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Abstract: We develop in this paper a boundary output feedback control law for an underactuated network
of traffic flow on two connected roads; one incoming and one outgoing road connected by a junction.
The macroscopic traffic dynamics on each road segment are governed by Aw-Rascle-Zhang (ARZ)
model, consisting of second-order nonlinear partial differential equations (PDEs) of traffic density and
velocity. The control objective is to stabilize the traffic network system on both roads around a chosen
reference system. Using a ramp metering located at the outlet of the outgoing road, we actuate the traffic
flux leaving this considered domain. Boundary measurements of traffic flux and velocity are taken at
the junction connecting the two road segments. A delay-robust full state feedback control law and a
boundary observer are designed for this under-actuated network of two systems interconnected through
their boundaries. Each system consists of two hetero-directional linear first-order hyperbolic PDEs. The
exponential convergence to the reference system is achieved.

Keywords: Traffic network; ARZ traffic model; PDE control; Backstepping.

1. INTRODUCTION

Traffic flow networks based on macroscopic modeling have
been intensively investigated over the past decades. The macro-
scopic modeling of traffic dynamics is used to describe the evo-
lution of aggregated traffic state values including traffic density,
velocity and flow rate on road. The traffic flow network based
on the first-order Lightill-Whitham-Richards (LWR) model is
theoretically proposed by Coclite et al. (2005) and studied for
numerical simulation and applications in Treiber and Kesting
(2013). The LWR model corresponds to a conservation law of
the traffic density. It can predict the formation and propagation
of traffic shockwaves on freeway, but fails to describe the stop-
and-go phenomenon which can be properly addressed by the
second-order Aw-Rascle-Zhang (ARZ) model Aw and Rascle
(2000) Zhang (2002). This second-order ARZ traffic model
consists of a set of nonlinear hyperbolic PDEs describing the
evolution of the traffic density and velocity. The macroscopic
modeling of road networks based on the ARZ model has been
developed in Garavello and Piccoli (2006), Herty and Rascle
(2006).

In this paper, we use the state-of-art ARZ model traffic flow
network to describe the traffic dynamics of two interconnected
freeway roads. The traffic network modeling proposed in Herty
and Rascle (2006) is adopted. The modeling of the junction of
two connected roads conserves the mass and the other traffic
property as detailed later in the paper. This property is not
smooth across the junction in Garavello and Piccoli (2006). In
comparison, the solution in Herty and Rascle (2006) is a weak
solution (in the sense of the conservative variables of the ARZ
model) that guarantees the well-posedness of the closed-loop
system for our control design.

Traffic network control strategies are developed and imple-
mented for the traffic management infrastructures such as ramp
metering and varying speed limits. Previous contributions, in-

cluding Gomes and Horowitz (2006), Jin and Amin (2018),
Goatin et al. (2016), Zhang and Ioannou (2016), mostly fo-
cus on the spatially discretized approximation of LWR model,
namely cell transmission model and its derivation. The ramp
metering optimal control problem is studied to improve various
performance indexes including total travel time, ramp metering
queue, throughput maximization, avoidance of capacity drop.
Boundary feedback control algorithms are developed for traf-
fic PDE modeling of a single freeway segment in Bastin and
Coron (2016), Karafyllis and Papageorgiou (2019), Yu and
Krstic (2018), Yu and Krstic (2019), Zhang et al. (2019). These
control laws are restricted to control problem of one segment
and traffic network PDE control problems have not been studied
to authors’ best knowledge.

