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Abstract: Data–driven control design for general systems with regular language specifications
is addressed. We consider a discrete–time control system described as an abstract system i.e.
as a collection of input–state functions. The abstract system is assumed to be suffix and
concatenation closed, causal, deterministic and time–invariant. State variables are known but
their dynamics are not, apart from a finite set of experiments. Given a specification expressed
as a regular language defined over an alphabet consisting of a finite set of states of the plant, we
design a controller based on the finite set of experiments, that guarantees that the specification is
met, up to an error that can be chosen as small as desired. We also present results on maximality,
convergence and adaptivity of the controller as the set of experiments increases.
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1. INTRODUCTION

There has been a growing interest in data-driven tech-
niques for monitoring and controlling complex systems.
This approach may be relevant when deriving a mathemat-
ical model of a system may be infeasible, for example in
human-in-the-loop applications, or when physical models
may be too complex for monitoring and control purposes.
In general, system identification is widely used as a tool for
controller synthesis based on data. A different approach
consists in synthesizing controllers directly on the basis
of data, without assuming an a–priori structure of the
unknown model. The literature on data–driven control is
vast. The interested reader is referred to e.g. (Bazanella
et al. (2011); Hou and Wang (2013); De Persis and Tesi
(2019)) and the references therein for data-driven control
methods.
In this paper we address data–driven control design for
general systems with regular language specifications. We
consider an abstract discrete–time control system de-
scribed by a collection of pairs of input and state functions.
We assume that the control system only satisfies suffix and
concatenation closures, causality, determinism and time–
invariance. The set of states is supposed to be endowed
with a metric. As such, the class of systems we consider
encompasses many classes of control systems, as e.g. lin-
ear and nonlinear control systems, metric systems, hybrid
systems, and infinite dimensional systems. We assume that
state variables are known but their dynamics are not.
The specifications we consider are assumed to be given in
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terms of a desired regular language that is defined over an
alphabet consisting of a finite set of states of the plant.
Regular languages provide a rich framework in the control
design of discrete–event systems, purely continuous and
hybrid systems. In fact, they are able to represent key
specifications such as reachability, safety, motion plan-
ning and collision avoidance, periodic orbits, state-based
switching, and specifications involving sequences of smaller
tasks that need to be performed according to a given order
(see e.g. Tabuada (2009); Pola and Di Benedetto (2019)).
Moreover, operators known for regular languages, and for
automata recognizing them, as for example concatenation,
union, intersection, and complement, see e.g. (Cassandras
and Lafortune (1999)), provide a useful mean for assisting
the designer in properly modeling desired complex spec-
ifications. In this paper, controller design is based only
on a finite set of experiments collected on the plant, and
the proposed controller enforces the specification on the
control system, up to an error that can be chosen as small
as desired. Results concerning maximality, convergence
and adaptivity of the controller as the set of experiments
gets bigger are also presented. Proofs of the results pre-
sented are omitted for lack of space. To the best of our
knowledge, this is the first contribution on data–driven
control design where there is no a priori assumption on the
specific class the unknown not-identified system belongs
to, and regular language specifications are considered. The
existing literature concerning control design for enforcing
logic specifications, as e.g. regular languages, linear tem-
poral logic, always assumes full knowledge of the model,
see e.g. (Tabuada (2009); Belta et al. (2017); Pola and Di
Benedetto (2019)) and the references therein.
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The paper is organized as follows. In Section 2 we intro-
duce notation and preliminary definitions. In Section 3 we
formulate the control problem. In Section 4 we present the
solution to the control problem. In Section 5 we address
maximality of the controller, its convergence and adaptiv-
ity properties. Section 6 offers some concluding remarks.

2. NOTATION AND PRELIMINARY DEFINITIONS

The symbol ∨ denotes the logic disjunction. Symbols N,
Z, R, R+, and R+

0 denote the set of natural, integer, real,
positive real and non–negative real numbers, respectively.
Given n1, n2 ∈ N with n2 ≥ n1, symbol [n1;n2] denotes
{n1, n1 + 1, ..., n2}. Given two sets X, [n1;n2] ⊂ N, a
function x : [n1;n2] → X and n ∈ [n1;n2], we denote by
x|[n1;n]

