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Abstract: We consider the problem of periodic trajectory design for single-output systems
which may be subject to periodic external disturbances. We show how trajectories optimizing
a possibly nonquadratic and nonconvex polynomial performance objective can be found by
using the frequency-domain description of the plant by converting the problem to a polynomial
optimization problem (POP) in the Fourier coefficients of the external input signals. The
method is suited for distributed-parameter systems, since the system transfer functions are
not required to be rational; the computational complexity of the method depends on the order
of the polynomial nonlinearities in the performance objective as well as the number of required
harmonics, but is independent of the underlying system dimension.
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1. INTRODUCTION

Optimal steady-state operation of industrial plants is a
well-researched and well-understood way to choose control
parameters; the next easiest operation condition is cycling,
i.e. having the process follow an optimal finite-length tra-
jectory over and over again. The problem of finding an
optimal finite-length trajectory which has identical initial
and final state and hence lends itself to periodic opera-
tion is known as Optimal Periodic Control (OPC), and
has received attention in different decades and different
communities. To name just a few examples, (Horn and
Lin, 1967) demonstrates maximization of average product
concentration in chemical reactions by cycling reactor tem-
perature; (Gilbert, 1976) and (Speyer, 1996) show how
fuel economy can be improved by periodically adjusting
the thrust, (Maurer et al., 1998) considers production
planning; (Dorato and Knudsen, 1979) and (Huang et al.,
2011) consider systems where periodic external signals nat-
urally induce periodic optimal operation. More recently,
an extensive body of literature has emerged around opti-
mal periodic trajectories resulting from model predictive
control (MPC) with economic cost functions (eMPC), see
e.g. (Müller and Grüne, 2016; Ellis et al., 2014; Zanon
et al., 2017).

Apart from the MPC-related literature, which typically
deals with discrete-time systems, approaches to the so-
lution of the OPC problem have mostly been based on
variational calculus, the maximum principle, and relaxed
steady-state analysis; see the survey papers (Bailey and
Horn, 1971; Guardabassi et al., 1974; Gilbert, 1977).

The question whether a given steady-state operation could
be improved by a nearby periodic orbit is answered by the
Π-Test (Bittanti et al., 1973; Bernstein and Gilbert, 1980),
which, to the best of our knowledge, is the only widely
known application of frequency-domain methods to the
OPC problem.

The Π-Test furthermore only answers the question if the
periodic operation can improve over a steady state and
at which frequency, but it does not actually compute an
optimal periodic trajectory; to this end, flatness (Vari-
gonda et al., 2004), (multiple) shooting methods (Speyer
and Evans, 1984; Houska and Diehl, 2006; Varigonda et al.,
2008) and Newton-Raphson techniques (Horn and Lin,
1967) have been proposed, all sharing the disadvantage
that the complexity of the problem increases with the state
dimension of the plant.

Here, we propose an approach based on the representation
of periodic signals by their Fourier series coefficients and
how they are transformed by linear systems and polyno-
mial nonlinearities. Few publications have explored this
direction, with (Bertelè et al., 1972; Dorato and Knudsen,
1979; Epperlein and Bamieh, 2012; Epperlein, 2014) the
only ones known to us. The proposed approach depends on
plant order only as much as the cost function does, and in
particular can handle infinite-dimensional plants without
discretization, and it opens up the whole toolbox designed
for polynomial optimization problems (POP); it also has
disadvantages, namely it is less flexible, as it requires a
frequency-domain description of the plant be available and
that all nonlinearities be static and polynomial, and it
is not able to handle hard inequality constraints on the
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resulting trajectories; soft constraints, in particular when
expressed as quadratic penalties, and constraints that can
be expressed as polynomials in the Fourier coefficients of
a signal (e.g. constraints on signal energy) can be incorpo-
rated easily.

This paper is organized as follows: The notation, which will
turn out to be quite challenging, is collected, along with
some preliminaries, in Section 2; the problem of optimal
periodic control is described in Section 3; the hard work of
converting a polynomial function of a periodic signal into
a polynomial in its Fourier coefficients and subsequently
converting the cost function into a polynomial in those
same coefficients is done in Section 4. The examples in
Section 5 are simple but hopefully illustrate the two cases
considered here: in the first case, the advantage of periodic
operation is brought about by nonconvexity in the cost
function, whereas in the second, it is a natural result of
periodically varying disturbances.

