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Abstract: Industrial processes are ripe with data and offer countless opportunities for applied data 

science, machine learning and artificial intelligence. While process automation and control are providing 

more guidance in normal operating states, the need for data analytics is abundant when dealing with 

deviations from defined states, aiming at consistent transitions, or exploring new operating states to 

optimize production. This paper provides a brief overview of some examples, and introduces a real-life 

case study available to educators to challenge engineering students in preparation for roles in the 

chemical industry. 
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1. INTRODUCTION 

The chemical industry, amongst most other manufacturing 

segments, is undergoing a significant transformation guided 

by concepts referred to collectively as Industry 4.0. The 

overarching drive of this fourth industrial revolution is 

towards state-of-the-art automation and seamless data 

exchange for faster, better informed decision making. Data 

analytics is an essential component of Industry 4.0 as the 

means to derive contextualized insight from various disparate 

data sources. With the increasing capabilities of sensor 

technologies and robotics, industrial processes are ripe with 

data and offer countless opportunities for applied data 

science, machine learning and artificial intelligence to unlock 

value. While process automation and control are providing 

more guidance in normal operating states, the need for data 

analytics is abundant when dealing with deviations from 

defined states, aiming at consistent transitions, or exploring 

new operating states to optimize production (Chiang, Russell, 

and Braatz, 2001 and Chiang, Lu and Castillo, 2017). As 

systems become more complex, the need for engineers to 

efficiently extract signal from data increases tremendously, 

requiring data literacy and analytics knowledge in the next 

generation of chemical engineering graduates. Given the 

essential nature of contextualization of analytics results for 

value generation in chemical processes (Qin and Chiang, 

2019), subject matter experts need to be highly engaged or 

partake in the analysis. 

In this paper, we aim to provide selected illustrations of 

successful Industry 4.0 scenarios with a special focus on data 

analytics. We will also present a real-life industrial case study 

that is available to interested parties in the educational field. 

The purpose of providing this anonymized dataset is to 

expose chemical engineering students to a problem, which is 

representative of many challenges that can be solved using 

advanced data analytics approaches in chemical 

manufacturing.   

2. INDUSTRIAL EXAMPLES FOR DATA-DRIVEN 

MODELING, MACHINE AND DEEP LEARNING 

2.1  Model Maintenance and Management 

Before the application of data science methodologies to 

chemical processes, countless successes were documented in 

the field of analytical chemistry through the application of 

chemometrics focused on the spectral interpretation and 

concentration predictions of compounds from spectroscopy 

and gas chromatography. Dow has been harvesting the value 

of chemometrics since its early stages, with property and 

additive predictions from spectroscopy analysis for Dow’s 

polyethylene business being one key application segment. At 

any given time, more than 50 process analyzers are running 

continuously to collect spectra, which are used to predict key 

mechanical properties and additive concentrations for 

hundreds of product grades to ensure product quality 

according to specifications irrespective of the producing plant 

(Petzekatis et al. 2017). Due to the chemical structures of the 

additives, which include antioxidants, slip agents, fillers, UV-

absorbers and similar, the spectrum exhibits significant 

overlap in key absorbance regions. Partial least square (PLS) 

modelling to correlate sub-regions of the spectrum with 

actual concentrations determined using a primary method is 

an established method to handle these challenges. The 

resulting models are expected to be valid across various 

instruments provided they adhere to defined settings. 

However, model performance monitoring in such a setting is 

extremely challenging albeit vital for quality assurance and 

acceptance. Historically, manual collection of grab samples 

and comparison of precisely aligned spectral prediction with 

primary analysis was the sole approach for performance 

assessment. Increased connectivity and computing power 

now allows for utilization of a much larger data volume to 

compare defined average spectral prediction with locally 

collected primary analysis on an aligned grab sample. This 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 11496



 

 

  

 

 

200-fold increase in data volume (Fig.1) provides a much 

more complete assessment of model prediction weaknesses as 

illustrated in Fig. 2. Here, the time aligned PLS prediction is 

shown versus the actual property highlighting a prediction 

bias for the same product between two production trains (left 

graph). The solid horizontal lines correspond to the critical 

delta based on a 2-sided Z-test (population variances are 

known). This finding now enables an active investigation into 

possible root causes and solutions to address higher 

prediction errors specific to a single production train. The 

right graph in Figure 2 provides a different view of the 

predicted versus actual property for various products 

produced on the same train; while the predictions are within 

the critical delta for statistical difference, some products fall 

entirely outside the tolerance band. Understanding these 

performance weaknesses of the model enables the plant to 

operate with high confidence for products where the model 

performs well, and rely on more frequent grab samples for 

products with high prediction error while the model is being 

updated. 

Fig. 1. Predicted versus accurate property value illustrating 

the data volume in the traditional performance assessment 

(left) and plant data collection (right). Color coding refers to 

different product grades.  

Fig. 2. Predicted versus accurate property for the same 

product grade produced in two locations (left) and for 

multiple products produced on the same train (right). 

