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Abstract: We provide a distributed algorithm to learn a Nash equilibrium in a class of non-
cooperative games with strongly monotone mappings and unconstrained action sets. Each player
has access to her own smooth local cost function and can communicate to her neighbors in
some undirected graph. We consider a distributed communication-based gradient algorithm.
For this procedure, we prove geometric convergence to a Nash equilibrium. In contrast to our
previous works Tatarenko et al. (2018); Tatarenko et al. (2019), where the proposed algorithms
required two parameters to be set up and the analysis was based on a so called augmented
game mapping, the procedure in this work corresponds to a standard distributed gradient play
and, thus, only one constant step size parameter needs to be chosen appropriately to guarantee
fast convergence to a game solution. Moreover, we provide a rigorous comparison between the
convergence rate of the proposed distributed gradient play and the rate of the GRANE algorithm
presented in Tatarenko et al. (2019). It allows us to demonstrate that the distributed gradient
play outperforms the GRANE in terms of convergence speed.
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1. INTRODUCTION

There are a lot of multi-agent systems, where agents’
objective functions are coupled through decision variables
of all agents in a system. In such cases, game theory is
a useful tool to deal with the corresponding optimization
problems. The applications of game theory in engineering
can be found, for example, in electricity markets, power
systems, flow control problems, and communication net-
works. Desirable outcomes in games are characterized by
so called Nash equilibria, which correspond to a stable
state from which no agent has motivation to deviate.
This paper provides a distributed discrete-time algorithm
applicable to fast Nash equilibrium seeking in a class of
non-cooperative games under the assumption that agents
exchange their local information with neighbors by means
of some communication topology.

Distributed communication-based algorithms are pro-
posed for aggregative games in Koshal et al. (2012);
Paccagnan et al. (2016). Communication protocols are
applied to different classes of games with some conver-
gence guarantees (see Salehisadaghiani and Pavel (2016);
Salehisadaghiani et al. (2017); Tatarenko (2019)). The
work Salehisadaghiani and Pavel (2016) proposes a gra-
dient based gossip algorithm to learn Nash equilibria in
games. Under some technical assumptions, this algorithm

⋆ The work was gratefully supported by the German Research Foun-
dation (Deutsche Forschungsgemeinschaft, DFG) within the SPP
1984 ”Hybrid and multimodal energy systems: System theoretical
methods for the transformation and operation of complex networks”.

converges almost surely to the Nash equilibrium, given a
diminishing step size. Under further assumption of strong
convexity, with some constant step size α, the algorithm
converges to an O(α) neighborhood of the Nash equilib-
rium in average. The work Salehisadaghiani et al. (2017)
develops an algorithm within the framework of inexact-
ADMM and proves its convergence to the Nash equi-
librium with the rate o(1/k) under cocoercivity of the
game mapping. However, no aforementioned work aims to
provide algorithms which converge to a Nash equilibrium
with a fast geometric rate.