2. PRELIMINARIES

2.1 Notation

Here, Z = {. . . ,−1, 0, 1, 2, . . . } denotes the set of integers,
and Z≥0 denotes the set of non-negative integers; R and
C denote the real and complex numbers, respectively, and
we will denote the imaginary unit by j. We denote by
Mᵀ ∈ Cn×m the transpose of the matrix M ∈ Cm×n, by
M its complex conjugate and by M∗ = (M)ᵀ its conjugate
transpose. Mrs denotes the element of M in the r-th row
and s-th column.

2.2 Doubly-Infinite Matrices and Vectors

We will consider doubly-infinite vectors and matrices; for
that, let Cn×∞ denote the set of all mappings α from Z
to Cn with the additional property that α(−k) = α(k).
For convenience, we will denote α(k) by αk. This notation
makes sense, since we can identify elements of Cn×∞
with sequences (. . . , α−2, α−1, α0, α1, . . . ) or a matrix with
n rows, but column indices running from −∞ to ∞.
Furthermore, for any N > 0, let Cn×∞N ⊂ Cn×∞ denote
the set of such sequences α for which αk = 0 if |k| > N and
denote by α[N ] the finite-length sequence (α−N , . . . , αN ).

Let C∞×∞ denote the set of doubly-infinite matrices,
which can be thought of as mappings from Z × Z to C,
matrices with row and column indices ranging from −∞
to ∞, or matrices where each row and each column are
elements of C1×∞. Formally, they operate on each other
and elements of C1×∞ in the same way finite matrices
operate on finite vectors: For L,M ∈ C∞×∞ and α ∈
C1×∞ we have

(L ·M)rs =
∑

k∈Z
LrkMks

(M · α)r =
∑

k∈Z
Mrkαk.

(1)

Remark 1. By qualifying the statement as “formal”, we
mean that it is a convenient or compact way of represent-
ing a mathematical expression, but it does not rise to the
standards of a mathematical definition or theorem. For
instance, it is not clear, if the sums on the right hand

side of (1) even converge, and in general, they do not.
However, it is convenient to represent the derivations that
follow using formal expressions, and only specialize them
in order to make rigorous statements at the very end. The
word “formal” will appear several more times, apologies
for that.

For M ∈ C∞×∞, denote a finite truncation, specifically
the finite block of M with row and column indices between
−K and K, by M[K]:

M[K] ∈ C(2K+1)×(2K+1)

(
M[K]

)
rs

= Mrs −K ≤ r, s ≤ K.
(2)

2.3 Fourier Series

For 0 < T < ∞, we denote by Ln2 (T ) the set of square-
integrable functions on [0, T ], i.e.

Ln2 (T ) :=

{
g : [0, T ]→ Rn

∣∣∣
∫ T

0

gᵀ(t)g(t)dt <∞

}

and for g ∈ Ln2 (T ), we denote its complex Fourier series as

g(t) =
∑

k∈Z
ĝke

jkωt,

where ω = 2π/T denotes the fundamental frequency, and
the Fourier coefficients ĝ ∈ Cn×∞ are given by

ĝk =
1

T

∫ T

0

g(t)e−jkωtdt.

If ĝ ∈ Cn×∞N , we say that the signal has finitely many
harmonics.

This well-known theorem states that inner products be-
tween functions in Ln2 (T ) are equal to the inner product
of their Fourier series:

Theorem 2. (Plancherel’s Theorem). If f, g ∈ Ln2 (t), then

1

T

∫ T

0

fᵀ(t)g(t)dt =
∑

k∈Z
f̂∗k ĝk.

In particular, it follows for g ∈ L1
2(T ) that 1

T

∫ T
0
g2(t)dt =∑

k∈Z |ĝk|2 = ĝ∗ĝ.

2.4 Convolution

For α, β ∈ C1×∞, we formally define the convolution
γ = α ∗ β by

γk =
∑

ν∈Z
αk−νβν , (3)

again without making claims about convergence of the
right-hand sides. 1 Let δ ∈ C1×∞

0 denote the sequence
whose only nonzero element is δ0 = 1; δ is the identity
element with respect to convolutions: δ ∗ α = α ∀α ∈
C1×∞.