In authors’ previous work Yu and Krstic (2018)-Yu and Krstic
(2019), backstepping boundary control laws are designed for
ramp metering and varying speed limits to suppress the stop-
and-go traffic oscillations on one freeway segment either up-
stream or downstream of the ramp. The problem of controlling
the downstream and the upstream traffic simultaneously with
a single boundary actuation remained open. More recently,
Yu et al. (2019) considers a boundary state feedback control
problem for a traffic flow network system in its most funda-
mental form: one incoming and one outgoing road connected
by a junction. The macroscopic traffic dynamics on each road
segment are governed by Aw-Rascle-Zhang (ARZ) model. This
results into a network of two interconnected PDE systems cou-
pled through their boundaries. Each subsystem corresponds to a
2×2 coupled hyperbolic system. The authors have considered
a ramp metering located at the connecting junction actuating
the traffic flow rate entering from the on-ramp to the mainline
junction. The objective is to simultaneously stabilize the up-
stream and downstream traffic to steady states. In this paper,
we consider the same traffic PDE model as the one given in
Yu et al. (2019) but the actuation is now located at the outlet
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Fig. 1. Traffic flow on an incoming road and an outgoing road
connected with a junction, actuation is implemented at the
outlet with ramp metering.

of the outgoing road segment. The main contribution of this
thread of work is to provide an explicit PDE control design that
simultaneously stabilizes the traffic flow on the two connected
roads.

The main contribution and novelty of this work, as a counterpart
to Yu et al. (2019), lie in the following three aspects: different
controlled boundary requires theoretically a new control de-
sign; different actuation locations allow the flexibility of imple-
mentation of the either of the control algorithms in practice; two
control strategies can be evaluated under various performance
objectives of the freeway traffic such as fuel consumption, com-
fort, and total travel time and therefore it is offered a choice
when there are trade-offs between these objectives.

Despite the fact that numerous theoretical results in the lit-
erature are focused on the boundary control of this class of
hyperbolic system based on the backstepping approach Anfin-
sen and Aamo (2019) Auriol and Meglio (2016) Coron et al.
(2013) Deutscher (2017), the control of the network of PDEs
remains a challenging research topic. This is due to the fact that
in most cases, these systems are underactuated (only the PDE
located at one extremity of the network can be actuated). To
tackle this problem, multiple approaches have been proposed:
PI boundary controllers by Bastin and Coron (2013); Bastin
et al. (2015), flatness based design of feedforward control laws
by Schmuck et al. (2011), boundary feedback control using
weighted Lyapunov function by Herty and Yong (2016) and
more recently backstepping-based control laws by Auriol et al.
(2019). In this paper, we will mainly adopt the theoretical result
of full-state feedback design of Auriol et al. (2019). In addition,
we propose boundary observer design to construct the output
feedback controller which is a new theoretical contribution that
has not been developed before.

The paper is organized as follows. In Section II, we introduce
the freeway traffic flow system on two connected roads under
consideration. In particular, we introduce the PDE model and
boundary conditions describing the dynamics of the traffic
density and velocity. These equations are then linearized around
a given steady-state. A stabilizing state-feedback control law
is obtained in Section III for this underactuated system using
backstepping approach. In Section IV we design the boundary
observer. Finally, some concluding remarks are given in Section
V.

2. PROBLEM STATEMENT

We consider a model for two connected road segments with uni-
directional traffic flow. The outgoing road segment corresponds
to x ∈ [0,L] and the incoming road segment to x ∈ [−L,0].
They are connected at the junction through the boundary x = 0.
The traffic dynamics of each road segment are described with
two systems of PDE models and the junction is given as a

set of boundary conditions for the PDE model, which allows
weak solutions for the traffic network problem Herty and Rascle
(2006).

2.1 ARZ PDE model

The evolution of traffic density ρ1(x, t) and velocity v1(x, t) for
(x, t) ∈ [0,L]× [0,∞) and traffic density ρ2(x, t) and velocity
v2(x, t) for (x, t) ∈ [−L,0]× [0,∞) is modeled by the following
ARZ model (as shown in Fig. 1):

∂tρi +∂x(ρivi) =0, (1)

∂t(ρiwi)+∂x(ρiviwi) =−
ρi(vi−Vi(ρi))

τi
, (2)

where the variable wi is interpreted as “friction” or drivers’
aggressiveness of each vehicle that transports in the traffic flow.
The traffic flow velocity vi is related to wi by

vi = wi− pi(ρi). (3)
where the traffic pressure is defined as an increasing function
of the density, pi(ρi) = (vm/ρ

γi
m,i)ρ

γi
i . The traffic pressure pi(ρi)

can be interpreted as the effect that forces drivers to slow down
when there is a denser traffic density. The maximum velocity
vm is assumed to be the same for the two road segments while
the maximum density ρm,i and coefficient γi ∈ R+ representing
drivers’ property are allowed to vary in the different segments,
due to different compositions of drivers and vehicles or road
attributes.

