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Abstract: Robust control methods such as tube-based robust model predictive control (MPC)
schemes, developed to provide robust constraint satisfaction guarantees, require an uncertain
model of the controlled plant. In this paper, we present a method to identify such models,
along with a robust MPC scheme with reduced conservativeness tailored to employ them. We
consider input-output models in which uncertainty is modeled as an additive disturbance on the
output. Reduction of conservativeness is achieved by identifying the dynamics generating the
disturbance. Standard linear system identification methods are used in the model development
procedure, with residuals from the identification process extracted to characterize uncertainty
in a set-membership setting. The effectiveness of a using dynamic output disturbance models is

demonstrated through simulations.
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1. INTRODUCTION

Model predictive control (MPC) schemes use a model of
the plant being controlled to predict and optimize its
future evolution. Accurate models can help MPC make
better decisions with respect to performance and con-
straint satisfaction. However, not only high-fidelity mod-
els can make the MPC schemes unwieldy, but they may
also impossible to get due to nondeterminism. Uncertain
models represent a good trade-off between model sim-
plicity and taking unmodeled dynamics and disturbances
into account. In such models, inaccuracies with respect
to a nominal model of the plant are characterized as
uncertainties, and the corresponding robust MPC schemes
explicitly use this uncertainty characterization while per-
forming predictions, especially to enforce constraints under
all circumstances.

In this work, we present a method to characterize uncer-
tainty in a linear model of the plant, in a set-membership
(SM) setting. An early survey of such techniques was
presented in (Walter and Piet-Lahanier, 1990). Further
methods were discussed in (Kosut et al., 1992), and more
recently in (Terzi et al., 2018) and (Mohammadi et al.,
2015). In all these works, a set-based characterization
of the nominal model parameters was used to capture
uncertainty.

Uncertain models obtained by following these methods can
be used in min-max MPC schemes, such as that presented
in (Kothare et al., 1996). Tube-based robust MPC schemes
like those presented in (Chisci et al., 2001) and (Limon
et al., 2010) provide an attractive alternative, since they
use an optimization problem whose complexity is the
same as that of nominal MPC, but with robust constraint
satisfaction guarantees. Uncertain models developed for
these schemes typically require (a) a state observer to

estimate the initial state of the uncertain model, (b) a
bounded disturbance characterization of uncertainty. This
paper presents a method to develop uncertain models that
satisfy both these requirements.

We deal with the problem of state estimation by work-
ing with input-output models. Assuming perfect measure-
ments of input and output signals are available, these
models allow us to construct the state vector exactly using
past values of inputs and outputs, forgoing the need for a
state observer. A detailed study of such models can be
found in (Ljung, 1986). We first identify a nominal input-
output model of the plant, and model its uncertainty as
the model error acting as an additive disturbance on the
output. Then, we identify a dynamical model causing this
error, along with the set of disturbances driving it. This
completes the characterization of a bounded disturbance
form of uncertainty.

The idea follows along the lines of the error model pre-
sented in (Garulli and Reinelt, 2000) and (Ljung, 2000),
but diverges from them since we model this error to be
caused by an external source, rather than by the plant
input. We remark that the presented methods can easily be
extended to account for the contribution of plant inputs to
the uncertainty, though we skip this aspect in this paper.

Alongside the identification procedure, we also present a
tube-based MPC scheme that is tailored for the uncer-
tain model parameterization we discuss. These models
can also be used seamlessly within a robust reference
governor framework, further details of which can be found
in (Garone et al., 2017). Dynamic output disturbance
models have previously been discussed in literature, e.g.,
in (Huusom et al., 2010) and (Ohshima et al., 1995), but
within the context of offset-free tracking MPC schemes,
without any discussion on robust constraint satisfaction.



This paper is structured as follows. We introduce the
uncertain model structure and discuss an identification
procedure in Section 2. We present the specialized tube-
based robust MPC scheme in Section 3. In Section 4, we
present simulation results and discuss the merits of the
chosen model parameterization. Conclusions and possible
future directions are given in Section 5.

Notation: The operator @& denotes Minkowski sum, &
set difference. The symbol I} denotes the set of indices
{1,..,p}. Boldface 0 and 1 denote matrices of all 0’s and
1’s, with dimension given by the context.