2.2  Pellet Shape Classification 

Pellet shape is an important quality metric in polyethylene 

production with impact beyond visual aesthetics. Shapes that 

deviate strongly from the traditional spherical pellet can 

cause feeding problems at converters, and shape defects like 

wispy plastic tails can break off, rapidly oxidize and cause 

black inclusion in products like sheets or films. Being able to 

reliably detect pellet shape defects, some of which are shown 

in Fig. 3, is the basis for adjusting process and pelletizing 

conditions to maximize quality. Equipment is available on 

the market to collect silhouette images of pellet samples and 

extract multiple morphometric factors, but this information is 

not actionable without reliable classification into shape 

groups. The determination of the correct metrics and 

appropriate limits for classification is challenging in a 

univariate manner. Principal component analysis (PCA) is an 

unsupervised dimensionality reduction methodology suited in 

identifying key variables that describe the variability in 

multivariate datasets. Fig. 4 shows a score plot of a training 

dataset comprised of six or more morphometric factors for six 

different pellet shape classes. There is clear clustering present 

that can be exploited for selecting robust classification 

criteria. Compared to the original method developed using a 

univariate selection approach based on subject matter 

expertise, the PCA enabled classification algorithm reduces 

misclassification rates significantly, especially in the most 

quality-critical category, namely tails (Fig. 5). In the training 

datasets, the misclassification rates were less than 3% for all 

classes. 

  
Fig. 3. Typically observed pellets and examples of defects. 

Fig. 4. PCA score plot colored by visually determined pellet 

shape class. 

The classification can be further improved using machine 

learning and deep learning methodologies as shown in 

Table 1. Random forest models are well suited for 

classification problems, especially with categorical variables. 

Despite the simplicity of the algorithm, it performs very well 

for both the training and test datasets using the features 

provided by the analytical instrument. In absence of features, 

images analysis typically relies on deep neural networks. 
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Fig. 5. Misclassification rate for pellet shapes using the 

incumbent and PCA enabled method. 

Multiple architectures were explored and found to provide 

accurate predictions, which however did not reach the 

performance of a standard architecture convolutional neural 

network (VGG-16). The power of transfer learning is 

highlighted when the VGG-16 architecture is used with pre-

trained weights using the ImageNet dataset, and only the 

weights in the last few layers being adjusted during the 

training process. The predictions are more robust, which 

manifests itself in the highest validation and test accuracies 

(Table 1). For the purpose of this work, accurate predictions 

are the key focus since Type I and II errors both result in 

undesired misclassifications into other categories. This work 

is documented in more detail in Rendall et al. 2018. 

Table 1. Classification accuracy for various methods. (PSSD 

method refers to the PCA enabled method using 

morphometric features, SDNN is an in-house designed deep 

neural network architecture). 

 

 

3. INDUSTRIAL CASE STUDY FOR EDUCATORS 

The masked data originates from one of Dow’s processes. In 

the selected plant section, which is shown in Fig. 6, impurity 

accumulation resulted in accelerated catalyst aging (see Fig. 

7). The impurity to be predicted is measured at a column 

overhead in a separation section of the plant, which is the 

source of 40 process variables (Table 2). The training dataset 

spans from December 2015 until January 2017, the validation 

data covers February until October 2017. The dataset has 

missing values and contains outliers that need to be identified 

and removed prior to modelling. For the problem to be 

solved, the process stability and presence of different 

operating states needs to be analyzed and visualized. A 

complete list of challenges are included in the instructions 

provided alongside the dataset, but the main focus is around 

the development of a reliable and robust prediction model for 

the impurity concentration. Interpretability is essential to 

enable root-cause identification and process control 

opportunities. The intention of making this dataset available 

to educators is to enable students to practice various data 

analytics approaches on a real-world dataset. To build a 

successful model with this dataset, students will need to 

properly apply preprocessing and visualizion techniques 

along with variable selection methods. The dataset and 

detailed instructions can be obtained from Dr. Leo Chiang 

(HChiang@dow.com). 

Fig. 8 shows one of the results for the validation dataset 

obtained from Dow internal modelling techniques. The 

prediction accuracy R2 value for this model is 0.698, and the 

predictions capture most systematic concentration swings. 

For Dow’s purposes, this model proved sufficient as a 

starting point to interrogate key variables and drive 

improvement projects. Over the time, the model was revised 

and further improved.  

 

Fig. 6. Block diagram of the plant section considered for the 

industrial case study for educators. 

Table 2. Summary of process variables included in the 

industrial case study for educators. 

 

 

  

Fig. 7. Impurity concentration over time in training period.  
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Fig. 8. Predicted (black) and actual (blue) impurity 

concentrations during validation period.  

4. CONCLUSIONS 

This paper aims at highlighting the broad opportunity space 

for data analytics in chemical manufacturing, in particular 

when combined with other Industry 4.0 related efforts. 

Process and quality data is more readily available and 

analytics are enabled by more compute power and easier to 

implement algorithms. We highlight two examples to 

illustrated how analytics generates value at Dow. Further we 

introduce an anonymized dataset that is available to educators 

to serve as illustrative example for students for the types of 

data analytics challenges that are typically encountered in 

chemical processes. For more information contact Dr. Leo 

Chiang (HChiang@dow.com).  
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