The recent work Bianchi et al. (2019) presents a proximal-
point algorithm for computing the Nash equilibrium with
a geometric rate. However, this algorithm corresponds to
an implicit method as it cannot be rewritten as iterations
that give the next state in terms of the current one.
The paper Tatarenko et al. (2018) proposes an explicit
gradient-based method. The work Tatarenko et al. (2018)
leverages the idea of an accelerated approach for solving
variational inequalities (see Nesterov and Scrimali (2011))
and provides a version of the gradient play algorithm (Acc-
GRANE) that guaratees a fast convergence to the Nash
equilibrium with a dependence on the condition number.
The analysis is based on strong monotone properties of a
so called augmented mapping which takes into account
not only the gradients of the cost functions, but also
the communication settings. The presented algorithm is
applicable only to a sub-class of games characterized by a
restrictive connection between the number of players, Lip-
schitz constant, and the strong monotonicity constant. To
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apply the distributed gradient play algorithm to a broader
class of games, work Tatarenko et al. (2019) considers the
case of the restricted strongly monotone augmented game
mapping and demonstrates geometric convergence of the
procedure to the Nash equilibrium. However, both types
of the procedures mentioned above require a careful set up
not only for the step size parameter but also for the aug-
mented mapping. In this paper we provide a distributed
gradient play whose convergence properties are not based
on the augmented mapping. This fact allows us to focus
only on the choice of the step size in the optimization
procedure. Unlike GRANE in Tatarenko et al. (2019), the
distributed gradient play does not require a symmetric ma-
trix in the players’ information ”mixing” step. Moreover,
a rigorous comparison between the convergence rates of
the proposed distributed gradient play and the GRANE in
Tatarenko et al. (2019) demonstrates that the algorithm
presented in this paper converges faster to a Nash equilib-
rium under the same settings of a game. The proposed
algorithm uses the idea of consensus-based optimization.
It is worth noting that all works on fast algorithms for
distributed optimization have been presented for uncon-
strained problems, see Nedić et al. (2017); Shi et al. (2015);
Qu and Li (2018). The game-theoretic formulation in this
paper enables a consensus-based procedure for the case of
unconstrained action sets, which uses a constant step size
without correcting the gradient term, as it has been done
in the aforementioned works on distributed optimization.
On the other hand, absence of some global objective func-
tion does not allow for applying the same arguments as in
distributed optimization analysis.

Notations. The set {1, . . . , n} is denoted by [n]. For any

function f : K → R, K ⊆ Rn, ∇if(x) = ∂f(x)
∂xi

is the
partial derivative taken in respect to the ith coordinate of
the vector variable x ∈ Rn. For any real vector space Ẽ
its dual space is denoted by Ẽ∗ and the inner product is
denoted by 〈u, v〉, u ∈ Ẽ∗, v ∈ Ẽ. An operatorB : Ẽ → Ẽ∗

is positive definite if 〈Bv, v〉 > 0 for all v ∈ Ẽ \ {0}. An
operator B : Ẽ → Ẽ∗ is self-adjoint if 〈Bv, v′〉 = 〈Bv′, v〉
for all v′, v ∈ Ẽ. Given a positive definite and self-adjoint
operator B, we define the Euclidean norm on Ẽ induced by
B as ‖v‖ = 〈Bv, v〉1/2. Any mapping g : Ẽ → Ẽ∗ is said to

be strongly monotone with the constant µ > 0 on Q ⊆ Ẽ, if
〈g(u)−g(v), u−v〉 ≥ µ‖u−v‖2 for any u, v ∈ Q, where ‖·‖
is the corresponding norm in Ẽ. We consider real vector
space E, which is either space of real vectors E = E∗ = Rn

or the space of real matrices E = E∗ = Rn×n. In the case
E = Rn×n the inner product 〈u, v〉 ,

√

trace(uT v) is the
Frobenius inner product on Rn×n. In the case E = Rn

we use ‖ · ‖ to denote the Euclidean norm induced by the
standard dot product in Rn, whereas in the case E = Rn×n

we use ‖·‖Fro to denote the Frobenius norm induced by the

Frobenius inner product i.e. ‖v‖Fro ,
√

trace(vT v). The
largest singular value of a matrix A is denoted by σmax{A}.
The smallest nonzero eigenvalue of a positive semidefinite
matrix A 6= 0 is denoted by λ̃min{A}, which is strictly
positive. For any matrix A ∈ Rn×n we use diag(A) to
denote its diagonal vector, i.e. diag(A) = (a11, . . . , ann).
For any vector a ∈ Rn we use Diag(a) to denote the
diagonal matrix with the vector a on its diagonal. We call
a matrix A consensual, if it has equal row vectors.