The equilibrium density-velocity relation Vi(ρi) on each road is
given in the form of Greenshield’s model

Vi(ρi) = vm

(
1−
(

ρi

ρm,i

)γi
)
. (4)

The time scale of τi ∈ R+ is assumed to be constant. If we
consider an empty road so that ρi = 0, then V (ρi) = vm and wi =
vi. Therefore, the state variable wi represents the heterogeneity
of traffic flow, namely, the property of each vehicle, with respect
to aggregated equilibrium density-velocity relation V (ρ). We
denote the traffic flow rate on each road as

qi = ρivi. (5)
The equilibrium flow rate and density relation, also known as
the fundamental diagram, is then given by

Qi(ρi) =ρiV (ρi) = ρivm

(
1−
(

ρi

ρm,i

)γi
)
. (6)

For the fundamental diagram in (6), the critical density ρc,i

is given by ρc,i =
ρm,i

(1+γi)
1/γi

such that Q′i(ρi)|ρi=ρc,i = 0 . The
critical density segregates the free regime and congested regime
of equilibrium traffic states. The traffic flow is said to be in free
regime when the density satisfies ρi < ρc,i. The traffic flow is
said to be congested when the density satisfies ρi > ρc,i. The
traffic flux reaches its maximum value at the critical density
qc,i = Q(ρc,i) which is also referred as the road capacity. In
this work, we focus on the congested traffic for both segments.
Notice that we allow different road capacities qc,i for the two
segments. We adopt in this paper the traffic PDE network
model given in Herty and Rascle (2006). This model allows
weak solutions of the network system. Regarding the boundary
conditions at the junctions, the Rankine-Hugoniot condition is
satisfied. This implies the conservation of the mass and drivers’
property. We assume the continuity of the flux and drivers’
property across the boundary condition at x = 0,

ρ1(0, t)v1(0, t) =ρ2(0, t)v2(0, t), (7)
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w2(0, t) =w1(0, t). (8)
We assume for the open-loop system, a constant incoming flow
rate q? for the inlet boundary x = −L and the same constant
outgoing flow rate q? at the outlet boundary for x = L in the
open-loop system. The outgoing flow rate is actuated by a
control input U(t) in the closed-loop system,

q2(−L, t) =q?, (9)
q1(L, t) =q?+U(t). (10)

The control objective is to stabilize the traffic flow in both the
incoming and outgoing road segments with the single control
of the flow rate at the outlet, as shown in Fig. 2.

2.2 Steady states (ρ?
1 ,v

?
1,ρ

?
2 ,v

?
2)

In this paper, we want to stabilize the traffic flow in the two seg-
ments around the corresponding steady states. These arbitrary
steady states (ρ?

1 ,v
?
1,ρ

?
2 ,v

?
2) are chosen such that the boundary

conditions (7) and (8) are satisfied, i.e.

ρ
?
1 v?1 =ρ

?
2 v?2 = q?, (11)

w?
1 =w?

2 = vm, (12)
where the steady state velocities satisfy the equilibrium density-
velocity relation v?i = Vi(ρi). The constant flux q? in (11)
satisfies (q? = Q1(ρ

?
1 ) = Q2(ρ

?
2 )) according to (6). The steady

state densities ρ?
1 and ρ?

2 are chosen such that this relation is
satisfied. The constant driver’s property in (12) implies that
we have the same maximum velocity vm for the two segments
(which corresponds to our initial assumption).

