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Abstract: This paper presents a continuous-time (CT) ∆Σ modulator employing an anti-
windup (AW) feedback control technique to mitigate integrator overload and maintain an
acceptable performance simultaneously. The proposed technique accommodates a large dynamic
range and can be applied to multi-loop modulators. According to simulations, using AW
augmentations, for a 50% higher dynamic range (DR), integrators do not overload and the signal-
to-distortion-ratio (SNDR) drops less than 1dB from the maximum SNDR of the modulator.
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1. INTRODUCTION

Delta-sigma analog-to-digital converters (ADCs) have
been extensively used for applications requiring a wide
dynamic range (DR) such as digital audio (Wang, et al.
(2016)), wireless communication (Bettini, et al. (2015)),
and biomedical electronics (Yeknami, et al. (2014,2018)).
A wide DR can be achieved by increasing either the num-
ber of quantization levels or the loop filter order. The latter
often causes instability, while the former needs a highly lin-
ear multi-bit digital-to-analog converter (DAC). To avoid
instability, single-loop high-order (> 2) modulators require
intensive signal scaling by insertion of loop coefficients
and/or reduction of internal signal swing (Marques, et al.
(1998)), but these restrict the DR. On the other hand,
cascading of stable first- or second-order modulators can
build stable high-order modulators, but modulators are
sensitive to non-idealities in the analog components, re-
quiring expanded performance enhancing parameters, and
thus, excessive power consumption.

Performance of single-loop high-order ∆Σ modulators
(∆ΣMs) is mainly restricted by integrator overloading.
Large internal signals may overload the integrator/op-
amp, particularly when the input amplitude approaches
the modulator’s full-scale level (i.e, the designed range
limit). The quantizer then cannot follow the large internal
signal effectively, which causes the signal to grow further
inside the loop, leading to poor performance for the mod-
ulator. This signal limitation, caused by integrator over-
load, will lead to nonlinear behavior, thereby generating
harmonic distortion in the output power spectrum.

Design efforts have been made in the past to overcome
this issue. In Au and Leung (1997) stability is achieved
by bounding the internal node voltages through insertion
of local feedback loops, eventually leading to increased
implementation complexity. In Zourntos and Johns (2002),
the authors propose a compensation architecture for CT
∆ΣMs based on variable-structure control techniques of-
fering soft-resetting as a better alternative to the con-
ventional resetting presented in Au and Leung (1997).
However, it requires the restrictive assumption of infinite
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sampling rate for stability. The hybrid integrator in Shim,
et al. (2005), combining analog and digital integrators,
utilizes an adaptive calibration scheme to adjust the digital
integrator coefficients for minimizing the in-band noise and
distortion.

In this paper, we use a standard model of a modulator,
consisting of a continuous-time (leaky) integrator, and a
single-bit quantizer. To increase the DR, while avoiding
overload, we introduce a local feedback inspired by the
anti-windup (AW) control technique (Hu et al, (2002),
Grimm et al. (2003) and Galeani et al. (2009)) that
mitigates overloading effects without aggressive signal
scaling, resulting in a higher dynamic range (DR).

Here through modeling and simulation results, we show
how the integrator overloading can be avoided and the
resulting SNDR degradation can be improved. At each
stage of the loop, relying on well known Lyapunov function
based techniques, bounds are obtained to show the perfor-
mance of the loops with saturation and anti-windup ele-
ments. For large modulator inputs, the AW-compensated
integrator eliminates the need for digital integrators and
additional cancellation filters used in Au and Leung
(1997), as well as the infinite sampling rate assumption
made in Zourntos and Johns (2002). For higher-order
∆ΣMs, we place an overload prevention (OLP) element
after each integrator in order to avoid voltage overload
throughout the circuit. For simplicity, and to focus on
overloading problem and its mitigation, for results shown
here, we use a second-order single-loop ∆Σ modulator with
a single-bit quantizer, as in Figure 1.

In Section 2 we discuss the behavioral model of typical in-
tegrators in a ∆Σ modulator, while the effects of integrator
overload on power spectral density (PSD) and signal-to-
noise and distortion ratio (SNDR) are discussed in Section
3. There, the overload region is determined, and the OLP
(overload protection) function is introduced to prevent
the integrator output from exceeding the overload thresh-
old level. Section 4 describes the proposed compensated
integrator, incorporating an AW feedback technique for
alleviating the overload shortcoming. Section 5 provides
the simulation results of the compensated modulator.
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Fig. 1. The scaled second-order single-loop ∆ΣM model in SIMULINK including leakage. The single-bit quantizer
realized by a relay denoting offset and hysteresis non-idealities.