2. PROBLEM FORMULATION

We consider a non-cooperative game between n players
with unconstrained action sets. Let Ji and Ωi = R denote
respectively the cost function and the feasible action set 1

of the player i. Each function Ji(xi, x−i), i ∈ [n], depends
on xi and x−i, where xi ∈ R is the action of the player
i and x−i ∈ Ω−i = Rn−1 is the joint action of all players
except for the player i. We assume that the cost function
Ji(xi, x−i) is continuously differentiable in xi for each fixed
x−i, i ∈ [n], and define the game mapping

F(x) , [∇1J1(x1, x−1), . . . ,∇nJn(xn, x−n)]
T
, (1)

where ∇iJi(xi, x−i) = ∂Ji(xi,x−i)
∂xi

for all i ∈ [n]. We
assume that the players can interact over an undirected
communication graph G([n],A). The set of nodes is the
set of the player [n] and the set of undirected arcs A is
such that (i, j) ∈ A if and only if (j, i) ∈ A, i.e. there is
an undirected communication link between i to j. Thus,
some information (message) can be passed from the player
i to the player j and vice versa. For each player i the set
Ni is the set of neighbors in the graph G([n],A), namely

Ni , {j ∈ [n] : (i, j) ∈ A}. Let us denote the game
introduced above by Γ(n, {Ji}, {Ωi = R},G). We make
the following assumptions regarding the game Γ.

Assumption 1. The game mapping F(x) is strongly mono-
tone on R

n with the constant µ > 0.

Note that Assumption 1 above implies strong convexity of
each cost function Ji(xi, x−i) in xi for any fixed x−i with
the constant µ.

Assumption 2. For every i ∈ [n] the function∇iJi(xi, x−i)
is Lipschitz continuous in xi on R for every fixed x−i ∈
Rn−1, that is, given any x−i ∈ Rn−1, for some constant
Li ≥ 0, we have

|∇iJi(xi, x−i)−∇iJi(yi, x−i)| ≤ Li|xi − yi|,
∀ xi,yi ∈ R.

Moreover, for every i ∈ [n] the function ∇iJi(xi, x−i)
is Lipschitz continuous in x−i on R

n−1, for every fixed
xi ∈ R, that is, given any xi ∈ R, for some constant
L−i ≥ 0, we have

|∇iJi(xi, x−i)−∇iJi(xi, y−i)| ≤ L−i‖x−i − y−i‖2,
∀ x−i,y−i ∈ R

n−1.

Remark 1. An example of games satisfying Assumption 2
is a class of aggregative games as in Koshal et al. (2012);
Paccagnan et al. (2016), where each cost function Ji is of
the following form: Ji(xi, x−i) = ci(xi) − xiUi(

∑n
j=1 xj).

Here ci(·) : R → R is an agent specific function with
a Lipschitz continuous derivative and the linear function
Ui(
∑n

j=1 xj) captures the utility associated with aggregate

output
∑n

j=1 xj .

Assumptions 1 and 2 are often used in works aiming
to demonstrate geometric convergence of algorithms for
computing an equilibrium point in variational inequalities
and games Bianchi et al. (2019); Tatarenko et al. (2018);
Tatarenko et al. (2019).

1 All results below are applicable for games with different dimensions
{di} of the action sets, i.e., Ωi = Rdi for all i. The one-dimensional
case is considered for the sake of notation simplicity.
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Finally, we make the following assumption on the com-
munication graph, which guarantees sufficient information
”mixing” in the network.

Assumption 3. The underlying undirected communication
graph G([n],A) is connected. There is a non-negative
matrix W = [wij ] ∈ Rn×n associated with the graph
such that wij > 0 if and only if (i, j) ∈ A. Moreover,
W is doubly stochastic, i.e.

∑n
l=1 wlj =

∑n
l=1 wil = 1,

∀i, j ∈ [n].

Remark 2. The weight matrix W from Assumption 3 need
not be symmetric. Some simple strategies that generate
symmetric mixing matrices for which Assumption 3 holds
can be found in Section 2.4 in Shi et al. (2015).