the restriction of x to [n1;n] that is x|[n1;n]
(i) =

x(i), for all i ∈ [n1;n]. Given x ∈ R and η ∈ R+, we
denote by [x]η the unique real number in ηZ such that
x ∈ [[x]η−η/2, [x]η+η/2[. Given two functions f : X → Y
and g : Y → Z we denote by f◦g : X → Z the composition
function of f and g, defined by f ◦ g(x) = f(g(x)),
for all x ∈ X. We now recall from e.g. Cassandras and
Lafortune (1999) some notions on formal language theory
that are used in the sequel to define logic specifications
for control systems. Let Y be a finite set representing the
alphabet. A word over Y is a finite sequence y1 y2 ... yl of
symbols in Y . The concatenation of two words y1 y2 ... yl
and yl+1 yl+2 ... yl′ is the word y1 y2 ... ylyl+1 yl+2 ... yl′ .
The empty word is denoted by ε. The symbol Y ∗ denotes
the Kleene closure of Y , that is the collection of all words
over Y including ε. Similarly, given a word y over Y , the
symbol {y}∗ denotes the Kleene closure of word y, that
is the collection of all words, including the empty word,
obtained by concatenating y with itself, an arbitrary but
finite number of times. A language L over Y is a subset
of Y ∗. The notion of transition system that is used in the
sequel to define regular languages and controllers slightly
extends the one given in Tabuada (2009) to transition
systems with marked states:

Definition 1. A transition system is a tuple

S = (X,X0, U, - , Xm, Y,H),

consisting of

• a set of states X,
• a set of initial states X0 ⊆ X,
• a set of inputs U ,
• a transition relation - ⊆ X × U ×X,
• a set of marked states Xm ⊆ X,
• a set of outputs Y , and
• an output function H : X → Y .

A transition (x, u, x′) ∈ - of S is denoted by

x
u- x′. Transition system S is empty if X0 = ∅.

The evolution of transition systems is captured by the
notions of state, input and output runs. Given a sequence
of transitions of S

x0
u0- x1

u1- ...
ul−1- xl (1)

with x0 ∈ X0, the sequences

rX : x0 x1 ... xl,

rU : u0 u1 ... ul−1, (2)

rY : H(x0)H(x1) ... H(xl), (3)

are called a state run, an input run and an output run of
S, respectively.

Definition 2. Transition system S is said to be:

• symbolic, if X and U are finite sets;
• metric if Y is equipped with a metric d : Y ×Y → R+

0 ;
• deterministic, if for any x ∈ X and any u ∈ U

there exists at most one transition x
u- x′ and

nondeterministic, otherwise;
• nonblocking, if for any transitions sequence (1) of S

with x0 ∈ X0, either xl ∈ Xm or there exists a
continuation

x0
u0- x1

u1- ...
ul−1- xl

ul- ...
ul′−1- xl′

of it such that xl′ ∈ Xm, and blocking, otherwise.

The input language (resp. output language) of S, denoted
Lu(S) (resp. Ly(S)), is the collection of all its input runs
(resp. output runs). The marked input language (resp.
marked output language) of S, denoted as Lum(S) (resp.
Lym(S)), is the collection of all input runs rU in (2)
(resp. output runs rY in (3)) such that the corresponding
transitions sequence in (1) is with ending state xl ∈ Xm.
A language L over a finite set U is said regular if there
exists a symbolic transition system S with input set U
such that L = Lum(S). By the Kleene’s Theorem, any
regular language can be equivalently reformulated as a
regular expression, and vice versa, see e.g. Cassandras
and Lafortune (1999). We also recall some operations
on transition systems, naturally adapted from the ones
given for discrete–event systems, see e.g. Cassandras and
Lafortune (1999).
A transition system

S′ = (X ′, X ′0, U
′, - ′, X ′m, Y

′, H ′) (4)

is said to be a sub–transition system of a transition system

S = (X,X0, U, - , Xm, Y,H), (5)

denoted S′ v S, if X ′ ⊆ X, X ′0 ⊆ X0, U ′ ⊆ U ,
- ′ ⊆ - , X ′m ⊆ Xm, Y ′ ⊆ Y and H ′(x) = H(x)

for all x ∈ X ′. Transition system S′ in (4) is a strict sub–
transition system of S in (5), denoted S′ @ S, if S′ v S
and (X ′ ⊂ X) ∨ (X ′0 ⊂ X0) ∨ ( - ′ ⊂ - ).
Consider two sub–transition systems Si = (Xi, X0,i, Ui,