2.3 Linearized model in the Riemann coordinates

The linearized model is given in the following Riemann vari-
ables defined as

w̃i =wi−w?
i , (13)

ṽi =vi− v?i . (14)
where w?

i and v?i are the steady states value defined above. We

then apply a spatial transformation w̄i(x, t) = exp
(

x
τiv?i

)
w̃i(x, t)

to simplify the linearized model (w̃i, ṽi). One can check that
with such a change of variable, the system (1),(2), (7),(8),(9),
(10) rewrite (for i ∈ {1,2}) as

∂t w̄i + v?i ∂xw̄i =0, (15)
∂t ṽi− (γi p?i − v?i )∂xṽi =ci(x)w̄i, (16)

ṽ1(L, t) =r1 exp
(
− L

τ1v?1

)
w̄1(L, t) (17)

+
v?1(1− r1)

q?
U(t), (18)

w̄1(0, t) =w̄2(0, t), (19)

w̄2(−L, t) =exp
( −L

τ2v?2

)
1
r2

v̄2(−L, t), (20)

ṽ2(0, t) =δ
r2

r1
ṽ1(0, t)+ r2(1−δ )w̃2(0, t), (21)

where the spatially varying coefficients ci(x) are defined as
ci(x) = − 1

τi
exp
(
− x

τiv?i

)
. The constant coefficient δ is defined

by δ =
γ2 p?2
γ1 p?1

> 0. It represents the ratio between the drivers’
aggressiveness and the traffic pressure of the two segments.
The constant coefficients ri are defined as ri = − v?i

γi p?i −v?i
and

L�L 0

U(t)

ṽ2

w̄2

ṽ1

w̄1

Fig. 2. Control diagram for the closed-loop system.

p?i = pi(ρ
?
i ). For the congested regime we have ρ?

i >
ρm,i

(1+γi)
1/γi

so that the characteristic speed γi p?i −v?i > 0. Thus the following
inequalities are satisfied,

−1 < ri < 0. (22)
The more traffic is congested, the smaller the absolute value
of the ratio constant ri. Detailed calculations regarding the lin-
earization and spatial transformation can be obtained following
Yu and Krstic (2019). The control diagram for the closed-loop
system (15)-(21) is given in Fig. 2.

The corresponding initial condition are denoted by (ṽ0)i =
ṽi(·,0) and (w̄0)i = w̄i(·,0). The objective of this paper is to
design a control law U that stabilizes the system (15)-(21)
around its equilibrium in the sense of the L2-norm. Such an
interconnected system has already been considered for full-
state feedback design in Auriol et al. (2019) for a a general
framework in the case of an actuator located at one of the
extremity of the network. It has been proved in Logemann et al.
(1996) that a system can be delay-robustly stabilized only if
its open-loop transfer function has a finite number of zeros on
the complex right half plane. For the considered class of linear
hyperbolic system, it has been proved in Auriol and Meglio
(2019) that such a condition is equivalent to requiring (15)-
(21) with zero in-domain couplings (i.e. c1 ≡ c2 ≡ 0) to be
exponentially stable in the open-loop. This requirement can be
expressed in terms of the following assumption (see Auriol and
Meglio (2019), Yu et al. (2019) for details)
Assumption 1. The boundary couplings of the system (15)-(21)
are such that

|1−δ |exp
( −L

τ2v?2

)
+δ exp

( −L
τ1v?1

)
exp
( −L

τ2v?2

)
< 1. (23)

Indeed, if ci ≡ 0, it is straightforward (using the method of
characteristics) to express w̄2(t,0) as a solution of a neutral
system whose stability is only guaranteed if Assumption 1
holds. Due to the transport structure of (15)-(21), the conver-
gence to zero of w̄2(t,0) implies the stabilization of the system.
Then, (15)-(21) with zero in-domain couplings is exponentially
stable in open-loop and the system can be robustly stabilized.
Here, we consider that δ < 1 which means the drivers are
more aggressive and traffic pressure is greater in segment 2
than that of segment 1. Thus, Assumption 1 is satisfied. If we
consider the traffic conditions in the two segments to be the
same, then δ = 1 and (23) becomes exp

(
−L
τ2v?2

+ −L
τ1v?1

)
< 1. The

Assumption 1 easily holds and thus the system can be delay-
robustly stabilized.