2. INTEGRATOR MODELING

We rely on Gerfers, et al. (2003) for a simple integrator
model to use in the ∆Σ modulator simulations. The finite
dc gain of the operational amplifier (opamp) of the CT in-
tegrator, also known as leaky integrator, causes integrator
gain error (α) and a shift in the pole displacement (γ). The
transfer function of the leaky integrator can be expressed
as Gerfers, et al. (2003)

H(s) =
fsA0

s(1 +A0) + fs
=

αfs
s+ γ

, (1)

α =
A0

1 +A0
, γ =

fs
1 +A0

,

where fs is the sampling frequency, and A0 is the dc gain
of the op-amp. The rest of the paper uses the integrator
transfer function given by (1). Note that while, consistent
with standard practice, we refer to this as the (leaky)
integrator model, the model is indeed a stable transfer
function with one pole slightly to the left of the imaginary
axis.

Figure 1 shows the block diagram of a second-order single-
loop ∆Σ modulator with single-bit quantizer to obtain the
discrete data, with sampling frequency of fs (similar to
Malkovati et al. (2003) and Zare-Hoseini et al. (2005)).
The entire model consists of two (leaky) integrators, two
feedback DACs in the feedback loops, and the scaling loop
coefficients a1, a2, b1, b2 to stabilize the loop. The Relay
block from SIMULINK is used for the single-bit quan-
tizer (or comparator), which consists of input offset and
hysteresis non-idealities. The modulator parameter and
coefficient values used in Fig. 1 are summarized in Table
1, where the coefficients are optimized for achieving the
best possible signal-to-noise ratio (SNR). As a practical
realization, a higher-order modulator architecture could
be used to get much lower oversampling ratio (OSR) and
sampling frequency fs, thus minimizing the power con-
sumption of the target ∆Σ modulator. To focus on the core
idea here, we rely on the second-order architecture. The
technique proposed has immediate application to higher-
order models as the modifications needed for each stage
are calculated independently.

Table 1. Optimal coefficients and system pa-
rameters.

Coefficient Value Parameter Value

A0 200 Signal bandwidth BW = 10.24kHz
a1 0.25 Sampling frequency fs = 16.384MHz
a2 0.5 Input frequency fin = 1.75kHz

b1 = b2 0.5 Oversampling ratio OSR = 800
Number samples N = 65536
Supply Voltage Vmax = 1.0V

The effect of finite op-amp gain A0 on the modulator PSD
and SNDR is shown in Fig. 2. It is clear that finite dc
gain causes a shift of the PSD knee (which is equal to
γ ≈ fs/A0) away from dc, resulting in higher baseband
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Fig. 2. Effect of finite op-amp dc gain A0 on PSD and
SNDR.

noise floor. Accordingly, the PSD knee is displaced to 328
kHz, 82 kHz, and 33 kHz for dc gain of 50, 200, 500,
respectively. In the rest of the paper we consider A0 =
200.

3. MODULATOR’S OVERLOADING

The single-bit quantizer used for the second-order ∆ΣM
demonstrates a sigmoidal characteristic (Norsvorthy, et al.
(1997)), i.e., it exhibits reduced gain when the amplitude
of its input is large. Therefore, this nonlinear behavior
imposes large harmonic distortion within the frequency
band of interest, limiting the SNDR. Such a ∆ΣM is
subject to what is at times called instability; i.e., severe
deterioration in its performance, when the modulator in-
put amplitude exceeds a value, often referred to as the
modulator overloading. When the quantizer is overloaded
due to a large integrator output, the modulator output
no longer increases linearly with the input signal, and
the SNDR drops substantially and cannot be restored to
its previous value even if the input amplitude reduces
to its previous state (Norsvorthy, et al. (1997)). Typi-
cally, this necessitates reducing the input voltages to the
modulator and thus limiting its dynamic range, below its
designed range. To avoid severe performance degradation,
the design proposed here employs a novel technique which
ensures that the quantizer input (or equivalently the last
integrator’s output) remains sufficiently below modulator
supply voltage (Vmax), and/or more specifically below the
quantizer overloading level (which will be discussed later).