i
- , Xmi

, Yi, Hi), i = 1, 2, of a transition system S. The

union between S1 and S2 is the transition system

S1 t S2 = (X,X0, U, - , Xm, Y,H),

where X = X1 ∪ X2, X0 = X0,1 ∪ X0,2, U = U1 ∪ U2,
- =

1
- ∪

2
- , Xm = Xm,1 ∪Xm,2, Y = Y1 ∪Y2,

and H(x) = x for all x ∈ X. The accessible part of a
transition system S, denoted Ac(S), is the union of all
sub–transition systems S′ of S such that for any state x′ of
S′ there exists a state run of S′ ending in x′. By definition,
if S is nonempty, Ac(S) is accessible.
The co–accessible part of S, denoted Coac(S), is the union
of all sub–transition systems S′ of S such that for any state
x′ ∈ X ′ there exists a transition sequence of S′ starting
from x′ and ending in a marked state of S′. By definition,
Coac(S), if not empty, is nonblocking.
The trim of S, denoted Trim(S), is defined as Trim(S) =
Coac(Ac(S)) = Ac(Coac(S)). By definition, Trim(S), if
not empty, is accessible and nonblocking.
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3. SYSTEM DEFINITION AND CONTROL
PROBLEM STATEMENT

In this section we first define the abstract system. Then
we formulate the control problem.
Let

T = {(T1, T2) ∈ N× N |T1 < T2}.
Let U be the set of input values and U [T1;T2] the set of
all input functions u : [T1;T2] → U , with (T1, T2) ∈ T .
Let X be the set of state values and X [T1;T2] the set of all
functions x : [T1;T2] → X , denoting the state evolutions.
We consider a system described by pairs of input–state
functions, as follows:

Definition 3. A system P is a relation

P ⊆
⋃

(T1,T2)∈T

(
U [T1;T2−1] ×X [T1;T2]

)
(6)

satisfying the following properties:

• (Suffix closure) If (u, x) ∈ P ∩ (U [T1;T2−1] × X [T1;T2])
for some (T1, T2) ∈ T , then any suffix (u′, x′) of (u, x)
is in P , i.e. (u′, x′) ∈ P ∩ (U [T3;T2−1] × X [T3;T2]) for
any T3 ∈ [T1;T2 − 1], where u′(t) = u(t) for any
t ∈ [T3;T2 − 1] and x′(t) = x(t) for any t ∈ [T3;T2];
• (Causality) for any T3 ∈ [T1 + 1;T2] and any u ∈
U [T1;T3−1], let

U(u) = {v ∈ U [T1;T2−1]|v(t) = u(t),∀t ∈ [T1;T3 − 1]}.
Then

P ∩ ({u} × X [T1;T3]) =(
U(u)|[T1;T3−1]

)
×
(
X [T1;T2]

∣∣∣
[T1;T3]

)
,

where
U(u)|[T1;T3−1]

denotes the collection of functions v ∈ U(u), re-
stricted to the time interval [T1;T3 − 1], and

X [T1;T2]
∣∣∣
[T1;T3]

denotes the collection of functions x ∈ X [T1;T2],
restricted to the time interval [T1;T3];
• (Concatenation closure) for any pairs

(u, x) ∈ P ∩
(
U [T1;T2−1] ×X [T1;T2]

)
,

(u′, x′) ∈ P ∩
(
U [T2;T3−1] ×X [T2;T3]

)
,

for some (T1, T2), (T2, T3) ∈ T , and satisfying x(T2) =
x′(T2), the pair

(u′′, x′′) ∈ P ∩ (U [T1;T3−1] ×X [T1;T3]),

where u′′(t) = u(t) for any t ∈ [T1;T2 − 1], x′′(t) =
x(t) for any t ∈ [T1;T2], u′′(t) = u′(t) for any
t ∈ [T2;T3 − 1], and x′′(t) = x′(t) for any t ∈ [T2;T3].