3. STATE FEEDBACK CONTROL DESIGN

In this section, we consider a full state feedback law that
stabilizes the system (15)-(21) in the sense of the L2-norm.
Our approach is directly adjusted from Auriol et al. (2019),
which explains why we will only present the main ideas of the
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design. Inspired by Coron et al. (2013), we first consider the
two invertible backstepping transformations

ᾱ1(t,x) =w̄1(t,x), (24)

β̄1(t,x) =ṽ1(t,x)−
∫ x

0
K̄vw

1 (x,ξ )w̄1(t,ξ )dξ

−
∫ x

0
K̄vv

1 (x,ξ )ṽ1(t,ξ )dξ , (25)

ᾱ2(t,x) =w̄2(t,x), (26)

β̄2(t,x) =ṽ2(t,x)−
∫ x

−L
K̄vw

2 (x,ξ )w̄2(t,ξ )dξ

−
∫ x

−L
K̄vv

2 (x,ξ )ṽ2(t,ξ )dξ , (27)

where the kernels K̄vw
1 and K̄vv

1 are defined on the set T1 =

{(x,ξ ) ∈ [0,L]2, ξ ≤ x}, the kernels K̄vw
2 and K̄vv

2 are defined
on the set T2 = {(x,ξ ) ∈ [−L,0]2, ξ ≤ x}. They satisfy
the following set of PDEs on their corresponding domains of
definition

(γi p?i − v?i )∂xK̄vw
i − v?i ∂ξ K̄vw

i = ci(ξ )K̄vv
i , (28)

∂xK̄vv
i +∂ξ K̄vv

i = 0, (29)
along with the boundary conditions

K̄vw
i (x,x) =−ci(x)

γi p?i
, K̄vv

1 (x,0) = 0, (30)

K̄vv
2 (x,−L) =

v?2
γ2 p?2− v?2

exp
( −L

τ2v?2

)
1
r2

K̄vw
2 (x,−L). (31)

We have the following lemma.
Lemma 1. Coron et al. (2013) For system (28)-(31), there exists
a unique solution K̄vw

1 , K̄vv
1 in L∞(T1) K̄vw

2 , K̄vv
2 in L∞(T2).

Moreover, the transformations (27)-(27) are invertible, that is
there exists L̄βα

1 , L̄ββ

1 in L∞(T1) and L̄βα

2 and L̄ββ

2 in L∞(T2)
such that

ṽ1(t,x) =β̄1(t,x)−
∫ x

0
L̄βα

1 (x,ξ )ᾱ1(t,ξ )dξ

−
∫ x

0
L̄ββ

1 (x,ξ )β̄1(t,ξ )dξ (32)

ṽ2(t,x) =β̄2(t,x)−
∫ x

−L
L̄βα

2 (x,ξ )ᾱ2(t,ξ )dξ

−
∫ x

−L
L̄ββ

2 (x,ξ )β̄2(t,ξ )dξ (33)

The transformation (25)-(27) maps the original system (15)-
(21) to the decoupled target system

∂t ᾱ1 + v?1∂xᾱ1 =0, (34)

∂t β̄1− (γ1 p?1− v?1)∂xβ̄1 =− v?1K̄vw
1 (x,0)α2(t,0), (35)

∂t ᾱ2 + v?2∂xᾱ2 =0, (36)

∂t β̄2− (γ2 p?2− v?2)∂xβ̄2 =0, (37)
with boundary conditions

β̄1(L, t) =r1 exp
(
− L

τ1v?1

)
ᾱ1(L, t)+

v?1(1− r1)

q?
Ū(t) (38)

ᾱ1(0, t) =ᾱ2(0, t), (39)

ᾱ2(−L, t) =exp
( −L

τ2v?2

)
1
r2

β̄2(−L, t), (40)

β̄2(0, t) =δ
r2

r1
β̄1(0, t)+ r2(1−δ )ᾱ2(0, t)

+
∫ 0

−L
(L̄βα

2 (0,ξ )ᾱ2(t,ξ )+ L̄ββ

2 (0,ξ )β̄2(t,ξ ))dξ . (41)