3.1 Overload Detection

In a ∆ΣM the modulator input amplitude range is typ-
ically given as [0, VFS/2], where VFS is the full-scale
(peak-to-peak) amplitude (i.e., [0,0.5] for sinewaves whose
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peak-to-peak range is between -0.5 and 0.5). Figure 3
plots the modulator SNDR versus the input sinusoidal
signal amplitude in dB full scale (dBFS). The overloading
phenomena starts when the modulator input (sinusoid)
amplitude approaches, but is below, VFS/2. As a result,
the nonlinear distortion within the signal bandwidth (dc
to 10.24 kHz here) increases, and a significant drop in
the SNDR occurs. In Fig. 3 the maximum SNDR value
in dB before significant drop is labeled as SNDRpeak and
the modulator input signal level 3dB below that is often
referred to as the overload level of the ∆ΣM (Yao, et
al. (2006)). As can be seen from Fig. 3, the overload
condition starts when the voltage of the modulator input
goes beyond 0.5V (or -6 dBFS), which corresponds to
0.6V at the integrator output. Consistent with the rest
of the analyses in the paper, we denote this level VOL =
0.6V. When input signal amplitude is greater than 0.5V,
the integrator output signal goes beyond 0.6V and the
peak SNDR starts dropping drastically. When the input
amplitude is equal to Vmax - i.e., the supply voltage (1V
or 0 dBFS) - SNDR is only 60 dB, which is 38 dB lower
than the peak SNDR.
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Fig. 3. Estimating modulator overload voltage using
SNDR curve for both leaky integrator with A0 = 200
and ideal non-leaky integrator with A0 = 10000.

The core idea of this paper is to reduce this SNDR
degradation for input signal amplitudes greater than 0.5V
but less than Vmax = 1.0V, which is the maximum possible
voltage in the circuit. Moreover, the simulation results
for both leaky integrator with A0 equal to 200 (46 dB),
and an almost non-leaky (near-ideal) integrator with A0

equal to 10,000 (80 dB), are included in Fig. 3 to show
a clear distinction between performance deterioration due
to the overloading phenomenon and finite op-amp dc gain
(or integrator leakage). In both cases, the second-order
modulator gets overloaded. The rest of paper considers a
realistic model of the leaky integrator with A0 = 200.

3.2 Overload Prevention
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Fig. 4. Proposed integrator: (a) graphical representation
of overload region, (b) addition of OLP element, and
(c) input-output transfer characteristic of the OLP
function.

The approach is graphically illustrated in Fig. 4(a). When
integrator output enters the gray zone (between 0.6V
and the supply voltage of 1V), the modulator is prone

to instability (i.e., severe performance degradation).To
increase the DR yet allowing for large signal scaling
coefficients (Table I), the proposed approach, shown in
Fig. 4(b), employs an overload prevention (OLP) function,
which prevents the leaky integrator output from entering
the overload region (gray zone), thus avoiding performance
degradation (the so called instability). A simple scheme
is to add a standard saturation (i.e. OLP) element after
the integrator to limit the voltage. The overload voltage
estimated from Fig. 3 is used here as VOL (i.e., 0.6V). The
OLP (saturation) element ensures that the integrator’s
output does not go above VOL.

OLP, without further refinement, however, creates signif-
icant harmonic distortion within the desired bandwidth
at the output PSD and causes major SNDR degradation.
To investigate the effects of OLP on the ∆ΣM’s PSD and
SNDR, an overload factor, KOL, is introduced to represent
how much the integrator input is increase beyond the
safe range (Fig. 4(a)). The KOL factor is defined as the
ratio of input signal amplitude at SNDRpeak, which is
0.5V, and the current input signal amplitude. For example,
KOL = 1 corresponds to no overload condition (inactive
OLP) while KOL = 0.67 corresponds to the input ampli-
tude of 0.75V causing a 50% increase in dynamic range
(note, 0.5 ≤ KOL ≤ 1, due to supply voltage of 1V).

Figure 5 shows the effect of OLP (or saturation limit) on
output PSD and the resulting odd-order in-band harmonic
distortion for various KOL values. The OLP element, used
without further modification, causes third- and fifth-order
harmonic distortion to grow larger as KOL gets smaller.
A smaller KOL factor means more aggressive overload
near Vmax. For instance, for KOL = 0.56, the artificial
saturation introduced by the OLP block increases the HD3
value from -112.5dB to -74.4dB and the HD5 value from -
117.1dB to -79.1dB. As a result, SNDR, as a crucial quality
measure of a ∆ΣM, degrades from 105.5dB to 73.2dB,
which is unacceptable in many applications.

To summarize, the OLP function introduces harmonic
distortion at the desired low frequencies of the PSD,
which is not desirable. Thus, while insertion of an OLP
or saturation element after integrator may avoid overload
issue, if left unmitigated by the proposed AW approach
will cause severe performance degradation.
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4. ANTI-WINDUP DESIGN

An augmentation technique, inspired by the anti-windup
design, is proposed for the internal loops in order to
minimize the effects of the shortcoming of a standalone
OLP discussed in Section 3.2. Roughly speaking, the
AW feedback suppresses the integrator input amplitude
whenever its output exceeds VOL and remains inactive
otherwise.