This definition follows the general notion of abstract sys-
tems given in System Theory, see e.g. Ruberti and Isidori
(1979). System P in general may be nondeterministic. We
suppose that our control plant is represented by the system
P and satisfies the following:

Assumption 4. System P is metric, i.e. we suppose that
its set of states X is endowed with a metric

d : X × X → R+
0 . (7)

The system P is assumed to be unknown, apart from a
finite set of input-state functions E contained in P , and
collected in some time intervals in T . In the sequel we
call elements of E , as experiments. Our aim is to design
a controller C for P on the basis of the experiments,
in such a way that the controlled systems satisfies some
given specifications. Since the time when the controller is
designed and applied to P is different from the time when
the experiments in E have been collected, P is supposed
to be time–invariant:

Assumption 5. System P is time–invariant, i.e. for any

(u, x) ∈ P ∩ (U [T1;T2−1] ×X [T1;T2])

and any t′ ∈ N we suppose

(u′, x′) ∈ P ∩ (U [T1+t
′;T2+t

′−1] ×X [T1+t
′;T2+t

′]),

where u′(t) = u(t − t′) and x′(t) = x(t − t′) for any
t ∈ [T1 + t′;T2 + t′].

As a consequence, we simplify notations and in the sequel
we consider input and state functions in P starting from
time 0.
Finally, we suppose that

Assumption 6. System P is deterministic, i.e. for any u ∈
U [0;T ] with (0, T ) ∈ T and any x̄ ∈ X there exists at most
one x ∈ X [0;T ] such that x(0) = x̄ and (u, x) ∈ P .

It follows from the definition of system and the assump-
tions above that P is a discrete–time, time–invariant and
deterministic control system. Many classes of discrete–
time systems are included in this framework, as e.g. lin-
ear, nonlinear and hybrid systems, infinite dimensional
systems, or quantized and sampled data control systems
where the original plant is a continuous–time process.
For later purposes, we denote by X0 ⊆ X , the set of initial
states of P , defined as the collection of all states x0 ∈ X for
which there exists a pair (u, x) ∈ P such that x0 = x(0).
We now define the controller C in the form of a transition
system in the sense of Definition 1:

C = (Xc, Xc,0, Uc,
c
- , Xc,m, Yc, Hc). (8)

The plant P controlled by C, denoted by PC , is described
by the collection of pairs (u, x) ∈ P , where control input
u ∈ U [0;T−1] is such that u(t) = ut, t ∈ [0;T − 1], where
sequence {ut}t∈[0;T−1] is composed of input labels in a
state run

xc,0
u0

c
- xc,1

u1

c
- . . .

uT−1

c
- xc,T (9)

of the controller C, ending in a marked state of C, i.e.
xc,T ∈ Xc,m. We say that control input u ∈ U [0;T−1] is
marked by C and that the state run in (9) marks vector
(u0, u1, ..., uT−1).
We consider as specification a regular language Q defined
over a finite alphabet set X ⊆ X , where X is the set of
states of P , which may represent key specifications such
as e.g. reachability, safety, motion planning and collision
avoidance (see e.g. Tabuada (2009); Pola and Di Benedetto
(2019)). The data–driven controller synthesis problem can
be stated as follows:

Problem 7. Consider a system P , a finite collection of
experiments

E ⊆ P
and a desired accuracy θ ∈ R+

0 . Find a controller C as in
(8) and a relation R0 ⊆ X0×Xc,0, both depending on the
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specification Q and on the set of experiments E (but not
on P which is unknown, apart from the set of experiments
E), which enforce specification Q on P up to accuracy θ,
i.e. such that for any pairs

(u, x) ∈ PC ∩ (U [0;T−1] ×X [0;T ]),

for some (0, T ) ∈ T , with (x(0), xc,0) ∈ R0, where xc,0 is
the initial state of a state run (9) of C marking u, there
exists a word q0 q1 ...qT ∈ Q such that:

d(x(t), qt) ≤ θ, ∀t ∈ [0;T ]. (10)

Remark 8. Note that since P is suffix closed, any suffix
of a pair (u, x) ∈ E is in P and can then be considered
as an additional experiment. As a consequence, the set
of experiments E can be enlarged with its suffixes which
can then be useful in enforcing a larger part of the
specification. However, in order to simplify notation, in
the sequel we will implicitly assume that set E is already
suffix closed, i.e. it contains all suffixes of its elements.