2. IDENTIFICATION FOR ROBUST MODEL
PREDICTIVE CONTROL

In this paper we consider uncertain systems of the form

x(t+1) = fo(z(t), ut)),

y(t) = gs(x(t), v(t)),

with input u(t) € R™, state z(t) € R"=, measured output
y(t) € R™, and bounded unmeasured output disturbance
v(t) € R™ C R™ generated by a stationary process. We
are interested in designing a controller which satisfies input
and output constraints for all possible realizations of the
disturbance v(t). To that end, in Section 3 we will use tube-
based robust Model Predictive Control (MPC) (Chisci
et al., 2001). In the rest of this section, we will introduce
an uncertain model Gy of the plant Gp, and present
methods to identify it from input-output data obtained
by experiments.

2.1 Model Structure

We consider a nominal input-output model Gy of the
plant, given by

g(t) = > Ayt —i)+ > Biu(t —i). (1)
i=1 i=1

Due to the disturbance and model inaccuracy, in general
the output behavior of the nominal model Gy does not
match the one of the plant Gp exactly.

A standard approach when developing uncertainty pre-
diction models for robust MPC consists of modeling the
nominal output error Ay(t) = y(t) — y(¢) as an additive
(bounded) disturbance. The uncertainty set Da satisfying
Ay(t) € Da, Vt, is then used to predict future uncertainty
and adequately formulate the constraints in MPC. While
this approach is viable, it can be conservative, since in
many cases of interest, the output error is not directly
caused by an additive disturbance that can change arbi-
trarily from one step ¢ to the next within Da, but rather
has its own dynamics.

With the aim of reducing such conservativeness, we there-
fore model the output error Ay(t) = y(t) —5(¢) as the out-
put of a dynamical system, characterized by a disturbance
model Gp driven by a disturbance signal w(t). Hence, the
uncertain plant model Gy is given by the composition of
models G and Gp, as schematically shown in Figure 1.

2.2 Identification Procedure

Identifying model Gy requires a dataset Dp = {u(t),y(t), t =
0,.., N}, generated by suitably designed open-loop exper-

Fig. 1. System model

iments (Ljung, 1986). For example, one can identify A, B
by the prediction-error method (PEM) (Ljung, 1986):

N nA nB 2
min > e - Z Ayt —i) — Z Biu(t — i)
t=na+1 =1 =1 2

(2)
However, depending on the underlying assumptions, other
identification strategies or model structures might be bet-
ter suited. For more details see, e.g., (Palma and Magni,
2004).

To identify model Gp, we first build a dataset Da of the
output errors Ay(t), starting from the dataset Dp as

Da ={Ay(t) = y(t) —y(t), t =0,..,N, y(t) € Dp}. (3)
We simulate model (1) with initial condition g(t)
y(t), Vt € [0,na] and input u(t), t =0,...,N — 1.

Using Da, we identify Gp as an autoregressive model,
described by the linear difference equations

nc

Ay(t) = CiAy(t — i)+ w(t — 1). (4)

i=1
For the identification of Gp, similar considerations as for
gn apply. PEM reads as
2

N nc
min > |lAaye) - Z CiAy(t —1i) (5)
t=nc+1 =1 2

Knowledge on Gy and Gp is not sufficient to predict a
future plant output, since the set W of disturbances w(t)
is not known a priori. While w cannot be measured, the
identification procedure performed to identify (4) also re-
turns residuals {w(t),t € [nc, N — 1]}, which can be used
to perform a simple set-membership identification. Equiv-
alently, w(t) can be computed using the same procedure
used for Ay(t).

A natural choice for set-membership identification is

W := Conv{w(t), V¢ € [nc, N]}. (6)
Note, however, that such a choice intrinsically underesti-
mates the true uncertainty set W, since the samples only
cover the full set for N — oo. A thorough discussion on
the best method for estimating W is out of the scope of
this paper.

Knowing the nominal model Gy, the disturbance model
Gp and the set of disturbances W, we can make set-
valued predictions of the future plant output y(t + s)
for a sequence of future inputs {u(t + m),m = 0,..,s —
1}, as required to properly formulate robust MPC. We
summarize the procedure to identify these in Algorithm 1.

Remark 1. The autoregressive parametrization of Gp in
(4) implicitly assumes that the process generating Da is
time-invariant. One can extend the proposed method by



Algorithm 1 Identification of Gy

1: procedure IDENTIFY Gn, Gp AND W

2 Build dataset Dp through experiments
3 Identify A, B, e.g., by solving (2)

4: Build dataset Da as (3)
5
6
T

Identify C, e.g., by solving (5)
Extract residuals w and identify W
end procedure

borrowing ideas from adaptive MPC techniques (Tanaskovic
et al., 2014) by computing the model parameters and
disturbance sets W online.