In what follows, U(t) is given related to Ū(t) in (38) by

U(t) =Ū(t)+
q?

v?1(1− r1)

∫ L

0
L̄βα

1 (L,ξ )ᾱ1(t,ξ )

+ L̄ββ

1 (L,ξ )β̄1(t,ξ )dξ . (42)
Let us now consider the following affine transformation

β̄1(t,x) =η1(t,x)−
∫ x

0
G(x,ξ )η1(t,ξ )dξ

−
∫ 0

−L
Mα(x,ξ )ᾱ2(t,ξ )+Mβ (x,ξ )β̄2(t,ξ )dξ (43)

β̄2(t,x) =η2(t,x), (44)

where the kernels Mα(x,ξ ) and Mβ (x,ξ ) are defined on the
domain T = {(x,ξ ) ∈ [0,L] × [−L,0]} while G(x,ξ ) is
defined on T1. They satisfy the following set of PDEs

(γ1 p?1− v?1)∂xMα − v?2∂ξ Mα = 0, (45)

(γ1 p?1− v?1)∂xMβ +(γ2 p?2− v?2)∂ξ Mβ = 0, (46)
∂xG+∂ξ G = 0, (47)

with the boundary conditions

Mα(0,ξ ) =
r1

δ r2
L̄βα

2 (0,ξ ), Mβ (0,ξ ) =
r1

δ r2
L̄ββ

2 (0,ξ ), (48)

Mα(x,0) =(1−δ )Mβ (x,0)− v?1
v?2

K̄vw
1 (x,0)) (49)

Mβ (x,−L) =− exp
( −L

τ2v?2

)
Mα(x,−L) (50)

G(x,0) =δ
r2

r1

γ2 p?2− v?2
γ1 p?1− v?1

Mβ (x,0). (51)

We have the following lemma.
Lemma 2. Auriol et al. (2019) Consider system (45)-(51), there
exists a unique solution Mα , Mβ in L∞(T ), G in L∞(T1).

The transformation (43) maps (34)-(41) to the system
∂t ᾱi + v?i ∂xᾱi =0, (52)

∂t η̄i− (γi p?i − v?i )∂xη̄i =0, (53)
with the boundary condition

η1(L, t) =r1 exp
(
− L

τ1v?1

)
ᾱ1(L, t)+

v?1(1− r1)

q?
Ū(t)

+
∫ 0

−L
Mα(L,ξ )ᾱ2(t,ξ )+Mβ (L,ξ )η2(t,ξ )dξ

+
∫ L

0
G(L,ξ )η1(t,ξ )dξ , (54)

ᾱ1(0, t) =ᾱ2(0, t), (55)

ᾱ2(−L, t) =exp
( −L

τ2v?2

)
1
r2

η2(−L, t), (56)

η2(0, t) =δ
r2

r1
η1(0, t)+ r2(1−δ )ᾱ2(0, t). (57)

Let us now define Ū(t) in (54) as

Ū(t) =
q?

v?1(1− r1)

(∫ L

0
G(L,ξ )η1(ξ , t)dξ

+
∫ 0

−L
Mα(L,ξ )ᾱ2(ξ , t)+Mβ (L,ξ )η2(ξ , t)dξ

)
, (58)

Therefore the full state feedback control law U(t) is obtained
by substituting (58) into (42). With this control law the target
system (52)-(57) is exponentially stable due to Assumption 1
(see Auriol and Meglio (2019) for detials). Due to the invert-
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ibility of the backstepping transformations (25)-(27) and (43),
it can easily be proved that there exist L∞ functions Rw

2 ,R
v
2,R

w
1

and Rv
1 such that the resulting stabilizing control law U(t) can

be rewritten

U(t) =
∫ 0

−L
Rw

2 (ξ )w̄2(ξ , t)+Rv
2(ξ )ṽ2(ξ , t)dξ

+
∫ L

0
Rw

1 (ξ )w̄1(ξ , t)+Rv
1(ξ )ṽ1(ξ , t)dξ . (59)

As this control law is only composed of integral terms, it is
strictly proper. It can be shown following the ideas of Auriol
et al. (2019) that it is robust to delays in the actuation.