We formally denote by α
p
∗ α the p-fold convolution of

α ∈ C1×∞ with itself:

α
0∗ α := δ α

p
∗ α := (α

p−1
∗ α) ∗ α. (4)

1 For instance, if α and β are square-summable, then the elements
of γ are bounded, but not necessarily square-summable; if α and β
are merely bounded, then γk might not exist for any k.
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Cᵀ [Gd(jω) Gr(jω)]

d(t)

r(t)
x(t)y(t)1

T

∫ T

0

h(y)+

xᵀQx+
rᵀRrdt

J

Fig. 1. Signal flow diagram of the system and objec-
tive function structure treated here: An LTI system
subject to external disturbances d and control input
r, with a cost function which includes an arbitrary
polynomial in the scalar output y(t).

2.5 Polynomial Optimization Problems

A polynomial optimization problem (POP) is one where
the cost function and constraints are all expressed in
terms of multivariate polynomials. More specifically, let
hr, r = 0, . . . ,K be a set of polynomials in the real
indeterminate x ∈ Rn, i.e. hr(x) is a sum of terms of the
form c(a)xa11 x

a2
2 · · ·xann , with ai ∈ Z≥0 and c(a) ∈ R. A

POP is then given by

minimize
x∈Rn

h0(x)

subject to hr(x) ≥ 0 ∀r = 1, . . . ,K
(POP)

POPs are a well-researched field yielding efficient methods
for their (approximate) solution, e.g. Sum-of-squares pro-
gramming (Papachristodoulou et al., 2013) and hierarchies
of SDP relaxations (Henrion and Lasserre, 2003).

3. PROBLEM STATEMENT

We treat here the system shown in Figure 1. Assume a
linear time-invariant (LTI) plant, subject to two distinct
inputs in L•2(T ): External disturbances d(t) and the input
r(t) which can be used to optimize an objective function
J . We have

ẋ = Ax(t) +Bd(t) +Hr(t) x(0) = x0 (5a)

y(t) = Cᵀx(t), (5b)

where A ∈ Rn×n, B ∈ Rn×nd , H ∈ Rn×nr , C ∈ Rn,
d ∈ Lnd

2 (T ), r ∈ Lnr
2 (T ), and x ∈ Ln2 . Let Gd(s) = (sI −

A)−1B and Gr(s) = (sI − A)−1H denote the transfer
functions from d, resp. r, to the state x.

Because we will be interested in finding a periodic trajec-
tory, the initial condition x0 is chosen such that there is
no transient motion, according to the following theorem.

Theorem 3. Fix a period T and assume that d and r are

given by their Fourier series coefficients d̂ ∈ Cnd×∞
N and

r̂ ∈ Cnr×∞
N , and that Gd and Gr have no poles located at

j 2πkT k = 0, . . . N . Choosing

x0 =

N∑

k=−N

Gd(jkω)d̂k +Gr(jkω)r̂k (6)

yields

x(t) =

N∑

k=−N

(
Gd(jkω)d̂k +Gr(jkω)r̂k

)
ejkωt, (7)

i.e. the trajectory is periodic starting at t = 0 and there is
no transient motion.

Proof. Using linearity, this follows as corollary of Lemma 7,
which in turn is stated and proved in the appendix. 2

The cost function is given by

Jd(r, T ) :=
1

T

∫ T

0

h(y)+xᵀQx+qᵀx+rᵀRr+ψᵀr dt, (8)

where 0 ≤ R ∈ Rnr×nr , ψ ∈ Rnr , Q = Qᵀ ∈ Rn×n,
q ∈ Rn, and h(y) =

∑p
k=1 hky

k is a p-th order polynomial
with real coefficients. The task is to find a period T and a
T -periodic trajectory (x, r) that minimize Jd:

minimize
r(·),T

Jd(r, T )

subject to
(5)

r(T ) = r(0) x(T ) = x(0).

(OPC)

Note that in contrast to a common optimal control prob-
lem initial and final state are neither given nor free, but
have to be equal. This constraint will be met automatically
by assuming T -periodic d and r and the initial state given
in (6).