3. ROBUST MODEL PREDICTIVE CONTROLLER

Since robust MPC schemes are typically formulated in
state space, we will first write the plant model in state
space form and then present the robust MPC formulation.

The state vectors of Gy and Gp are given by
y(t)
y(t —na +1) Ay(t)
Zn(t) = , xq(t) = :
u(t —1) Ay(t —nc +1)
u(t —ng + 1)
with dynamics
xn(t+1) = Anxn(t) + Bou(t),
§(t) = Craa(t), (72)
Jid(t + 1) = Adl‘d(t) + Bdw(t), (7b)
Ay(t) = Cdl'd(ﬁ).

where matrices (Ap, By, Ch), (Aqg, Ba,Cq) are obtained
from the coefficients of (1) and (4), respectively. Since
the nominal state-space model (7a) stems from the input-
output form (1), a state estimator is not needed, since
full knowledge on the state is obtained from the current
and past output measurements, and the past inputs fed to
the system. This presents an advantage over conventional
MPC schemes, which also model uncertainty on the initial
state using a state estimator to perform predictions (Chisci
and Zappa, 2002). Once the measurement y(t) becomes
available, we update g(t) = y(t), such that Ay(t) = 0,
entailing that z4(t) = 0. Note, however, that, given the
information available at time ¢, 24(7) evolves according to
the dynamics in (7b) for 7 > ¢, with w € W.

We assume that the real plant Gp must satisfy the follow-
ing constraints
T
(y(t),u(t)) € C:={(y,u) : [Hy Hi][y" u] <}, Ve,
(8)
such that C is a closed convex polytope with the origin
in its interior. Before proceeding with the design of the
controller, we make the following assumptions.
Assumption 1. a) The eigenvalues of A, and A4 are
strictly within the unit circle; b)The disturbance set W
is compact, convex, and contains the origin in its interior.

We define the set A)Y(s) of all possible output prediction
error realizations at time ¢ + s as
s—1
AY(s) := @D CaAf BaW.

m=0

(9)

Assumption 2. Sets C and W satisfy HyA)Y(oc0) C C.

Remark 2. Note that Assumption 1 is not restrictive,
since it requires stabilizability of the nominal system.
If the nominal system is unstable, one can introduce a
stabilizing linear feedback controller, such that the closed-
loop dynamics are stable. Since the developments of this
paper hold for any pre-stabilized system, we directly
assume that A, is the state transition matrix of the pre-
stabilized system.

We design a robust linear MPC (RMPC) using a tube-
based approach, that reads the current nominal model
state x,(t) and current output y(t), and solves the op-
timization problem

L-1

min Y [[5(¢ -+ sft) = g + llult + s[t) — u(t +s = 1[)]%
s=1

(10a)

), (10b)

nZn(t + s — 1|t) + Byu(t + s — 1]¢),

s €T (10c)
s e TF1 (104)
)

)

s.t. zn(t)t) = an(t

xn(t + s|t) =

gt + s|t) = Crzn(t + s|t),

H,y(t+ s|t) + Hyu(t + s|t) < h(s),

Hyu(tlt) < h - Hyy(t), 108

Gun(t+ L|t) < g, (10g)
where x, (t+ s|t), g(t+ s|t) and u(t+ s|t) are the predicted
state, output and input respectively of the nominal model
at timestep ¢ + s, given the model state x,(¢). The opti-
mization variables of this problem are z := (u(¢|t), z,(t +
1t),...,u(t + L — 1|t),zn(t + L|t)). The objective of this
controller is to drive the nominal predicted output (¢t +
s|t) towards a reference y. The first input u(¢|t), that is
the only one applied to the plant Gp, is constrained by
(10f) as a function of the current output y(t). RMPC
solves Problem (10) at every time instant ¢, given the
current state x,(t). In this paper we focus on optimizing
the nominal cost, as in tube-based RMPC. Nevertheless,

the disturbance model can also be deployed with min-max
RMPC

While the MPC formulation (10) seems to neglect the
uncertainty, it implicitly accounts for it by a constraint
tightening procedure which yields h(s) < h. In order to
compute h(s), we exploit the facts that (a) z4(t) = 0, and
(b) w(t+ s|t) € W, to compute

s el (10e

S
(

s—1
hi(s) =h'— H!Ay = h'— H!C4A}'B
() Ayeay(s VY ;fvn?sfv( yCadd Baw,
(11)
for each s = 1,..,L — 1. If the set W is a polytope,

the maximization problems in (11) can be formulated as
linear programs, which are solved offline before building
optimization problem (10).