Assumption 3 implies that the second largest singular
value σ of W is such that σ ∈ (0, 1) and for any x ∈ Rn

the following average property holds (see Olshevsky and
Tsitsiklis (2009)):

‖Wx− 1x̄‖ ≤ σ‖x− 1x̄‖, (2)

where x̄ = 1
n1

Tx is the average of the coordinates of x.

One of the stable solutions in any game Γ corresponds to
a Nash equilibrium defined below.

Definition 1. A vector x∗ = [x∗
1, x

∗
2, · · · , x∗

n]
T ∈ Ω is a

Nash equilibrium if for any i ∈ [n] and xi ∈ Ωi

Ji(x
∗
i , x

∗
−i) ≤ Ji(xi, x

∗
−i).

In this work, we are interested in distributed seeking of
a Nash equilibrum in a game Γ(n, {Ji}, {Ωi = R},G) for
which Assumptions 1-3 hold. Note that under Assump-
tion 1, the game Γ(n, {Ji}, {Ωi = R},G) has a unique Nash
equilibrium (see Rosen (1965)). Moreover, as Ωi = R and
Ji(xi, x−i) is strongly monotone in xi over R for all i ∈ [n]
the vector x∗ ∈ Rn is the unique Nash equilibrium if and
only if

F(x∗) = 0. (3)

3. NASH EQUILIBRIA LEARNING IN DISTRIBUTED
SETTINGS

To deal with the partial information available to players
which is exchanged among them over the communication
graph, we assume that each player i maintains a local
variable

x(i) = [x̃(i)1, · · · , x̃(i)i−1, xi, x̃(i)i+1, · · · , x̃(i)n]
T ∈ R

n,
(4)

which is her estimate of the joint action x = [x1, x2, · · · , xn]
T .

Here x̃(i)j ∈ R is the player i’s estimate of xj and x̃(i)i =
xi ∈ Ωi = R. Also, we compactly denote the estimates of
other players’ actions by the player i as

x̃−i = [x̃(i)1, · · · , x̃(i)i−1, x̃(i)i+1, · · · , x̃(i)n]
T ∈ R

n−1, (5)

and the estimates of the player j’s action xj by all players
as

x̃(:)j = [x̃(1)j , · · · , x̃(j−1)j , xj , x̃(j+1)j , · · · , x̃(n)j ]
T ∈ R

n.

Thus, we can define the estimation matrix x ∈ Rn×n,
where the ith row is equal to the estimation vector x(i),
i ∈ [n], namely

x ,











— xT
(1) —

— xT
(2) —
...

— xT
(n) —











.

For any given estimation matrix, we define the diagonal
matrix F̃(x) ∈ Rn×n with F̃(x)ii = ∇iJi(x(i)), i ∈ [n],
namely

F̃(x) , Diag(∇1J1(x(1)), . . . ,∇nJn(x(n))). (6)

We propose the following distributed gradient play pro-
cedure for learning a Nash equilibrium in the game
Γ(n, {Ji}, {Ωi = R},G). According to this algorithm, each
player i updates its local estimation of the joint action as
follows:

xt+1
i =

n
∑

j=1

wijx
t
(j)i − α∇xi

Ji(x
t
(i)),

xt+1
(i)l =

n
∑

j=1

wijx
t
(j)l, for l 6= i, i ∈ [n].

Thus, to get a new estimation xt+1
(i) each agent i aggregates

over the communication graph the current estimations
of its neighbors and, makes a local gradient step with a
step size α in respect to the gradient of its cost function
∇xi

Ji(x
t
(i)) calculated at the current local estimation xt

(i).

The local updates above can be represented in the follow-
ing compact vector form:

xt+1 = Wxt − αF̃(xt), (7)

where α is a constant step size to be set up.