Remark 9. Assumption 6 of P being deterministic is not
far from being necessary to solve Problem 7, in the follow-
ing sense. Suppose for simplicity that the desired accuracy
θ is set to 0. Suppose now that P is nondeterministic,
i.e. there exist (u, x1), (u, x2) ∈ P with x1(0) = x2(0) and
x1 6= x2. Suppose also that (u, x1) ∈ E and (u, x2) /∈ E and
that x1 ∈ Q and x2 /∈ Q. On the basis of the collection
of experiments E , one would consider u as a control input
enforcing the specification because indeed (u, x1) ∈ E and
x1 ∈ Q. On the other hand, since P is nondeterministic,
it can evolve starting from initial state x1(0) = x2(0) and
with control input u, either with state evolution x1 which
is in Q or with state evolution x2 which is not only not
in Q but also unknown (recall (u, x2) /∈ E). Hence, in a
nondeterministic setting, it is not possible in general to
use a finite collection of experiments to design controllers
enforcing regular language specifications.

For later purposes, we give the following

Definition 10. Let Q(C,R0) be the set collecting all words
q0 q1 ...qT ∈ Q for which there exists a pair

(u, x) ∈ PC ∩ (U [0;T−1] ×X [0;T ]),

for some (0, T ) ∈ T , with (x(0), xc,0) ∈ R0, where xc,0 is
the initial state of a state run (9) of C marking u such
that (10) holds.

By the definition above, the set Q(C,R0) is the part of
the regular language specification Q that is enforced by C
and R0 on P . Then, the following holds:

Lemma 11.

• If C v C ′ then Q(C,R0) ⊆ Q(C ′,R0);
• If R0 ⊆ R′0 then Q(C,R0) ⊆ Q(C,R′0).

4. MAIN RESULT

In this section we provide the solution to Problem 7. To
this purpose, we first need to reformulate the specification
Q in terms of transition systems, as in Definition 1. Since
Q is a regular language, there exists a symbolic transition
system

S′Q = (X ′Q, X
′
0,Q,X , ′,Q

- , X ′Q,m, Y
′
Q, H

′
Q),

such that its marked input language coincides with Q, i.e.,

Lum(S′Q) = Q.

Note that in the definition above the output function can
be chosen arbitrarily since it plays no role in ensuring
Lum(S′Q) = Q. Without loss of generality, S′Q can be
chosen as deterministic, accessible and nonblocking, see
e.g. Cassandras and Lafortune (1999). Construction of S′Q
can be done by resorting to standard algorithms available
in the literature, see e.g. Lawson (2004). Automatic tools
for constructing S′Q are also well known, see e.g. Caugherty

(1990). For later purposes, it is useful to define the dual
symbolic transition system SQ of system S′Q, where states

of SQ are transitions of S′Q and vice versa:

Definition 12. Pola et al. (2018) Given transition system
S′Q, define the dual transition system

SQ = (XQ, XQ,0, UQ,
Q
- , XQ,m,X, HQ) (11)

where:

• XQ coincides with the set
′,Q
- of transitions of S′Q;

• XQ,0 is the collection of states x′Q
u′Q

′,Q
- x′,+Q in XQ

with x′Q ∈ X ′Q,0;

• UQ = {uQ}, where uQ is a dummy input;
•

Q
- is the collection of transitions(

x1Q
u′Q

′,Q
- x2Q

)
uQ

Q
-
(
x3Q

u′′Q

′,Q
- x4Q

)
with x2Q = x3Q;

• XQ,m is the collection of states x′Q
u′Q

′,Q
- x′,+Q in XQ

with x′,+Q ∈ X ′Q,m;

• HQ(x′Q
u′Q

′,Q
- x′,+Q ) = u′Q for any state x′Q

u′Q

′,Q
- x′,+Q

in XQ.

When specialized to Finite State Automata (FSA), the
construction above coincides with the one of dual FSA in
Gol et al. (2014). From the definitions above, it follows
that

Ly(SQ) = Lu(S′Q) \ {ε} and Lym(SQ) = Lum(S′Q) \ {ε}.
Moreover, SQ is symbolic, accessible and nonblocking.
Since X ⊆ X , transition system SQ is metric with metric

(7). For ease of notation, we denote a state x′Q
u′Q

′,Q
- x′,+Q

of XQ by xQ and a transition xQ
uQ

Q
- x+Q of SQ by

xQ
Q
- x+Q.