4. OPTIMAL PERIODIC CONTROL AS
POLYNOMIAL OPTIMIZATION PROBLEM

We now first develop the tools that will allow us to write
Fourier coefficients of polynomial expressions in periodic
functions as polynomials in their Fourier coefficients –
in other words, if y is a periodic function and h is a
polynomial, then the Fourier coefficients of h(y) can be
written as P (ŷ), where P is a polynomial; we develop
here a compact way of obtaining expressions for this
polynomial P . We then use the developed expressions to
approximate the solution of problem (OPC) by rewriting
the cost function (8) as a polynomial in terms of the
Fourier coefficients of the exogenous signals d(t) and r(t),
hence transforming the (infinite-dimensional) problem of
finding an optimal periodic input trajectory to a finite-
dimensional and very tractable POP.

4.1 Fourier Series and Polynomials

First, we state the well-known fact that multiplication of
T -periodic functions in the time domain corresponds to
convolution of their Fourier coefficients.

Lemma 4. Let f, g ∈ L1
2(T ) be signals with finitely many

harmonics, i.e. f̂ ∈ C1×∞
M , ĝ ∈ C1×∞

N , M,N <∞.

• Let h := f ·g. Then h ∈ L1
2(T ) and ĥ = f̂ ∗ĝ ∈ C1×∞

M+N .

• Let p ∈ Z≥0. Then, f(t)p ∈ L1
2(T ) and its Fourier

coefficients are given by ϕ = f̂
p
∗ f̂ ∈ C1×∞

pM .

Proof. This is in essence Cauchy’s product formula:

f(t)g(t) =

(
M∑

k=−M

f̂ke
jkωt

)(
N∑

k=−N

ĝke
jkωt

)
=

M+N∑

k=−(M+N)

( ∑

r+s=k

f̂r ĝs

)
ejkωt =

M+N∑

k=−(M+N)

(∑

r∈Z
f̂rĝk−r

)
ejkωt

where the sum over r converges for all k, since by as-

sumption, f̂r = 0 for |r| > M and ĝr = 0 for |r| > N ,
and hence it has only finitely many nonzero terms. That
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h ∈ L1
2(T ) then follows from Theorem 2. The second

statement follows from the first by induction. 2

It is worth repeating that this means that the product
of two periodic functions with finitely many harmonics is
again a periodic function with finitely many harmonics,
with the number of harmonics being no more than the
sum of the number of harmonics of the original functions,
and the Fourier coefficients being the convolution of the
Fourier coefficients of the original functions.

Next, we introduce a convenient way of obtaining ex-
pressions for the Fourier coefficients of products of pe-
riodic functions. For a sequence α ∈ Cn×∞, denote by
Mα ∈ C∞×∞ the doubly infinite Toeplitz matrix with
(Mα)rs = αr−s, s, r ∈ Z, i.e.

Mα :=




. . .
. . .

. . .
· · · α1 α0 α−1 · · ·
· · · α1 α0 α−1 · · ·
· · · α1 α0 α−1 · · ·

. . .
. . .

. . .



.

Then, we have formally that α ∗ β = Mαβ and

α
p
∗ α = Mp−1

α α. (9)

In the case that α ∈ C1×∞
M , β ∈ C1×∞

N , it follows from
Lemma 4 that this expression holds rigorously.

Now consider a univariate polynomial h and the scalar
signal g(t) := h

(
y(t)

)
=
∑p
r=1 hry

r(t), where y(t) ∈
L1
2(T ). Then g is also periodic, and the Fourier coefficients

ĝ satisfy

ĝ =

(
p∑

r=1

hrM
r−1
ŷ

)
ŷ.

This result can be combined with Theorem 2 to obtain the
formal expression

1

T

∫ T

0

h(y(t))dt

=
1

T

∫ T

0

h1y(t) + y(t)

(
p∑

s=2

hsy
s−1(t)

)
dt

= h1ŷ0 + ŷ∗

(
p∑

s=2

hsM
s−2
ŷ

)
ŷ. (10)

The importance of this expression is that we have trans-
formed the polynomial part of Jd in (8) into a p-th order
polynomial in the Fourier coefficients of y(t). With-
out making further assumptions, this expression is purely
formal and useless for computations, but if y contains
only finitely many harmonics, we can restate this result
rigorously and in terms of finite matrices and vectors:

Lemma 5. Let f contain only N < ∞ harmonics, hence

f̂ ∈ C1×∞
N . Then, for p ≥ 2

1

T

∫ T

0

fp(t)dt = f̂∗[N ]

(
(M

f̂
)p−2[(p−2)N ]

)
[N ]

f̂[N ] (11)