To meet the closed-loop structure that is needed for anti-
windup design, a feedback with a small gain αa is added
to the leaky integrator H(s) following the OLP block,
as shown in Fig. 6. It is important to ensure that the
added feedback branch has a negligible impact on the
overall system performance. Therefore, the modulator is
simulated with and without αa branch, and the resulting
PSDs are shown in Fig. 7, validating negligible SNDR
change (less than 1dB) when the artificial leakage αa is
chosen as 0.0002.

This slight modification turns the second-order modulator
schematic shown in Fig. 1 into the re-arrangement shown
in Fig. 8 which is ready for AW augmentation, while Fig-
ure 9 depicts the standard configuration for anti-windup
design for each H(s), which is denoted by C (see below).
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Fig. 6. Overload-prevented integrator with very small
artificial leakage αa equal to 0.0002.
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Fig. 7. Negligible effect of αa = 0.0002 on PSD and SNDR.

Next, we show how the block diagram in Fig. 6 could now
be interpreted as a control feedback loop for the standard
AW design shown in Fig. 9 where block C here corresponds
to the leaky integrator H(s) with transfer function αfs

s+γ

followed by OLP (or saturation) in Fig. 6 whereas the plant
P corresponds to a simple unity-gain connection in Fig. 6.
The AW compensation feedback is then added in Fig. 9 in
order to minimize the overload effects.

Fig. 9(bottom) illustrates a possible realization of the
designed AW feedback loop with a minimal hardware com-
plexity, including three 1-bit comparators, two XOR gates
and three switches that control the AW feedback gain.
The implementation strategy is such that we divide the

overload region encircled between VOL and Vmax, shown
in Fig. 4(a), into three parts separated by threshold levels
VOL1=(Vmax−VOL)/3 and VOL2= 2(Vmax−VOL)/3. The
1-bit comparators constantly monitor the integrator out-
put and determine in what specific local overload region
the output voltage is, and then two XOR gates encode
the output bits of the comparators in order to control the
gates of three switches, which connects the corresponding
AW gain to the integrator input for mitigating the over-
loading issue. Thus, if the integrator does not overload,
all switches remain open, so the AW loop is not active.
However, if it overloads, based on the level of satura-
tion (slight/moderate/high) only one of the three switches
closes and the adjusted signal q is multiplied by the AW
gain −Λ. Note that this schematic is for each Λiq, and
two such circuits are needed for each stage. Other possible
circuit realizations would be similar to the one used in
Moussavi and Leung (1994) or Yu and Tseng (2013).

The state-space realization for each integrator transfer
function, with internal state xc (i.e. integrator state), is

ẋc = Acxc +Bcyy +Bcww, u = Ccxc, (2)

with w as the input to the integrator and
[Ac Bcy Bcw Cc ] = [−γ αa 1 αfs ] . (3)

As discussed earlier, the integrator output is subject to
OLP; i.e. |y| ≤ VOL with VOL = 0.6V .The OLP output y
is thus modeled as y = OLP (u) (or simply put SAT (u)).
As discussed earlier, the addition of the OLP block alone
does not improve the performance. The objective here is to
design an augmentation that introduces suitable additive
signals vs and vu to the state dynamics and output of the
unconstrained controller (2), respectively

ẋc = Acxc +Bcyy +Bcww + vs, (4)

u = Ccxc + vu.

Following the standard approach in anti-windup design
(Reineh, et al. (2018) or Grimm et al. (2003)), the er-
ror between the input and output of the OLP element,
q, is used to generate anti-windup compensation, with
SIMULINK modulator model shown in Fig. 9, where νs, νu
are shown as ν1, ν2 for each H(s). The vector signal v in
(4) (v = [vs vu]>) is then v = −Λq with Λ = [Λs Λu]>.

Substituting y = u−q in (4), it is straightforward to build
the closed-loop system with state xc, and w and q as input
signals. The closed-loop system with anti-windup gains can
be written as
ẋc = (Ac +BcyCc)xc +Bcww − ([1 Bcy]Λ +Bcy)q, (5)

u = Ccxc − [0 1]Λq,

with y to be the performance measurement and A0 = 200,
αa = 0.0002. The AW gain Λ is obtained using the convex
optimization algorithm presented in Theorem 1 below.