Remark 3. The algorithm (7) can be considered GRANE,
where the step size parameter is equal to 1 (see Tatarenko
et al. (2018); Tatarenko et al. (2019)). However, the idea
of the convergence analysis in Tatarenko et al. (2018);
Tatarenko et al. (2019) is based on the solution to a vari-
ational inequality defined for a so called augmented game
mapping and action space, which incorporates directly the
communication setting in the game. A symmetric matrix
needs to be set up for the augmented game mapping to
guarantee strong monotonicity of the latter. Once this
matrix is chosen, one can proceed with estimate of an
appropriate step size, which is always less than 1. Thus,
the line of analysis in the works Tatarenko et al. (2018);
Tatarenko et al. (2019) does not apply to the procedure
(7) introduced in this paper.

In the following we prove geometric convergence of the
procedure above to the unique Nash equilibrium in the
game Γ(n, {Ji}, {Ωi = R},G) under Assumptions 1-3 and
an appropriate choice of α. This result is formulated in the
following theorem.

Theorem 1. Let Γ(n, {Ji}, {Ωi = R},G) be a game for
which Assumptions 1-3 hold. Let µ and σ be as defined
in Assumption 1 and relation (2), respectively, and the
step size parameter α be chosen as follows:
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0 < α < min

{

1,
µ

2L2
,
σ

2L

√
n√

n− 1

( √
2√

1 + σ2
− 1

)

,

n

µ

(

8

(
√
1 + σ2 −

√
2)2

− 1

)

,

√

n2 + 2µ4(1−σ2)
(n−1)L4(1+σ2) − n

2µ







,

where L is the Lipschitz constant defined in Assumption 2.
Then, the algorithm (7) converges to the consensual ma-
trix x∗ whose rows are equal to the row-vector x∗ which is
the unique Nash equilibrium in the game Γ(n, {Ji}, {Ωi =
R},G). Moreover,

‖xt − x∗‖2Fro ≤ O(qt)

for some q = q(α) ∈ (0, 1).

In the next section we provide the proof of the main result
formulated in Theorem 1 above.

4. PROOF OF MAIN RESULT

Let x̄t be a consensual matrix with the rows equal to
the vector x̄t = 1

n

∑n
i=1 x

t
(i). This matrix corresponds

to the running average of the players’ estimations of the
current joint action. Under Assumption 3, as seen from the
definition of the algorithm in (7), the average x̄t evolves
according to the following relation:

x̄t+1 = x̄t − α

n
F0(xt), (8)

where F0(·) is the consensual matrix with the rows equal

to diag(F̃(·)).
To prove Theorem 1, we start by proving some lemmata.
Their proofs can be found in the extended version of the
paper in Tatarenko and Nedić (2019). First of all, we
estimate the consensus violation term in respect to the
running average, namely ‖xt+1 − x̄t+1‖Fro.
Lemma 1. Under Assumption 3 the following holds for the
procedure (7):

‖xt+1 − x̄t+1‖Fro ≤ σ‖xt − x̄t‖Fro + α

√
n− 1√
n

‖F̃(xt)‖Fro.

Next, to estimate the distance ‖xt+1 − x̄t+1‖Fro in terms
of optimum violation ‖xt − x∗‖Fro, we upper bound

‖F̃(xt)‖Fro in the following lemma.

Lemma 2. Let Assumption 2 hold in the game Γ(n, {Ji}, {Ωi =
R},G). Then

‖F̃(xt)‖Fro ≤ L‖xt − x∗‖Fro

where L =
√

2maximax{L2
i , L

2
−i} and Li, L−i, i ∈ [n],

are the Lipschitz constants from Assumption 2.

Finally, we analyze the distance between the running
average of the players’ iterates and the Nash equilibrium.

Lemma 3. Let Assumptions 1-3 hold in Γ(n, {Ji}, {Ωi =
R},G). Then for any θ > 0 and the step size α ≤ θ

L2 the
following inequality holds:

(

1 +
2α

n

(

µ− θ

2

))

‖x̄t+1 − x∗‖2Fro

≤ ‖x̄t − x∗‖2Fro +
L2α

θ
‖xt − x̄t‖2Fro.

Having these three lemmata in place, we are ready to prove
the main result.