Proof. It should be clear that for any M ∈ C∞×∞ and
α ∈ C1×∞

N

[· · · 0 α−N · · · αN 0 · · ·]M [· · · 0 α−N · · · αN 0 · · ·]ᵀ

= [α−N α−N+1 · · · αN ]M[N ]




α−N
α−N+1

...
αN




holds, since all the sums involved in the computations
have only finitely many non-zero elements. Hence in (10),

we only need to consider the nonzero part of f̂ and the
corresponding truncation of the matrix powers. However,

(Mp)[N ] 6=
(
M[N ]

)p
,

and we need to keep sufficiently many elements of M
when computing Mp and only then can we truncate. For
a general M ∈ C∞×∞, all elements have to be kept, but
it can be shown by direct computation that for M = M

f̂

and f̂ ∈ C1×∞
N , “sufficiently many” elements are precisely

the ones in M[pN ]. This is due to the fact that in this case,
M
f̂

only has finitely many nonzero diagonals. The details

can be found in (Epperlein, 2014, App. 2.C). 2

The significance of this result is that (11) is a compactly
written polynomial in 2N + 1 complex variates, involving
only matrices and vectors of finite dimensions.

4.2 Main Result: Rewriting (OPC) as (POP)

We now use this result and Plancherel’s theorem to recast
the cost function (8) as a polynomial in the Fourier
coefficients of the involved signals, provided that the
reference input r and the disturbance d are approximated
as having only finitely many harmonics.

Theorem 6. Consider system (5) with d ∈ Lnd
2 (T ), d̂ ∈

Cnd×∞
N and r ∈ Lnr

2 (T ), r̂ ∈ Cnr×∞
N . Let ω = 2π/T , and

assume that Gd and Gr have no poles at jkω for any k ∈ Z.
Then we have that

Jd(r, T ) = h1ŷ0 + ŷ∗[N ]

(
p∑

s=2

hs(Mŷ
)s−2[(s−2)N ]

)

[N ]

ŷ[N ]

+

N∑

k=−N

x̂∗kQx̂k + r̂∗kRr̂k + qᵀx̂0 + ψᵀr̂0, (12)

where

x̂k = Gd(jkω)d̂k +Gr(jkω)r̂k x̂k ∈ Cn (13a)

ŷk = Cᵀx̂k ŷk ∈ C. (13b)

Proof. The terms involving y are obtained by applying
Lemma 5 to each term of h(y), whereas the remaining
terms follow directly from Theorem 2. 2

Expression (12) together with the substitutions (13) is a
scalar, multivariate polynomial in the (2N + 1)nr complex
variables r̂mk, m = {1, . . . , nr}, k = {−N, . . . , N}, or,

after remembering that for real signals we have r̂−k = r̂k,
in the (2N + 1)nr real variables

αmk := Re r̂mk = Re r̂m(−k) 0 ≤ k ≤ N
βmk := Im r̂mk = − Im r̂m(−k) 1 ≤ k ≤ N, (14)

and m = {1, . . . , nr}; also recall that Im r̂0 = 0.
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The case d ≡ 0. In this case, a trivial non-uniqueness of
solutions to (OPC) due to the time-invariance of the sys-
tem (5) needs to be addressed: If functions r(t), x(t), y(t) ∈
L•2(T ) achieve a certain value of Jd, then so do r(t +
θ), x(t + θ), y(t + θ) for any θ ∈ R; in other words the
phase of the solution is undefined. In terms of the Fourier
coefficients that means that the relative phase of the r̂k is
clearly defined, but not the absolute phase, and thus we
can and should fix the phase of one of the components; we
choose r̂11 = r̂1(−1) to be real and positive, thus β11 = 0,
α11 ≥ 0.

The period T of the optimal trajectory is also not clear a
priori, and to find it, the optimal cost has to be computed
and compared on a grid of periods T , see the example in
Section 5.1.

5. EXAMPLES

Given Gr and Gd, the weights Q,R, q, ψ, the polyno-
mial h and, if applicable, the periodic disturbance d, it
is straightforward to choose the number N of harmon-
ics and use a symbolic mathematics package to gener-
ate the matrices (M

ŷ
)[(s−2)N ] and subsequently perform

the substitutions (13) and (14) to obtain a POP in
the form (POP). For our implementation, we used the
Multivariate Polynomial Toolbox for Matlab which
ships with SOSTOOLS (Papachristodoulou et al., 2013)
to perform the symbolic computations. Unfortunately,
SOSTOOLS’s findbound function appears to have been bro-
ken by updates to Matlab, so we used SparsePOP (Waki
et al., 2008) to perform the optimization.