Theorem 1. (Anti-windup Design: Integrator stabil-
ity)
Consider the block diagram shown in Fig. 9 with a unity-
gain for plant P and the integrator (2) as the nominal
controller C. Then, given the OLP function shown in
Fig. 4, there exists a solution for the convex minimization
problem: If

min
Q,M,X,χ

χ (6)

subject to the linear matrix inequality2Q(Ac +BcyCc) ∗ ∗ ∗
Bcw −χ ∗ ∗
CcQ 0 −χ ∗
Φ4,1 0 −X>[0 1]> −M Φ4,4

 < 0,

(7)
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with scalar M ,

X = ΛM (8)

and

Φ4,1 = −X>[1 Bcy]> −MBcy + CcQ, (9)

Φ4,4 = −2M − [0 1]X −X>[0 1]>.

then, the closed-loop system (5), which is one stage of the
modulator, using anti-windup gain

Λ = XM−1, (10)

is stable with a gain χ from its input to its output.

Proof. Consider a quadratic Lyapunov function

V = Q−1x2c , (11)

where xc is the integrator state, and Q > 0 the scalar
version of Lyapunov matrix. By applying the Schur com-
pliment followed by a congruent transformation the in-
equality (7) can be written as

d

dt
(Q−1x2c) + χ−1y2 − χw2 − 2qW (q − u) < 0, (12)

where W = M−1, u is the output of the integrator, and q
is the error between u and the output of the OLP block.
Using the definition of OLP nonlinearity (Fig. 4), the
following sector condition holds

2qW (q − u) ≥ 0, (13)

with W > 0 as a scaling variable. Given (13) , inequality
(12) reduces to

V̇ + χ−1y2 − χw2 < 0. (14)

Without w, this establishes stability, and with w and zero
initial conditions it ensures stability with performance
measure χ. 2

The anti-windup design requires the unconstrained closed-
loop system to be stable; i.e. the coefficient multiplying xc
on the right-hand side of (5) should have a strictly negative
eigenvalue. After substituting the values shown in (3), this
coefficient is given by

Ac +BcyCc = −γ + αaαfs, (15)

which is stable for αa < 1/A0.

Unlike standard AW cases where the results are often
necessary conditions, the wording of Theorem 1 implies
feasibility. This is due to the special structure of the
model. Given closed-loop stability, there exists a Q > 0
for a sufficiently large χ (bounded real inequality). This
Q would also satisfy the open loop version of the bounded
real inequality. Satisfying both is the feasibility condition
(Grimm, et al., 2003). This results established that each
individual loop (around one H(s) is well behaved. Op-
timizing χ leads to an aggressive AW gain, which helps
reduce input to H(s) is its output goes above VOL of 0.6V.

5. SIMULATION RESULTS

The block diagram of the DSM with AW is shown in Fig.
10. If stages are identical, the gains Λi for each stage would
be the same as other stages and only one set is needed
to be calculated. Results are presented for 0.75V input
signal amplitude (50% higher than SNDRpeak input),
corresponding toKOL = 0.67. The overload voltage VOL =
0.6V estimated in Section 3.1 is used for the OLP function.
The AW gain Λ1 = Λ2 = [−0.01, 1.03]> is obtained from
Matlab convex optimization tools satisfying stability and
performance constraints in Theorem 1.

Figure 11 shows the PSD of the system when the output
of the integrators are subject to OLP with ±VOL and
modulator input has amplitude of 0.75. For this con-
siderable level of overload, the proposed AW technique
has achieved only 1dB drop from SNDRpeak while en-
suring performance for almost 50% larger input ampli-
tudes (KOL = 0.67). Note also, using AW, the third and
fifth harmonic distortions have been significantly reduced.
Therefore, the AW augmentations have significantly im-
proved the performance of the modulator with OLP while
maintaining the stability by reducing the quantizer input
and avoiding its overload. This shows that the anti-windup
compensated system is able to increase the dynamic range
of the modulator and accommodate larger input signals
safely, without overloading the integrator.

6. CONCLUSION

A compensated integrator using an anti-windup feedback
technique was proposed to extend the dynamic range of
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Fig. 10. Behavioral model of a second-order delta-sigma modulator including anti-windup compensation feedback.

103 104 105 106

Frequency (Hz)

-160

-140

-120

-100

-80

-60

-40

-20

0

O
ut

pu
t P

SD
 (d

B
)

SNDRpeak =105.5dB
w/ OLP, SNDR=88.8dB
w/ OLP + AW, SNDR=104.3dB

HD3 HD5

Fig. 11. Effect of AW on PSD and SNDR withKOL = 0.67.

∆Σ modulators by avoiding integrator overload. Using an
anti-windup approach, SNDR cam be retrieved close to its
peak value while accommodating a 50% higher dynamic
range. The gains for each integrator stage is obtained
separately and depends on the specifications of the blocks
in that stage (i.e. Ao, etc). If all stages are identical, only
one set needs to be obtained.
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