Proof. [Proof of Theorem 1] Taking into account Lemma 1
and Lemma 2, we conclude that, under conditions of the
theorem, we have

‖xt+1 − x̄t+1‖Fro ≤ σ‖xt − x̄t‖Fro + α

√
n− 1√
n

‖F̃(xt)‖Fro,

‖F̃(xt)‖Fro ≤ L‖xt − x∗‖Fro.

The preceding two inequalities together with ‖xt −
x∗‖Fro ≤ ‖xt − x̄t‖Fro + ‖x̄t − x∗‖Fro imply that

‖xt+1 − x̄t+1‖Fro ≤ (σ + α

√
n− 1√
n

L)‖xt − x̄t‖Fro

+ α

√
n− 1√
n

L‖x̄t − x∗‖Fro. (9)

Next, we apply to (9) the standard inequality (a + b)2 ≤
(1+β)a2+ 1+β

β b2, which holds for any real numbers a, b ∈ R

and any β > 0. By taking a = (σ + α
√
n−1√
n

L)‖xt − x̄t‖Fro
and b = α

√
n−1√
n

L‖x̄t − x∗‖Fro, we get

‖xt+1 − x̄t+1‖2Fro ≤ (1 + β)(σ + α

√
n− 1√
n

L)2‖xt − x̄t‖2Fro

+
1 + β

β
α2n− 1

n
L2‖x̄t − x∗‖2Fro.

(10)

Moreover, Lemma 3 with the choice θ = µ implies

‖x̄t+1 − x∗‖2Fro ≤ γ‖x̄t − x∗‖2Fro + γ
2L2α

µ
‖xt − x̄t‖2Fro,

(11)

where γ = 1
1+µα

n

. Let zt = (‖x̄t − x∗‖2Fro, ‖xt − x̄t‖2Fro).
Then taking (10) and (11) into account, we conclude that

zt+1 ≤ Z(α, µ, β)zt, (12)

where

Z =









γ γ
2L2α

µ
1 + β

β

n− 1

n
α2L2 (1 + β)(σ + α

√
n− 1√
n

L)2









.

We proceed with analysis of the properties of the positive
matrix Z = Z(α, µ, β). First, we calculate its eigenvalues.
Its characteristic polynomial is

pZ(λ) = (λ− γ)

(

λ− (1 + β)(σ + α

√
n− 1√
n

L)2
)

− γ
n− 1

n

2α3

µ

1 + β

β
L4.

We need to solve pZ(λ) = 0. This results in λ1,2 =

γ+(1+β)(σ+α

√
n−1
√

n
L)2±

√
D

2 , where D = (γ − (1 + β)(σ +

α
√
n−1√
n

L)2)2 + 8γ n−1
n

α3

µ
1+β
β L4. We let λ1 denote the

largest (positive) eigenvalue. Borrowing the idea from the
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proof of Lemma 7 and Lemma 17 in Qu and Li (2018), we
notice that, due to properties of the diagonalization, any
element of the matrix Zt is in the form zijt = zt = c1λ

t
1 +

c2λ
t
2, i, j = 1, 2, for some c1, c2 ∈ C (we omit the element

upper index in zijt to simplify notations). To estimate c1, c2
for each element, we construct the following system of
linear equalities:

{

c1 + c2 = z0,

c1λ1 + c2λ2 = z1,

where z0 and z1 are the corresponding elements of the
matrices Z0 and Z respectively. The solution of the system
above is c1 = z1−z0λ2

λ1−λ2
, c2 = z0λ1−z1

λ1−λ2
. Thus,

zt =
z1λ

t
1 − z0λ2λ

t
1

λ1 − λ2
+

z0λ1λ
t
2 − z1λ

t
2

λ1 − λ2

≤ z1(λ
t
1 − λt

2)