5.1 The “Sailboat” Example

This very simple example appears in (Speyer and Evans,
1984) and is treated in several other references, e.g. (Vari-
gonda et al., 2004; Epperlein and Bamieh, 2012). The
system is given by

Gr(s) =

[
1/s2

1/s

]
Cᵀ = [0 1]

Q =

[
0.5 0
0 −0.5

]
R = 0.05

h(y) = 0.25y4,

and all other parameters, in particular d, equal zero.

The transfer function Gr(jω) has a pole at ω = 0,
hence r̂0 = 0 has to be assumed. For reasons explained
in (Epperlein and Bamieh, 2012), only frequencies in the

interval
[√

5−
√

15,
√

5−
√

15
]

have to be considered,

since otherwise, the optimal solution is the trivial steady
state at 0. Solving the resulting POPs for N = 3 harmonics
on a grid over this range, we find the cost function
and corresponding Fourier coefficients shown in Figures 2
and 3. The optimal period is T ? = 3.526s, and the
corresponding input trajectory is shown in Figure 4.

A note on the range between ω =
√

5−
√

15 and ω ≈
1.2rad/s: It is known, see e.g. (Speyer and Evans, 1984),
that optimal periodic solutions exist in this range as
well, however, in Figure 3, we see that the polynomial
optimization is unable to obtain them in this case, which

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

-0.02

-0.015

-0.01

-0.005

0

Fig. 2. The optimal cost function of the Sailboat example
when computed over a range of frequencies ω = 2π/T .
The minimum is achieved at ω? = 1.782rad/s, hence
the optimal period is T ? = 3.526s.

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 3. The optimal Fourier coefficients for the sailboat
example over a grid of frequencies. All imaginary parts
are zero, as well as all even harmonics, and the only
nonzero coefficients are α1 and α3. At ω?, their values
are α1 ≈ 0.632 and α3 ≈ 0.0931.

0 0.5 1 1.5 2 2.5 3 3.5

-1

-0.5

0

0.5

1

Fig. 4. The trajectory corresponding to the Fourier coef-
ficients at the minimum of the cost function, r?(t) =
1.264 cos(ω?t) + 0.1862 cos(3ω?t).

is an illustration of the fact that the methods implemented
in POP solvers rely on relaxations and solve the problems
only approximately. Very often, those solutions are (very
close to) the true optima, but it appears that for ω ∈
[
√

5−
√

15, 1.2], the relaxations are not sufficient to solve
the resulting POP.
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Table 1. Parameter values used for the solar
heating system of Section 5.2

• S E Units

(UA)• 19000 18890 kJ/(◦C h)
(mCp)• 20.07 949.5 kJ/◦C
T̄• 30 20 ◦C

5.2 Solar Energy Control

This example is taken from (Dorato and Knudsen, 1979).
Consider a simple model of a collector/storage/enclosure
system

(mCp)S ṪS = QC −QS − (UA)S(TS − TA)

(mCp)E ṪE = QS − (UA)E(TE − TA) +Qaux,

where the subscripts C, S,E denote collector, storage, and
enclosure, respectively, T• denotes temperature, Q• heat
flow rate, (UA)• heat transfer coefficient, and (mCp)• the
heat capacity. The ambient temperature TA and the heat
flow QC from the collector are external disturbance inputs,
whereas an auxiliary heat input Qaux and the heat flow
QS between storage and enclosure can be used to opti-
mize operation. The cost function penalizes temperature
deviations from the mean as well as the auxiliary heat
input:

J =
1

T

∫ T

0

Q11(TE(t)− T̄E)2 +Q22(TS(t)− T̄S)2

+ ψ1Qaux(t) +R11(Qaux(t)− (Q̂aux)0)2dt.