Finally, terminal constraints (10g) are introduced to en-
sure that the problem remains feasible beyond the predic-
tion horizon, i.e., for all time t+s with s > L. The terminal
constraint set X¢ := {x, : Gz, < g} is formulated as a
robust positive invariant (RPI) set:
Xe={z|Awr € X, H, (Crz+ Ay(s)) < h,Vs};

i.e., a set of nominal model states, such that for all possible
future disturbance sequences {w(t + s) € W}, the plant



constraints (8) are respected and the states remain inside
the set X¢. In order to make the domain of the RMPC
problem as large as possible, X; is commonly chosen as
the maximum RPI set, which we suggest to compute as in
the following two stages: First, we assume zq(t + L) = 0.
Then, we account for uncertainty in zq(t+ L) by tightening
the obtained constraints further, as detailed below:

e Under the assumption that xq(t + L) = 0, we define
the RPI set

X; = {Zn | Anzn € Xf,Hyy(s) < h, £4(0) =0, Vs}.
Then, we define the set X(s) of nominal states such
that the plant constraints (8) are satisfied over the
time interval [t,¢ + s]:

X(0) == {@u(t) : HyCyza(t) < h(0)},

X(s) := {an(t) € X(s — 1) : H,CoASxn(t) < h(s)}.
Under Assumptions 1 and 2, there exists a finite-
determination index s* such that Xy = X(s*) =

X(s* +1). (Kolmanovsky and Gilbert, 1998)
e The uncertainty set Xq(L) of the disturbance model
L
state at time ¢+ L is given by Xq(L) = @ AJ'BqW.
m=0
Then, the actual set of nominal states satisfying plant
constraints (8) in time interval [t, ¢+ s] accounting for

this uncertainty are obtained by tightening X(s) as
X(s) := X(s) © H,CqA5Xq4(L)
By computing ¢'(s) = max,,ex, () HyCaAjza for each

s = 0,..,s* the matrices G and ¢ defining X; are hence
given by

H,Cy h(0) — q(0)
H,CuA, h(1) - g(1)

G= : , g= :
HydnAi* h(s") — q(s")

The role of Assumption (2) is now clear: it guarantees that
Xt # 0 and (10e) defines a nonempty set. In turn, these
two conditions ensure that the domain of Problem (10) is
nonempty.

4. SIMULATION RESULTS

We present simulation results obtained with two exam-
ples. In the first one, the real plant Gp is a single-input
single-output (SISO) system matching the assumed struc-
ture exactly. In the second one, we consider a 2-input
2-output nonlinear precompensated mass-spring-damper
system. Simulations were performed using MATLAB, and
the identification procedures were carried out using the
System Identification Toolbox™.

4.1 SISO Plant with Output Disturbances

We consider the SISO plant Gp described by
Yu(t) = 0.6y, (t — 1) — 0.6y, (t — 2) +u(t — 1),
yv(t) = O-Syv<t - 1) - 0'8yv(t - 2) + ’U(t - 1)a

y(t) = yu(t) + yo(t)-
with simulations performed by uniformly sampling v(t) €

[—2, 2]. For ease of presentation, we assume that the model
structure is known a priori

(12)
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Fig. 3. Comparison of predictive performance of uncertain
models.

Using the dataset Dp shown in Figure 2, we solve (2) to
identify the nominal model Gy as

7(t) = 0.59785(t — 1) — 0.59855(t — 2) + 0.9981u(t — 1).

We consider the following two disturbance models that
accompany Gy to perform set-valued predictions of future
plant output:

(1) Dynamic disturbance model Gp: The design of this
model follows the procedure described in Section 2.
We identify it as

Ay(t) = 0.7932Ay(t — 1) — 0.791Ay(t — 2) + w(t — 1),

with disturbance set W = {-2.1687 < w(t) <
2.1492}. We use (Aq, Bg,Cq) to represent the state-
space matrices corresponding to this model. The
uncertain model Gy is composed of Gy and Gp, which
performs the predictions as y(t) € {g(t)} & AY(t).

(2) Static disturbance model Ga: This model considers
the bounds on the output error Ay(t) obtained from
DA, taken into account as an additive disturbance
on the output. These bounds are identified as Wa =
{—8.3751 < Ay(t) < 8.6271}. The uncertain model
G4 is composed of Gy and Ga, which performs the
predictions as y(t) € {y(t)} & Wa.

We compare the predictive performance of these two
uncertain models in Figure 3, for different realizations of
v(t). The plant and the models start from initial conditions
set to 0 , and no input u(t) is applied. We also plot the sets
y(t) € {y(t)} ® AY(c0) obtained by simulating the model
Grr» which represents the asymptotic behavior of Gy.