4. OBSERVER DESIGN

In this section we design an observer that relies on the mea-
surement of q̃i and ṽi at the left side of the junction. Since
we have w̄2(0, t) =

γ2 p?2
q? q̃2(0, t)− 1

r2
ṽ2(0, t), the measurement

Y0(t) = w̄2(0, t) is obtained.

4.1 Observer equations

Inspired by R. Vazquez and Coron (2011), the observer equa-
tions read as follows

∂t ŵi + v?i ∂xŵi = µi(x)(w̄2(0, t)− ŵi(0, t)), (60)
∂t v̂i− (γi p?i − v?i )∂xv̂i = ci(x)ŵi +νi(x)(w̄2(0)− ŵi(0)), (61)

with boundary conditions

v̂1(L, t) = r1 exp
(
− L

τ1v?1

)
ŵ1(L, t)+

v?1(1− r1)

q?
U(t), (62)

ŵ1(0, t) = ŵ2(0, t), (63)

ŵ2(−L, t) = exp
( −L

τ2v?2

)
1
r2

v̂2(−L, t), (64)

v̂2(0, t) = δ
r2

r1
v̂1(0, t)+(1−δ )r2ŵ2(0, t), (65)

where ŵi(x, t), v̂i(x, t) are the estimates of the state variables
w̄i(x, t) and ṽi(x, t). The terms µi and νi are output injection
gains that have to be designed. They are L∞ functions respec-
tively defined on ([0,L])2 and ([−L,0])2. The corresponding
initial conditions are L2 functions. Defining the error estimates
w̌i = ŵi− w̄i and v̌i = v̂i− ṽi and using the fact that ŵ1(0, t) =
ŵ2(0, t), the error system is obtained by subtracting the observer
equations in (60)-(65) from (15)-(21),

∂t w̌i + v?i ∂xw̌i = µi(x)w̌i(0, t), (66)
∂t v̌i− (γi p?i − v?i )∂xv̌i = ci(x)w̌i +νi(x)w̌i(0, t), (67)

v̌1(L, t) = r1 exp
(
− L

τ1v?1

)
w̌1(L, t), (68)

w̌1(0, t) = w̌2(0, t), (69)

w̌2(−L, t) = exp
( −L

τ2v?2

)
1
r2

v̌2(−L, t), (70)

v̌2(0, t) = δ
r2

r1
v̌1(0, t)+(1−δ )r2w̌2(0, t), (71)

4.2 Backstepping transformations

Let us consider the following backstepping transformations

w̌1(t,x) =α̌1(t,x)−
∫ x

0
Nww

1 (x,ξ )α̌1(t,ξ )dξ , (72)

v̌1(t,x) =β̌1(t,x)−
∫ x

0
Nvw

1 (x,ξ )α̌1(t,ξ )dξ , (73)

w̌2(t,x) =α̌2(t,x)−
∫ 0

x
Nww

2 (x,ξ )α̌2(t,ξ )dξ , (74)

v̌2(t,x) =β̌2(t,x)−
∫ 0

x
Nvw

2 (x,ξ )α̌2(t,ξ )dξ , (75)

where the kernels Nww
1 and Nwv

1 are L∞ functions defined on
the set T1, while the kernels Nww

2 and Nwv
2 are L∞ functions

defined on the set T3 = {(x,ξ ),∈ [−L,0]2, ξ ≥ x}. On their
corresponding domains of definition, they satisfy the following
set of PDEs:

∂xNww
i +∂ξ Nww

i = 0, (76)
(γi p?i − v?i )∂xNvw

i − v?i ∂ξ Nvw
1 =−ci(x)Nww

i , (77)
along with the boundary conditions

Nvw
1 (x,x) =

c1(x)
γ1 p?1

, Nvw
2 (x,x) =

−c2(x)
γ2 p?2

, (78)

Nww
1 (L,x) =

1
r1

exp
(

L
τ1v?1

)
Nvw

1 (L,x), (79)

Nww
2 (−L,x) = exp

( −L
τ2v?2

)
1
r2

Nvw
2 (−L,x). (80)

The well-posedness of this kernel PDE-system is guaranteed by
the following lemma.
Lemma 3. R. Vazquez and Coron (2011) Consider system (76)-
(80). There exists a unique solution Nvw

1 , Nvv
1 in L∞(T1)

and Nvw
2 , Nvv

2 in L∞(T3).