Note that the terms involving Qii are in fact soft con-
straints on the temperature trajectory. The problem has
the form laid out in Section 3 with

Gr(s) =




1

s(mCp)E + (UA)E

1

s(mCp)E + (UA)E

0 − 1

s(mCp)S + (UA)S




Gd(s) =




(UA)E
s(mCp)E + (UA)E

0

(UA)S
s(mCp)S + (UA)S

1

s(mCp)S + (UA)S




x =

[
TE − T̄E
TS − T̄S

]
r =

[
Qaux

QS

]

d =

[
TA − T̄E

QC − (UA)S(T̄S − T̄E)

]

and the remaining parameters having the obvious defini-
tions, in particular h(y) ≡ 0. The numerical values of the
physical parameters are given in Table 1, the cost function
parameters are Q = [ 1000 0

0 10 ], R = [ 0.1 0
0 0.1 ], 2 ψᵀ = [1 0],

and of course, ω = 2π/(24h). The disturbances are ap-
proximated by

TA(t) = −10 sinωt

QC(t) = 13333(1− cos(ωt))

and hence

d̂[1] =

[
5j −20 −5j

−6.7 · 103 1.313 · 104 −6.7 · 103

]
.

2 Note that this is most likely a typo in (Dorato and Knudsen, 1979),
since r2(t) = QS(t) does not appear in the cost function. However, in
order to be able to compare results, we use this potentially incorrect
value for R the reference is using.
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Fig. 5. The optimal input and temperature profiles for
the example solar heating system. Note how the
storage is slowly heating up during the day and how,
presumably due to the large thermal inertia (mCp)E ,
more heat has to be transferred to the enclosure
during the afternoon already to keep the enclosure
warmer during the night.

A slight modification is necessary to adjust for the fact that
instead of rᵀRr, the penalty term is (r − r̂0)ᵀR(r − r̂0):
the sum in (12) needs to be adjusted to

N∑

k=−N

x̂∗kQx̂k +

N∑

k=−N,k 6=0

r̂∗kRr̂k.

The disturbance is approximated with only a single har-
monic, but we could allow more harmonics in the input
r. However, it turns out that selecting N > 1 yields
coefficients equal to zero for all k > 1. Hence, we select
N = 1 and obtain

r̂[1] =

[
−1.871j 5790 1.871j

−0.027− 1.870j 12749 −0.027 + 1.870j

]
,

which is in approximate agreement with the solutions
found in (Dorato and Knudsen, 1979). The optimal input
trajectories and the corresponding temperature profiles are
shown in Figure 5.

6. CONCLUSION AND FUTURE OUTLOOK

In the interest of space and brevity, we treated here only
simple linear time-invariant systems with multiple inputs
and a single output, and the polynomial nonlinearities
are restricted to the cost function. While it is possible
to extend this approach to allow for static polynomial
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nonlinearities in the dynamics as well as feedback inter-
connections and even, in limited cases, roots, it can be
appreciated that the notation is already challenging for
the simple case treated here, and the more general case
will be treated in a full paper.

Also, no effort has been made to optimize the symbolic
generation of the polynomial cost function (12) – the
intent here was to provide a formal, easy-to-follow process
to generate it. Similarly, the optimization of (12) could
benefit from investigations into its structure, e.g. sparsity
patterns. That, too, is the subject of future research.
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Appendix A. PROOF OF THEOREM 3

Lemma 7. Consider

ẋ = Ax+Hr x(0) = x0
with notation as in (5a). Let r = eγt, with γ ∈ C not a
pole of (sI − A)−1. Then setting x0 = Gr(γ)H yields the
response with no transient motion:

x(t) = Gr(γ)eγt.

Proof. Let F (s) = (sI − A) and G(s) = (sI − A)−1.
Denoting the Laplace transform of x(t) by X(s), we have
sX(s)− x(0) = AX(s) +H 1

s−γ and hence

X(s) = G(s)(x0 +H
1

s− γ
).

Using the resolvent equation

G(s)−G(γ) = G(s)F (γ)G(γ)−G(s)F (s)G(γ)

= G(s)
(
F (γ)− F (s)

)
G(γ) = G(s)(γ − s)G(γ)

to replace G(s)
s−γ we get

X(s) = G(s)x0 −G(s)G(γ)H +G(γ)H
1

s− γ

= G(s)
(
x0 −Gr(γ)

)
+Gr(γ)

1

s− γ
.

Setting x0 = Gr(γ)H and applying inverse Laplace trans-
form yields the result. An alternative proof can be found
in (Horn and Dourdoumas, 2004, Sec. 3.6.3). 2

We note in passing that a similar result holds for infinite
dimensional systems for which a transfer function can be
defined.
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