Next step consists in encoding the experiments in E in the
transition system

S(E) = (Xe, Xe,0, Ue,
e
- , Xe,m, Ye, He), (12)

where:

• Xe is the collection of states z ∈ X for which there
exists a pair (u, x) ∈ E and t ∈ N such that z = x(t);

• Xe,0 = Xe ∩ X0;
• Ue = U ;

• z v

e
- z+, if there exists (u, x) ∈ E and t ∈ N such

that z = x(t), v = u(t) and z+ = x(t+ 1);
• Xe,m = Xe;
• Ye = X ;
• He(x) = x for any x ∈ Xe.
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The following statement highlights some properties of
transition system S(E).

Proposition 13. Transition system S(E) is:
i) deterministic;
ii) symbolic;
iii) metric, with metric (7) for any x, x′ ∈ Xe.

Moreover,

Proposition 14. Let E1, E2 ⊆ P . If E1 ⊆ E2, then S(E1) is
a sub–transition system of S(E2), i.e. S(E1) v S(E2).

In order to solve Problem 7, we need to select transitions
of S(E) that match transitions of the specification Q up
to accuracy θ. To this purpose, we define the following
transition system:

C ′ = (X ′c, X
′
c,0, U

′
c, c,′

- , X ′c,m,X , H ′c), (13)

where:

• X ′c is the collection of pairs (xe, xQ) ∈ Xe ×XQ such
that

d(He(xe), HQ(xQ)) ≤ θ,
where we recall that θ is the desired accuracy in
Problem 7;
• X ′c,0 = X ′c ∩ (Xe,0 ×XQ,0);
• U ′c is the collection of input values v ∈ U for which

there exists (u, x) ∈ E and t ∈ N such that v = u(t);

• (xe, xQ)
u

c,′
- (x+e , x

+
Q) if xe

u

e
- x+e and xQ

Q
- x+Q;

• Xc,m = Xe ×XQ,m;
• H ′c(xe, xQ) = HQ(xQ) for any (xe, xQ) ∈ X ′c.

Transition system C ′ can be viewed as the product compo-
sition of S(E) and SQ in an approximating sense. A similar
notion of approximate product composition appeared pre-
viously in Tabuada (2008). In the sequel, we may write

S(E)×θ SQ,
instead of C ′ to emphasize the dependence of C ′ on S(E),
SQ and θ.
Transition system C ′ is blocking in general. Since the
controllers in PC are required to fulfill condition (10),
we need to extract from C ′, a sub–transition system
exhibiting nonblocking behavior. This is accomplished by
computing the transition system

C = Trim(C ′), (14)

later on specified by the tuple

(Xc, Xc,0, Uc,
c
- , Xc,m,X , Hc),

which is indeed nonblocking.
Since Xc ⊆ Xe ×XQ and sets Xe and XQ are finite, then
Xc is a finite set. Since Uc ⊆ U ′c and U ′c is finite, then Uc
is a finite set. As a consequence, controller C is finite.
We now have all the ingredients to present the main result
of this paper.

Theorem 15. Controller C in (14) and relation R0 defined
as

R0 = {(x, (xe, xQ)) ∈ X0 ×Xc,0|x = xe}, (15)
solve Problem 7.

A direct consequence of the result above is that the part of
the specification that can be enforced by controller C and
the relation of initial states R0 coincides with the output
marked language of C:

Corollary 16. Q(C,R0) = Lym(C).

5. MAXIMALITY, CONVERGENCE AND
ADAPTIVITY OF THE SOLUTION

In this section, we discuss maximality of the solution of
Problem 7, convergence of the solution as the set of experi-
ments decreases, and adaptivity of the proposed controller.
The controllers in (13) and (14) will be denoted respec-
tively by C ′(E , θ) and C(E , θ) to point out their depen-
dence on the set of experiments E and the accuracy θ.
Similarly, R0(E , θ) will denote the relation of initial states
in (15), where the dependence on E and θ is specified.
We first show that the controller and relation of initial
states solving Problem 7 given in Theorem 15 enforce the
largest possible part of the specification on the controlled
plant.

Proposition 17. For any controller C ′′ and relation R′′0
solving Problem 7 with C = C ′′ and R0 = R′′0 , we have:

Q(C ′′,R′′0) ⊆ Q(C(E , θ),R0(E , θ)).

The next result shows monotonicity of our solution to
Problem 7 with respect to increasing accuracies.