We can see from Figure 3 that Gy gives tighter predictions
than G§} for the initial few steps (indicated in green). This
is expected, since these predictions take the dynamics of
the disturbance model into account. Since MPC schemes
usually exploit tighter predictions to reduce conservative-



u(t)

Fig. 4. Comparison of robust MPC performance for differ-
ent realizations of v(t).

ness, we expect that a robust MPC designed using Gy
would be less conservative than that using G&. This is
evidenced in Figure 4, in which the tracking performance
of robust MPC controllers designed using the uncertain
models Gy and Qﬁ are compared. The figure shows that
GOm consistently offers less conservative performance for
different realizations of v(t). Infact, the average sum of
stage costs over the realizations is 158.5289 with Gy, and
971.4325 with gﬁ. The parameters of the controllers are

—20 20 _
(C:HQO] < m < [20”,L:15,Q:1,R:10 4

The slight constraint violation in the case of Gy can
be attributed to the underestimation of the true set W
from a finite set of data. If knowledge on the noise
distribution is available, it seems possible to estimate the
constraint violation probability by borrowing ideas from
(Bujarbaruah et al., 2019).

In addition to being conservative in predictions over short
horizons, the uncertain model Qﬁ might be describing
overly optimistic bounds on Ay(t) over longer horizons.
This is because given Gy and W, we can only obtain
Wa C AY(s) C AY(o0) for some integer s > 0 from a
finite dataset.

4.2 Nonlinear plant

In this example, we consider the following nonlinear
spring-mass-damper system described by the discretized
dynamics

pt+1)] p(t) + Tsv(t)
v(t+ 1)] B l"(t) - E(CV(t) + Kp(t)) + 1F(t) - EKp( t)3

(13)
with a feedback controller F(t) = Kju(t) — Kay(t) to be
the plant Gp. The parameters of this system are mass
m = 0.5Kg, damping coefficient ¢ = 3Ns/m, stiffness
coefficient K = 5N/m, nonlinear stiffness coefficient K=
0.05N/m?, and Ts = 0.05s. The controller coefficients are
K, = [10.2564 4.4115] and Ky = [5.2564 1.4115]. The
output vector is y(t) = [p(t) v(¢)]'. Though this plant
does not match the assumed structure, we demonstrate
that a dynamic disturbance model could still be used to
obtain reduced conservativeness when the effect of the
nonlinearities do not dominate.

The dataset Dp used to identify the models Gy, Gp and
disturbance set W following Algorithm 1 is shown in
Figure 5. The identified parameters are

p(t)

|||1 '\’ | ’,‘1 M \"h [U ){ \‘ ‘\} \ ’H“l‘ W ‘j V J \ ifl"}’”'}'\ | I] H“ )f \,’
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Fig. 5. Dp for system (13) with feedback controller
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As discussed in the previous example, we also consider the
static output disturbance model Ga, whose disturbance
set Wa is constructed using the prediction error samples
Ay(t) directly. These two sets are shown in Figure 6, and
the corresponding predictive performance in the output
space are compared in Figure 7.

We synthesize RMPC controllers using these two models,
whose tracking performance is compared in Figure 8. We
use the parameters C = {(y,u) : =8 < yo < 8, —80 <
Kiu — Koy < 80}, L =20, Q = [(1] 8] and R = 0.001.

As in the first example, less conservative performance is
obtained when the dynamic disturbance model is used.
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The sum of stage costs is 238.351 with Gy, and 264.868
with gﬁ.

5. CONCLUSIONS

We presented a procedure to identify an uncertain model
of a plant described by an output disturbance superim-
posed to a nominal output. While we have used well-
assessed identification tools taken from literature, we de-
rived datasets in a way that the output uncertainty can be
captured and modeled, and used the resulting uncertainty
model in a tube-based robust MPC scheme. We have
demonstrated the effectiveness of the proposed procedure
in reducing conservativeness in two simulation examples.

Several topics of future research are open, such as: (a)
Extension to cases where the exact model states are un-
known (noisy settings and generic state-space models);
(b) Extension to models with coupling of nominal and
disturbance-model states; (c) Extension to cases like de-
centralized control, where additional information on the
output disturbance is available; (d) A theoretical analy-
sis of the proposed procedure. Our method can also be
extended in the direction of identification for stochastic
MPC along the lines of (Shang and You, 2018), since ARX
and AR model identification procedures are inherently
probabilistic methods.
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