λ1 − λ2
≤ 2z1

λt
1

λ1 − λ2
, (13)

where in the last two inequalities we used Perron-
Frobenius Theorem for positive matrices, namely λ1 > |λ2|
(see Theorem 8.2.11 in Horn and Johnson (2012)). As

‖xt+1 − x∗‖2Fro ≤ 2‖x̄t+1 − x∗‖2Fro + 2‖xt+1 − x̄t+1‖2Fro,
and by taking into account (12) and (13), we conclude that

‖xt+1 − x∗‖2Fro ≤ 2z11t ‖x̄0 − x∗‖2Fro + 2z12t ‖x0 − x̄0‖2Fro
+ 2z21t ‖x̄0 − x∗‖2Fro + 2z22t ‖x0 − x̄0‖2Fro

≤ λt
1

4

λ1 − λ2
[(z111 + z211 )‖x̄0 − x∗‖2Fro
+ (z121 + z221 )‖x0 − x̄0‖2Fro].

(14)

In (14) zij1 is the ijth element of the matrix Z1 = Z. Thus,
to get the result it suffices to demonstrate that λ1 < 1.
Recall that

λ1 =
γ + (1 + β)(σ +

√
n−1√
n

αL)2 +
√
D

2
. (15)

Let us now fix β = 1
2

(

1
σ2 − 1

)

. As α < 1
2L

√
n√

n−1

(

1√
1+β

− σ

)

,

we conclude that (1+β)(σ+α
√
n−1√
n

L)2 < 1
4 (σ

√
1 + β−1)2.

As α < n
µ

(

8
(
√
1+σ2−

√
2)2

− 1
)

= n
µ

(

4

(σ
√

1+β−1)2
− 1

)

, we

conclude that γ = 1

(1+µα
n )

≥ 1
4 (σ

√
1 + β − 1)2. Bring-

ing these inequalities together, we obtain (1 + β)(σ +

α
√
n−1√
n

L)2 < γ and, thus, from (15)

λ1 <
n

n+ µα
+

√

n− 1

n+ µα

2α3

µ

1 + σ2

1− σ2
L4. (16)

Next, taking into account that α <

√

n2+
2µ4(1−σ2)

(n−1)L4(1+σ2)
−n

2µ

and (16), we conclude that 2 λ1 < 1. Finally, according to
(14), ‖xt+1 − x∗‖2Fro ≤ O(qt), with

q(α) = λ1 =
n

2(n+ µα)
+

(1 + σ2)(σ + α
√
n−1√
n

L)2

4σ2

+

√
D

2
, (17)

2 More details can be found in Tatarenko and Nedić (2019).

where

D =

(

n

n+ µα
− 1

2
(1 +

1

σ2
)(σ + α

√
n− 1√
n

L)2
)2

+ 8
n− 1

n+ µα

α3

µ

1 + σ2

1− σ2
L4.

5. COMPARISON WITH THE CONVERGENCE
RATE OF THE GRANE

In this section we compare the convergence rate of the
algorithm (7) analyzed in this paper and the convergence
rate of the GRANE procedure studied in Tatarenko et al.
(2019), given some large number of players n.

According to Theorem 9 in Tatarenko et al. (2019) under
Assumptions 1-3 made above, the GRANE converges to

the Nash equilibrium with the rate O

(

(

1− 1
γ2
r

)t
)

, where

γr =
LFa

µr,Fa
> 1 and the constants LFa

, µr,Fa
are defined

in Lemmas 1 and 3 respectively 3 . After substituting
the expressions for LFa

, µr,Fa
into γr, we conclude that

γr = 2n
[

L
µ + σmax{I−W}

α0µ

]

for a sufficiently large n. Next,

according to Remark 4 in Tatarenko et al. (2019), α0 <
λ̃min{I−W}
L
(

1+ 1

β2

) , where β ∼ µ
nL .