Proposition 18. Let θ1, θ2 ∈ R+
0 be a pair of accuracies

and let the finite set of experiments E ⊆ P be given. If
θ1 ≤ θ2 then

C(E , θ1) v C(E , θ2); (16)

R0(E , θ1) ⊆ R0(E , θ2); (17)

Q(C(E , θ1),R0(E , θ1)) ⊆ Q(C(E , θ2),R0(E , θ2)). (18)

The intuition behind the result above is that as accuracy
parameter increases, our solution to Problem 7 may find
more transitions of S(E) that match transitions of SQ.
The next result shows monotonicity of our solution to
Problem 7 with respect to increasing sets of experiments.

Proposition 19. Let E1 ⊆ P and E2 ⊆ P be a pair of
finite collections of experiments on P and let the accuracy
θ ∈ R+

0 be given. If E1 ⊆ E2 then

C(E1, θ) v C(E2, θ); (19)

R0(E1, θ) ⊆ R0(E2, θ); (20)

Q(C(E1, θ),R0(E1, θ)) ⊆ Q(C(E2, θ),R0(E2, θ)). (21)

The intuition behind the result above is that as the set of
experiments increases (in the sense of sets inclusion), our
solution to Problem 7 may find more transitions of P that
match transitions of SQ.
The following result establishes convergence properties of
our solution to Problem 7.

Proposition 20. Consider a sequence Eseq = {Ei}i∈N of
finite sets of experiments on P and suppose that

Ei ⊆ Ei+1 ⊆ P,
for any i ∈ N. Then, there exists i(Eseq) ∈ N such that for
any i ≥ i(Eseq):
Q(C(Ei, θ),R0(Ei, θ)) = Q(C(Ei(Eseq), θ),R0(Ei(Eseq), θ)).

(22)

Intuitively, the result above shows that as the set of
experiments gets bigger, there is a step i(Eseq) after which
the corresponding part of the specification Q enforced
cannot “increase” anymore (in the sense of inclusion in
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(21)). This is a consequence of the fact that regular
languages specifications can be encoded by transition
systems that are symbolic, i.e. their sets of states and
inputs have finite cardinality.
We then obtain the following result:

Corollary 21. Consider two sequences Eseq = {Ei}i∈N and
E ′seq = {E ′i}i∈N of sets of experiments on P and suppose
that

Ei ⊆ Ei+1 ⊆ P, E ′i ⊆ E ′i+1 ⊆ P, ∀i ∈ N (23)

and that ⋃
i∈N
Ei = P,

⋃
i∈N
E ′i = P. (24)

Then,
Q(C(Ei(Eseq), θ),R0(Ei(Eseq), θ)) =
Q(C(E ′i(E′seq), θ),R0(E ′i(E′seq), θ)).

This result shows that independently of the sets of exper-
iments Eseq and E ′seq and provided that these sets satisfy
conditions (23) and (24), the parts of the specification Q
that can be enforced by the corresponding solutions to
Problem 7 coincide asymptotically.
We conclude this section by showing the adaptivity of the
solution to Problem 7 with respect to increasing sequences
of experiments.

Proposition 22. C(E1∪E2, θ) = Trim(C ′(E1, θ)tC ′(E2, θ)).

The result above is significant from a computational point
of view since it shows that, once the solution to Problem 7
has been found with respect to a set of experiments E1, if
another set of experiments E2 is collected, the solution to
Problem 7 with respect to the set of experiments E1 ∪ E2
does not need to be recomputed but can be obtained by
combining the solution already available for the set E1 with
the solution to be determined for the set E2.

Remark 23. One could wonder whether the result above
can be strengthened to the following equality

C(E1 ∪ E2, θ) = C(E1, θ) t C(E2, θ).
The equality above is not true because, for two transition
systems S1 and S2, while inclusion Trim(S1)tTrim(S2) v
Trim(S1 t S2) is true, equality Trim(S1) t Trim(S2) =
Trim(S1 t S2) is not true, in general.

6. CONCLUSIONS

In this paper we addressed data–driven control design of an
abstract discrete–time control system with specifications
expressed in terms of regular languages. We first derived
the solution to the control problem. Then we addressed
maximality of the controller, convergence of the controller
as the number of experiments increases and adaptive–type
control design. In future work we plan to design efficient
algorithms for the synthesis of the proposed controllers.
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