Let us now define the output injection gains µi and νi as
ν1(x) =−v?1Nvw

1 (x,0), µ1(x) =−v?1Nww
1 (x,0), (81)

ν2(x) = v?2Nvw
2 (x,0), µ2(x) = v?2Nww

2 (x,0). (82)
With this choice of injection gains, differentiating the transfor-
mations (72)-(73) and (74)-(75) with respect to time and space,
the error system (66)-(71) is mapped to the following system

∂t α̌i + v?i ∂xα̌i =0, (83)

∂t β̌i− (γi p?i − v?i )∂xβ̌i =0, (84)

β̌1(L, t) =r1 exp
(
− L

τ1v?1

)
α̌1(L, t), (85)

α̌1(0, t) =α̌2(0, t), (86)

α̌2(−L, t) =exp
( −L

τ2v?2

)
1
r2

β̌2(−L, t), (87)

β̌2(0, t) =δ
r2

r1
β̌1(0, t)+(1−δ )r2α̌2(0, t). (88)

This system is exponentially stable due to Assumption 1. Due
to the invertibility of the Volterra transformations (72)-(73) and
(74)-(75), we have the following theorem
Theorem 4. Consider the PDE system (60)-(65) with the output
injections gains defined in (81)-(82). Then for any initial condi-
tion (ŵi(·,0), v̂i(·,0)), the states (ŵi, v̂i) exponentially converge
to the states (w̄i, ṽi).

4.3 Output feedback law

We are now able to give the main theorem of this paper.
Theorem 5. Consider the system (15)-(21) with the control law

U(t) =
∫ 0

−L
Rw

2 (ξ )ŵ2(ξ , t)+Rv
2(ξ )v̂2(ξ , t)dξ

+
∫ L

0
Rw

1 (ξ )ŵ1(ξ , t)+Rv
1(ξ )v̂1(ξ , t)dξ . (89)
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where the states ŵi and v̂i satisfy the observer equations (60)-
(65). Then for any L2 initial condition, the states w̄ and ṽ expo-
nentially converge to zero. This implies the local convergence
of the initial states of ρi and vi to the steady states ρ?

i and v?i .

Proof. The proof uses the same ideas as the ones given
in (Lamare et al., 2018, Theorem 5). As we have ṽ = −v̌i + v̂i
and w̄ =−w̌i + ŵi, the control law (89) can be rewritten as

U(t) =
∫ 0

−L
Rw

2 (ξ )w̄2(ξ , t)+Rv
2(ξ )ṽ2(ξ , t)dξ

+
∫ L

0
Rw

1 (ξ )w̄1(ξ , t)+Rv
1(ξ )ṽ1(ξ , t)dξ +D(t),

where D is given by U in (89) in which the terms v̂i and ŵi
have been replaced by v̌i and w̌i respectively. Since v̌i and w̌i
converge to zero due to Theorem 4, the term D can be seen
as a bounded disturbance that converges to zero. The rest of
the proof is based on Assumption 1 and on the variation of
constants formula (Theorem 7.6, page 32 in Hale and Lunel
(1993)). It is omitted here due to space restrictions.

5. CONCLUSION

In this paper, we develop a boundary state feedback control
law for an interconnected two-segment traffic PDE system and
then construct the output feedback with a collocated observer
design. The control input acts on the traffic flow rate from the
downstream outlet and stabilizes the traffic states to segment-
specific steady states using the measurement of density and
velocity at the inlet. Comparison between this result with Yu
et al. (2019) (different actuation locations) over performance
objectives is of authors’ interest. The control design of this
paper can be extended to the traffic PDE model of multiple
connected road segments.
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