Thus, given the optimal choice of α0, we get γr =

2n

[

L
µ +

L/µ
(

1+n2L2

µ2

)

σmax{I−W}
λ̃min{I−W}

]

. Thus, the convergence

rate of the GRANE is

O

(

(

1− µ6

L6n6

)t
)

. (18)

Now we proceed with estimating the convergence rate
of the algorithm (7). According to the proof of The-
orem 1, the convergence rate of the distributed pro-
cedure is O(q(α)t), where (see (16)) q(α) < n

n+µα +
√

n−1
n+µα

2α3

µ
1+σ2

1−σ2L4. The constant q above is less than 1, if

α <

√

n2+
2µ4(1−σ2)

(n−1)L4(1+σ2)
−n

2µ ∼ µ3(1−σ2)
2n(n−1)L4(1+σ2) . Thus, taking

into account two inequalities above, we conclude that for
a sufficiently large n

q(α ∼ µ3(1 − σ2)

2n(n− 1)L4(1 + σ2)
) < O

(

1− µ4

L4n2(n− 1)

)

.

(19)

Next, let us notice that, under Assumption 2, the game
mapping F defined in (1) is Lipschitz continuous with
the constant LF = L

√
n. Indeed, due to Assumption 2,

‖F(x)−F(y)‖2 ≤∑n
i=1 L

2
i ‖x− y‖2 ≤ nL2‖x− y‖2. Thus,

the condition number of the mapping F is

LF

µ
=

L
√
n

µ
≥ 1. (20)

By comparing (18) and (19) and taking into account (20),
we conclude that the convergence rate of the proposed

3 The constant LF = maxi{
√

L2

i
+ L2

−i
} defined in Lemma 3 in

Tatarenko et al. (2019) corresponds to the constant L defined in
Lemma 2 in this paper.
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algorithm (7) is faster than that of the GRANE presented
in Tatarenko et al. (2019).

6. SIMULATION

Let us consider a class of games with strongly monotone
game mappings. Specifically, we have players {1, 2, . . . , 20}
and each player i’s objective is to minimize the cost
function Ji(xi, x−i) = fi(xi) + li(x−i)xi, where fi(xi) =
0.5aix

2
i + bixi and li(x−i) =

∑

j 6=i cijxj . The local cost
function is in general dependent on actions of all players,
but the underlying communication graph is a randomly
generated tree graph. We randomly select ai, bi, and cij
for all possible i and j.

We simulate the proposed gradient play algorithm and
compare its implementation with the implementation of
the algorithm GRANE presented in Tatarenko et al. (2019)
(see Figure 1). The GRANE is based on a so called aug-
mented game mapping, for which an additional parameter
has to be chosen to guarantee specific properties of this
mapping and, thus, convergence of the procedure. Note
that the GRANE is very sensitive to the setting of this
parameter. We chose this parameter based on the theoretic
results in Tatarenko et al. (2019). For the gradient play we
chose the step size parameter α based on Theorem 1 (in
the presented simulation α = 0.005). The gradient play
outperforms the GRANE. Moreover, we implemented the
gradient play for the larger step size α = 0.5 (the ”green”
plot on Figure 1). As we can see, the step size can be tuned
to speed the proposed procedure up. Thus, the bound
on the convergence rate presented above is not tight as
indicated by the ”green” plot using a larger step size than
the one predicted by Theorem 1.

GRANE
Gradient Play (  = 0.005)
Gradient Play (  = 0.5)
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Fig. 1. Comparison of the presented algorithm and
GRANE based on restricted strongly monotone aug-
mented mapping

7. CONCLUSION

In this paper, we have presented the distributed gradient
play which provably converges to a Nash equilibrium in
strongly convex games with unconstrained action sets. In
comparison to the GRANE algorithm Tatarenko et al.
(2019), which possesses a geometric convergence rate as
well, the proposed algorithm requires only one parameter
(the step size) to be appropriately choosen. Moreover,
its convergence rate is shown to be faster than that of
GRANE. The future work can be devoted to investigation
of the tight bound of the convergence rate of the projected

gradient play in the general case of closed and convex
agents’ action sets.
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