsiders five SVRs (numbers 5, 7, 9, 12, and
14). From the remaining base models, SVR 11 presents
the highest weight (0.329), followed by SVR 6 (0.159),
4 (0.140) and 10 (0.105). Additionally, the 11 most used
features, considering all SVR models, are: u4(k−3), u3(k−
4), u5(k − 4), u6(k − 6), u1(k − 8), y(k − 4), y(k − 5),
u3(k−4)−u3(k−5), y(k−4)−y(k−5), maxw−1

n=0 u1(k − n),
and maxw−1

n=0 u6(k − n).

5. DISCUSSION

The results from Section 4 indicate a proper soft sensor.
However, it is also of interest to compare such results
with the existing solutions found in literature. With a
RMSE of 0.0187 and MAE of 0.0136, the proposed model
achieves the best solution in comparison to any other
model that deals with static models (Section 2). Also,
despite achieving slightly higher RMSE and MAE values
in comparison to some dynamic models (Shao et al., 2014;
Pan et al., 2019), the proposed model achieves the best
overall variance, with an R2 score of 0.9944. Therefore, the
employed multi-objective optimization design procedure
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Table 4. Weights of the selected SVR ensemble.

Model Weight

SVR 1 0.054
SVR 2 0.070
SVR 3 0.034
SVR 4 0.140
SVR 5 0.000
SVR 6 0.159
SVR 7 0.000
SVR 8 0.087
SVR 9 0.000
SVR 10 0.105
SVR 11 0.329
SVR 12 0.000
SVR 13 0.014
SVR 14 0.000

for soft sensor development results in a highly accurate
and stable model.

6. CONCLUSIONS

To develop a butane content soft sensor in a debu-
tanizer column, this paper presents an evolutionary multi-
objective feature selection and ensemble member combi-
nation method. To the best of the authors knowledge,
this is the first application of such tools to develop a soft
sensor. To this end, feature engineering is performed on the
available data set, and new features are created. Next, the
spMODE-II algorithm is employed for minimizing both the
error’s bias and variance of SVRs by performing feature
selection. With the resulting set of non-dominated models,
a novel optimization step is performed for minimizing the
same objectives by selecting the weights of each SVR in a
weighted ensemble. Finally, validation results are analyzed
with PROMETHEE to select a preferred ensemble. Re-
sults on the debutanizer column indicate that the proposed
approach is able to build a highly accurate and stable soft
sensor.

Therefore, it is concluded that the application of MOOD
procedures can benefit the development of the butane
content soft sensor. Future work shall focus on the deeper
analysis of the butane content problem and the develop-
ment of soft sensors for different industrial plants. Addi-
tionally, new evolutionary algorithms and machine learn-
ing models for regression can be employed.
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